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Molten salt–based processes and hydrofluxes are highly sensitive to mixture composition and require knowledge 
of the combined melting point for successful materials syntheses. In particular processes using hydroxide–based 
fluxes (pure salt melts) and hydrofluxes (salt melts containing 15–50% H2O) have been shown to be interesting 
environments to synthesize inorganic materials in high oxidation states. The development of tools to predict these 
properties is desirable to inform the implementation of processes using these mixtures. In this work, we use an 
artificial neural network model to estimate the melting points of fluxes and hydrofluxes comprising of quaternary 
mixtures of NaOH, KOH, LiOH, and H2O. A database of 1644 data points collected from 47 different sources was 
used in the training of the model. Melting points were predicted from the molar fractions of each component (4 
independent variables). After training, the ANN model was able to approximate the melting points of the mixture 
with an 𝑅2 of 0.996 for most conditions. Except for a region defined by the range 0.08 ≲ ΦLiOH ≲ 0.14 and 
ΦH2O ≲ 0.85, where the liquidus surface was multi–valued, preventing accurate representation by the ANN. The 
model was able to qualitatively recreate the binary curves and ternary liquidus surfaces of these mixtures with 
a root mean squared error of 6.1 °C (Full range −65 – 477 °C). In the future, this model could be used to aid the 
synthesis of materials in the quaternary mixtures investigated in this work.

1. Introduction

Alkali metal hydroxides are interesting agents to use in the synthesis 
of inorganic materials, in particular as solvents in processes using molten 
salts (fluxes) (Afanasiev, 2007; Chen and Grey, 2008; Hu et al., 2009, 
2010, 2007; Lee and Holland, 1991; Li et al., 2012; Liu et al., 2006; Lu-
siola et al., 2012; Minakawa et al., 2008; Srivastava et al., 2018; Wan et 
al., 2009; Wang et al., 2012, 2009, 2010; Xu et al., 2011; Zhang et al., 
2010, 2007), or alongside water in hydrofluxes (Albrecht et al., 2020a; 
Ananias et al., 2015; Bugaris et al., 2013; Chance, 2014; Chance and 
zur Loye, 2014; Chance et al., 2013; Fernández-Carrión et al., 2014; 
Latshaw et al., 2015a,b, 2016b,a; Tangeysh et al., 2020; zur Loye et al., 
2014). The advent of novel liquid–liquid phase–segregated solvent sys-
tems, such as hydrothermal molten salts (HyMoS), comprised of alkali 
metal hydroxides and water, offer the prospect of developing these syn-
theses into continuous processes (Duverger-Nédellec et al., 2020; Voisin 
et al., 2020). Molten salt mixtures and hydrofluxes can be active partic-
ipants in synthesis reactions and have high mass transport, allowing the 
creation of materials inaccessible via solid–state reactions controllable 
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through the composition of the salt mixture (Bugaris and zur Loye, 2012; 
Portehault et al., 2022). For instance, these processes have enabled the 
synthesis of novel inorganic materials in high oxidation states, featur-
ing unusual cations such as pentavalent manganese (Albrecht et al., 
2020a; Varela et al., 2020). Compared with hydrothermal techniques, 
hydrofluxes allow high–temperature syntheses to be performed at low–
pressure due to the strong bonding of hydroxide ions to water (He et 
al., 2023; Martynova et al., 1982). These processes are highly sensitive 
to the mixture composition and consequently, the temperature required 
to sustain such a composition in a liquid state (Albrecht et al., 2020b). 
Beyond materials synthesis, molten mixtures of alkali metal hydroxides 
and water have found applications in a wide range of fields; such as 
high-temperature electrochemistry in fuel cells, hydrogen–production 
processes, and electrolyzers, (Gürbüz et al., 2021; Licht et al., 2016; 
Yang et al., 2014) and in waste treatment (Dai et al., 2019; Flandinet 
et al., 2012; Lecomte et al., 2023; Mori, 2003; Warnes and Schilbe, 
2001; Yu et al., 2018). Hence, there is a great interest in being able 
to adequately predict the properties of molten salt mixtures (Agca and 
McMurray, 2022; Birri et al., 2022; Cervi et al., 2019) and their mix-
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tures with water (Gondal et al., 2015a,b, 2016; Pohorecki and Moniuk, 
1988; Roosta and Rezaei, 2024).

The alkali metal hydroxides (Li, Na, K in this study) used in these 
approaches are salts with low melting points (∼320 °C, ∼410 °C, and 
∼471 °C, for NaOH, KOH, and LiOH, respectively) (Barton et al., 
1959a; Douglas and Dever, 1954; Seward and Martin, 1949). These 
salts have high solubilities in water (∼5.3, ∼25, and ∼22 M at 25 °C, 
1 atm for LiOH, NaOH, and KOH, respectively) (Pickering, 1893) and 
when molten, these salts are completely miscible with each other. 
The phase behavior below the liquidus line of alkali hydroxide – wa-
ter mixtures can be quite complex, with NaOH forming eight crys-
talline hydrates (Antropoff and Sommer, 1926; Pickering, 1893; Rol-
let and Cohen-Adad, 1964). Mixtures of these alkali metal hydrox-
ides also result in eutectics (i.e., a lower melting point than either of 
the pure components) with melting points of ∼170 °C, ∼220 °C, and 
∼218 °C for mixtures of 50:50 NaOH:KOH, 71:29 KOH:LiOH, and 71:29 
NaOH:LiOH (Reshetnikov and Vilutis, 1959). Mixtures of these salts 
and water also form eutectics, with melting points of −27 °C, −65 °C, 
−27 °C for mixtures of 18.5:91.5 NaOH:H2O, 12.5:87.5 KOH:H2O, and 
8.3:91.7 LiOH:H2O (Pickering, 1893). All of the work on the ternary 
and quaternary mixtures of hydroxides and water is found in journals 
originating in the USSR (Abutkova et al., 1973, 1975; Babayan et al., 
1963; Diogenov, 1953; Evteeva, 1965; Itkina, 1973; Itkina and Chap-
lygina, 1963; Itkina and Ostrovityanova, 1969; Itkina and Portnova, 
1967; Itkina et al., 1966, 1967, 1968, 1969; Kurnakov and Nikolaev, 
1926; Morachevskii and Berdichevskii, 1968; Nizhnik and Lastochkina, 
1952; Portnova, 1969; Portnova and Itkina, 1969a,b; Ravich et al., 1949; 
Reshetnikov and Perfil’eva, 1968; Reshetnikov and Unzhakov, 1953a,b, 
1958; Reshetnikov and Vilutis, 1959; Unzhakov, 1952; Zdanovsky, 
1961). These works have identified a range of binary compounds form-
ing below the liquidus surface, as well as incongruently melting ternary 
compounds of unknown composition Itkina et al. (1967, 1969); Port-
nova and Itkina (1969a); Reshetnikov and Vilutis (1959).

Because of the high demand to have a solid thermodynamic under-
standing of these systems, several computational approaches have been 
proposed for the prediction of phase behavior in salt mixtures (Porter 
et al., 2022). The most commonly used is CALPHAD (CALculation of 
PHAse Diagrams) (Fujiwara et al., 2010; Hao et al., 2023; Manga et al., 
2014; Ng and Ryu, 2023; Spencer, 2008). Several CALPHAD software 
products exist that can accurately predict phase diagrams for mixtures, 
although the computational requirements of these calculations increase 
substantially with compositional complexity. CALPHAD is also highly 
dependent on the use of comprehensive and accurate thermodynamic 
databases, which are costly to access and may not exist for all ma-
terials. Calculations for a system such as the NaOH–KOH–LiOH–H2O 
quaternary would require a large amount of computation time and a 
thermodynamic basis that is currently incomplete.

An alternative, more affordable approach to phase prediction is the 
use of machine learning, which can predict melting points of mixtures 
by capturing patterns and relationships learned from training on a data 
set of known compositions and melting points (Deffrennes et al., 2023). 
After training, machine learning models can make predictions in rel-
atively short timescales making them extremely efficient tools in some 
applications. Machine learning models have become increasingly promi-
nent in the prediction of thermophysical properties of materials (Porter 
et al., 2022). These have included properties such as thermal conductivi-
ties (Nait Amar et al., 2020; Shams et al., 2015; Tatar et al., 2016), phase 
equilibria Alvarez and Saldaña (2012); Lashkarbolooki et al. (2013); 
Vaferi et al. (2013), and diffusion coefficients (Aniceto et al., 2021a,b; 
Vaz et al., 2013; Zhao et al., 2022). While there are currently numer-
ous examples of machine learning models predicting other properties 
of molten salt systems (Nguyen et al., 2021; Pan et al., 2020; Porter et 
al., 2022; Reshetnikov and Vilutis, 1959; Sivaraman et al., 2021; Xie 
et al., 2023), or predicting phase equilibria in other single component 
systems Acar et al. (2022); Freitas et al. (2022); Galeazzo and Shiraiwa 
(2022); Hong (2022); Hong et al. (2022); Low et al. (2020); Saldana 

et al. (2013); Sivaraman et al. (2020); Venkatraman et al. (2018), work 
combining these two goals are still relatively uncommon. Although work 
exists using machine learning to predict phase equilibria in binary sys-
tems can be found (Chen et al., 2022; Hosseini and Leonenko, 2023; Sun 
et al., 2023). We found no examples of using machine learning to make 
predictions for ternary or higher order mixtures.

In the case of binary mixtures, Sun et al. used molecular properties 
such as the self–association constants, molecular weights, and accentric-
ity, alongside the molar fractions and thermodynamic variables such as 
temperature and pressure to predict the vapor-liquid equilibria of bi-
nary mixtures using artificial neural network (ANN) and random forest 
models (Sun et al., 2023). Their random forest model was less accurate 
than the nonrandom two-liquid model, but could be trained and make 
predictions rapidly. The model was however limited to two components, 
which makes it unsuitable for the problem we address in this study. Chen 
et al. used an ANN to predict the phase equilibria of aqueous–ionic liq-
uid binary systems using 71 parameters describing the structure of each 
component (Chen et al., 2022). Their model correlated strongly with 
experimental data (𝑅2 = 0.92), but again this was restricted to binary 
system.

In this work, we demonstrate the use of an ANN to predict the melt-
ing points of quaternary mixtures of alkali hydroxides (Li, Na, K) and 
water using data harvested from the literature. This model allows the 
prediction of composition–specific properties of hydroxide water mix-
tures, which is highly–desirable knowledge in the development of inor-
ganic syntheses using molten hydroxide fluxes and hydrofluxes.

2. Methods

2.1. Data collection and pre–processing

Melting point, 𝑇m, data for NaOH, KOH, LiOH, and H2O; as well 
as for mixtures thereof was collected from the published literature. 
Only data that was explicitly measured experimentally was included 
in the dataset. Data produced by extrapolation or theoretical models 
were not included. In total, 1644 data points were collected from 47 
different sources (50 points excluded) (Antropoff and Sommer, 1926; 
Babayan et al., 1963; Baikov, 2012; Barton et al., 1959b,a; Cohen-Adad 
and Michaud, 1956; Cohen-Adad et al., 1960; Dai et al., 2023; Dio-
genov, 1953; Douglas and Dever, 1954; Evteeva, 1965; Itkina, 1973; 
Itkina and Chaplygina, 1963; Itkina and Ostrovityanova, 1969; Itkina 
and Portnova, 1967; Itkina et al., 1966, 1967, 1968, 1969; Kacprzak 
et al., 2013; Kurnakov and Nikolaev, 1926; Michaud, 1967, 1968; 
Morachevskii and Berdichevskii, 1968; Otto and Seward, 1964; Pick-
ering, 1893; Portnova, 1969; Portnova and Itkina, 1969a,b; Ravich et 
al., 1949; Reshetnikov and Perfil’eva, 1968; Reshetnikov and Unzhakov, 
1953a,b, 1958; Reshetnikov and Vilutis, 1959; Rollet and Cohen-Adad, 
1964; Rollet et al., 1959; Scarpa, 1915a,b,c; Seward and Martin, 1949; 
Smothers et al., 1954; Stephan and Miller, 1962; Takahashi et al., 1982; 
Unzhakov, 1952; von Hevesy, 1910; Zdanovsky, 1961). Where com-
positions were given as wt.% in the sources, these were converted to 
mol.%, using 𝑀W,H2O = 18.022 g⋅mol−1, 𝑀W,LiOH = 23.948 g⋅mol−1, 
𝑀W,NaOH = 39.997 g⋅mol−1, and 𝑀W,KOH = 56.106 g⋅mol−1 for the cal-
culation. Melting point data in these papers was collected by variety of 
techniques included equilibrium solubility, calorimetry, thermography 
and the method of 𝑃 –𝑉 curves, which mostly showed good correla-
tion. There were some limitations to the dataset, some measurements 
were performed under pressure, but the pressure was not recorded or 
given in the relevant publication. Some points were observed to devi-
ate strongly from the rest of the data set. These were eliminated based 
on the magnitude of their deviation. These data points were found in 8 
papers (Babayan et al., 1963; Dai et al., 2023; Itkina et al., 1967, 1969; 
Scarpa, 1915c; von Hevesy, 1910) (see Section S1 in the Supporting 
Information the full data set). The cause of the deviation is suspected 
to originate in water contamination of the hydroxide salts in several 
cases (Dai et al., 2023; Scarpa, 1915c; von Hevesy, 1910), in other cases 
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the source of the deviation is not obvious, because the quality of these 
points could not be verified, they were excluded from the main dataset 
(Babayan et al., 1963; Itkina et al., 1967, 1969). Experimental error 
was not reported in enough of the studies to be reliably included in our 
model.

The dataset was scaled using the preprocessing.scaler function of the 
Scikit-learn Python package (Pedregosa et al., 2011). This function cen-
ters and scales each data point as the number of standard deviations 
from its mean value in the data set (i.e., the 𝑧-score, 𝑧 = (𝑥 − 𝑥̄)∕𝜎𝑥). 
Finally, the data was randomly split 80% – 20% into a training and a 
testing set using the model_selection.train_test_split function of the Scikit-

learn Python package with random_state = 3 (Pedregosa et al., 2011). 
The mean and standard deviations of the test and training sets were 
𝑇 (Train)
𝑚

= 159.9 °C, 𝜎(Train)
𝑇𝑚

= 140.6 °C, 𝑇 (Test)
𝑚

= 172 °C, and 𝜎(Test)
𝑇𝑚

= 133.6 °C. All hyper–parameter optimization and validation were per-
formed on the training set.

2.2. Machine learning model

The ANN used in this work was implemented using the Scikit–learn

Python package (Pedregosa et al., 2011). Specifically, the neural_net-

work.MLPRegressor function. The script used to train and test the ANN is 
available as an iPython notebook in the Supporting Information (Perez 
and Granger, 2007). The ANN takes four inputs ΦNaOH, ΦKOH, ΦLiOH, 
and ΦH2O (molar fractions of NaOH, KOH, LiOH, and H2O, respectively) 
and has a single output, 𝑇𝑚, the melting point of the mixture.

2.3. Cross validation

Hyper–parameter optimization was performed through 5–fold cross–
validation using the model_selection.GridSearchCV function included in 
the Scikit–learn Python package (Pedregosa et al., 2011). Two rounds 
of hyper–parameter optimization were performed. First, an exhaus-
tive search of all parameters of combinations of solvers (Adam and 
limited–memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS)), learn-
ing rate (constant, adaptive, inverse scaling), activation functions (rec-
tified linear unit (ReLU), Identity, Tanh, Logistic) and ANN structure 
(permutations of 50, 100, or 150 artificial neurons per layer in up to 
three layers) was performed (Table S4 in the Supporting Information). 
It was found that the Adam solver and the identity activation function 
performed poorly and changing the learning rate had little impact on 
the score (Figures S5 and S6).

Following this, a second round of cross–validation was performed us-
ing only the LBGFS solver and omitting the Linear activation function. 
The tested ANN structures consisted of permutations of 50, 100, 150, 
or 200 neurons per layer in up to three layers. After hyper–parameter 
optimization, the optimal configuration was found to be 3 hidden lay-
ers containing 100, 150, and 50 hidden neurons respectively, using the 
LBFGS solver and ReLU as the activation functions. Across the five folds, 
this configuration had the highest average 𝑅2 = 0.9863 and lowest 
standard deviation in the 𝑅2, 𝜎𝑅2 = 0.009 (Table S5 in the Support-
ing Information). The results of the hyper–parameter optimization are 
summarized in Sections S2 and S3 of the Supporting Information.

3. Results and discussion

We first compiled a data set comprised of experimentally mea-
sured melting points for NaOH, KOH, LiOH, and H2O, as well as mix-
tures thereof. In total, 1594 data points of acceptable quality were 
found in the literature. 39 of these data points covered the melt-
ing points of the isolated compounds that were collected. The points 
were distributed as follows: Binaries – NaOH–KOH (96 data points), 
KOH–LiOH (209), and NaOH–LiOH (100), NaOH–H2O (378), KOH–
H2O (145), and LiOH–H2O (83). Ternaries – NaOH–KOH–LiOH (271), 
NaOH–KOH–H2O (54), KOH–LiOH–H2O (87), and NaOH–LiOH–H2O 
(80). NaOH–KOH–LiOH–H2O quaternary (61). 50 points from 8 sources 

were rejected from the final data set because they deviated too strongly 
from the other data compiled (Babayan et al., 1963; Dai et al., 2023; 
Itkina et al., 1967, 1969; Scarpa, 1915c; von Hevesy, 1910).

The full data set is available in Section S1 of the Supporting Informa-
tion. The data in the binary and ternary mixtures is plotted in Figures 
S1-3 of the Supporting Information.

A note should be made regarding the melting point of anhydrous 
KOH; a wide range of melting points between 360 and 410 °C is reported
in the literature, this has been noted elsewhere (i.e., Refs. Dessureault 
et al., 1990; Seward and Martin, 1949 and Table S1 in the Support-
ing Information). Values of ∼360 °C or ∼380 °C are commonly found in 
the literature, product specifications, and chemical property databases. 
These values are incorrect and reflect measurements taken on KOH 
contaminated with water. The removal of water from KOH powders is 
notoriously difficult. As a result, several studies reporting incorrectly 
low melting points for pure KOH have been published, which have un-
fortunately become prominent sources for 𝑇m,KOH. However, a melting 
point above 400 °C is more consistent with the majority of published lit-
erature on this topic (Table S1 in the Supporting Information). Seward 
and Martin, who corrected for the water content of their salt, found the 
melting point of anhydrous KOH to be (410 ± 1) °C (Seward and Mar-
tin, 1949). Hence, the two studies presenting 𝑇m < 400 °C for KOH were 
excluded from the data set (Scarpa, 1915b; von Hevesy, 1910).

The predicted vs. true values for the melting point of the NaOH, KOH, 
LiOH, and H2O mixtures are shown in Fig. 1. The trained model was 
able to predict the contents of the training set, testing set, and whole 
data set with 𝑅2 values of 0.976, 0.883, and 0.961, respectively. These 
values initially seem underwhelming. However, the values that deviate 
strongly from the 𝑦 = 𝑥 line, all belong to a group of data points satis-
fying the following criteria: 0.08 ≲ ΦLiOH ≲ 0.14, and ΦH2O ≲ 0.85. 
The feature associated with this is visible in the apparent in the liquidus 
curves of the LiOH–H2O binary and the NaOH–LiOH–H2O and KOH–
LiOH–H2O ternaries. This feature will be discussed again later. Elimi-
nating these points from the analysis (i.e., using only the red points in 
Fig. 1) significantly improves the 𝑅2 values to 0.9986, 0.996, and 0.998 
for the training, testing, and entire data set respectively. Whereas, the 
excluded data points give much lower 𝑅2 values of 0.338, −0.086, and 
0.173 for the training, testing, and entire data set respectively. Hence, it 
is apparent that the model can estimate the majority of the data points 
in the data set to within a reasonable degree of accuracy, while it fails 
the range of mixtures where 0.08 ≲ ΦLiOH ≲ 0.14, and ΦH2O ≲ 0.85.

Finally, before inspecting the ability of the model to reflect the dif-
ferent binaries and ternaries in these systems, it is worth noting that the 
vertical linear series of points at 150 °C below the rest of the data in 
Fig. 1 arise from the KOH–LiOH–H2O series of a single source, it is un-
clear whether the data should be treated as an outlier from the rest of 
the data set, it has been retained in the data set (Itkina et al., 1968).

By plotting the data along each of the six binaries in this system, 
it is possible to observe where the incorrectly predicted points emanate 
(Fig. 2). For the NaOH–KOH, KOH–LiOH, NaOH–LiOH, NaOH–H2O, and 
KOH–H2O binaries, the collected data within experimental uncertainty 
is single–valued, i.e., for every combination of the independent variables 
(molar fractions) there is a unique corresponding value of the depen-
dent variable (𝑇m). However, for the LiOH–H2O binary, this is not the 
case, the model fails in the multiply defined region of the liquidus curve 
(0.08 ≲ ΦLiOH ≲ 0.14). The problems in this section of the curve stem 
from the poor solubility of LiOH compared to NaOH and KOH. The max-
imum solubility of LiOH in H2O at 1 atm is ΦLiOH = 0.157, where the 
boiling curve meets the liquidus curve at this concentration at 𝑇 = 
108.9 °C (Rollet and Cohen-Adad, 1964). The only sources for the rest 
of the liquidus curve were performed under pressure to increase the sol-
ubility of LiOH, but the working pressures were not specified. The only 
given information on the pressure conditions suggests that in the region 
of (0.08 ≲ ΦLiOH ≲ 0.14, 270 °C ≲ 𝑇m ≲ 350 °C), pressure is at maxi-
mum, with an upper limit on the pressure (due to the equipment used) 
of 50 MPa (Rollet and Cohen-Adad, 1964; Stephan and Miller, 1962). In 
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Fig. 1. Published data vs. ANN predicted melting points for the testing, training, and entire data set. The data where 0.08 ≲ ΦLiOH ≲ 0.14, and ΦH2O ≲ 0.85 have 
been highlighted in blue.

Fig. 2. ANN–predicted melting points (lines) vs. published data (points) as a function of molar fraction for each of the binary compositions. The ANN model closely 
fits the experimental data in regions where the solid–liquid phase transition is single–valued. But fails where the phase transition is multi–valued (red region of 
LiOH-H2O binary).

the range, 0.08 ≲ ΦLiOH ≲ 0.14, the applied pressure for 𝑇m > 108.9 °C, 
results in the liquidus curve in Fig. 2 appearing to be multi–valued, be-
cause a dependent variable is ignored, preventing adequate fitting in 
this region. This is impossible to avoid without generating significant 
additional data detailing the pressure dependency of the solubility of 
these compounds, hence the ANN model fails in this region.

For ΦLiOH ≳ 0.14, measurements were still taken under pressure, but 
the curve is single–valued, hence the model can fit the data in this region 
without issue, although it is incapable of reflecting this dependency. 
With the exception, of the melting point of anhydrous LiOH which can 
be measured at atmospheric pressure and is in the range 471 – 477 °C 
(Table S1 in the Supporting Information). Similarly, without the acqui-
sition and publication of significant additional data, the ANN cannot 
reflect the pressure dependencies at ΦLiOH ≳ 0.14.

Turning to the NaOH–KOH–LiOH, KOH–LiOH–H2O, NaOH–LiOH–H2O, 
and NaOH–KOH–H2O ternaries, which define the limits of NaOH–
KOH–LiOH–H2O system. The collected data set for these ternaries is 
plotted in Figures S2 and S3 of the Supporting Information, the data set 
has been interpolated to approximate the entirety of all the ternaries. 
It can be seen in the raw data set that the multi-valued region of the 
LiOH–H2O binary extends into both the NaOH–LiOH–H2O and KOH–

LiOH–H2O ternaries. This region is roughly bounded by the conditions 
that 0.08 ≲ ΦLiOH ≲ 0.14, and ΦH2O ≲ 0.85, the data points from this 
region are highlighted in Fig. 1.

The predictions of the trained ANN in all ternaries are shown in 
Fig. 3. It can be seen that there is a high degree of qualitative similar-
ity between the smoothed data set and the prediction of the ANN. The 
ANN fails to accurately predict the data set in the multi-valued region, 
where most of the points deviate strongly from the predicted surface 
(this is also the case for the smoothed data set). Outside of this region, 
the trained ANN manages to predict 𝑇m with a root mean square error of 
6.1 °C (cf. 75 °C within it) which is within the experimental error seen be-
tween the various sources comprising the data set. Unfortunately, there 
are not many data points for large parts of the interior regions of some 
of the ternaries (i.e., ΦLiOH > 0.14 for the NaOH–LiOH–H2O and KOH–
LiOH–H2O ternaries). The ANN–predicted phase diagram is consistent 
with speculative phase diagrams in the literature (i.e., Refs. Itkina, 1973; 
Itkina et al., 1967; Portnova and Itkina, 1969a). However, to the best of 
our knowledge, these regions remain experimentally unconfirmed.

The data for quaternary mixtures comes from a single source, Itkina 
et al. which covered a 150 °C isotherm close to the NaOH–KOH–H2O 
ternary (ΦLiOH < 0.14) (Itkina and Portnova, 1967). We were unable to 
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Fig. 3. Map of alkali metal hydroxide ternary fluxes and hydrofluxes. Flux syntheses are typically performed in the NaOH–KOH–LiOH ternary, whereas hydrofluxes 
syntheses are typically performed in the region 0.15 ≳ ΦH2O ≳ 0.55 (Chance, 2014). ANN predicted melting points for the NaOH–KOH–LiOH, KOH–LiOH–H2O, 
NaOH–LiOH–H2O, and NaOH–KOH–H2O ternaries as a function of molar fraction of each component. Small circles indicate harvested experimental data points, and 
the interior color fill is matched to the reported experimental melting point. The color map indicates the output of the ANN on each ternary. Qualitatively, it can be 
seen that the model performs well compared with the experimental data for most compositions, as is suggested by the close match between the colors of the map 
and the data points. In the region, bounded by 0.08 ≲ ΦLiOH ≲ 0.14, and ΦH2O ≲ 0.85, where the surface is multi–valued, it can be seen that the model is not able 
to reflect this feature. There are large regions in the NaOH–LiOH–H2O and KOH–LiOH–H2O ternaries where the model has interpolated and no experimental data 
exists, where assessing the accuracy of the model is difficult. Uncertainty in the experimental data is also present due to variations between sources.

Fig. 4. Absolute error in predicting the data points for the quaternary NaOH–
KOH–LiOH–H2O system at 150 °C from Itkina and Portnova (1967). The dashed 
lines represent the range covered by root mean square error (± 3.9 °C).

fit any other published data for the quaternary system. The trained ANN 
was able to predict the points from this source with root mean square 
error of 3.9 °C, with two clear outliers where the absolute error was 
above ±15 °C (Fig. 4). The model performed adequately on the points 
available, but more data is needed to test the model further.

This model could be improved if it were extended to consider the 
pressure dependency of the liquidus curve. However, the limitations 
of the currently available data prevent this. The model could also be 
extended to make predictions for a broader range of salts, rather than 
focusing on a single quaternary system. This would include significantly 
expanding the data set to include other salts such as halides, nitrates, 
and carbonates, as well as training the model with new inputs, beyond 
molar fractions. For instance, salt properties such as the atomic number, 
valency, and molecular weight of the anion and cation of each compo-
nent; enthalpy of fusion for each component; ...etc. Such a model could 
potentially predict the melting points of a broad range of fluxes beyond 
the scope of the model presented here. Datasets like the one assembled 
for this study could be integrated into adaptive optimization methods 
to identify optimal conditions to gain information from further experi-
mentation, such an approach could be made powerful if integrated into 
a self-driving robotic laboratory.

Currently, data availability acts as a bottleneck to establishing these 
models. Experimental data exists on a wide range of salts, but it is dif-
ficult and time–consuming to collate them into data sets, although not 
impossible. For instance, many of the data points used here were taken 

directly from Soviet–era journals. These were often difficult–to–identify 
and access, due to them being undigitized and untranslated. The data 
from these sources when located has been transcribed in the Support-
ing Information. However, it remains likely that further data on these 
systems exists in the Soviet literature that was not yet identified by us 
because of the language barriers and low availability of these papers. 
The thermophysical data available in these journals is a valuable source 
of training data for machine learning models, and attempts to move 
this data into publicly accessible databases would be beneficial to the 
community as a whole. Recent advances in the development of natural 
language processing models could help alleviate this problem by allow-
ing the automatic extraction of this information from published papers 
in a range of languages. However, the success of this approach is cur-
rently limited by the lack of digitization of many of the relevant data 
sources.

4. Conclusion

In this paper, we have demonstrated a neural network model for the 
prediction of the melting points of quaternary mixtures of NaOH, KOH, 
LiOH, and H2O which can be used to find the melting point of alkali 
metal hydroxide fluxes and hydrofluxes for inorganic crystallite syn-
theses. After training with literature data, our ANN model was able to 
approximate the testing set with an 𝑅2 of 0.996, excluding points in the 
range 0.08 ≲ ΦLiOH ≲ 0.14. The 𝑅2 of the entire testing set was worse 
(0.883) due to a multi–valued region in this range which could not be 
modeled by the ANN. This feature originates from the need to pressur-
ize LiOH solutions to maintain stability above ΦLiOH = 0.157. However, 
this pressure data is currently absent from the existing literature, mak-
ing it impossible to account for without further experimentation. The 
model was able to qualitatively recreate the binary and ternary liquidus 
curves of these mixtures with a root mean squared error of 6.1 °C. This 
model and its outputs will hopefully act as a useful tool for researchers 
performing syntheses in alkali metal hydroxide fluxes and hydrofluxes, 
by identifying the temperature conditions required to use compositions 
with a desired set of chemical properties. Tools like the one discussed in 
this study could help enable the use of quaternary mixtures to be used 
more reliably in the hydroflux synthesis of novel materials. Models like 
the one demonstrated in this study can rapidly predict phase-equilibria 
and could be integrated into modeling software to avoid wasting expen-
sive computation time on thermodynamic calculations. They can also be 
used as tools by researchers to predict phase equilibria for molten salt 
and hydroflux based processes.
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