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Abstract: This paper introduces the use of internal variables, estimated through Model Predictive Control 
(MPC), for fault detection and diagnosis in process industries. To do so, a data-driven methodology is 
proposed. Three reconstruction techniques - Principal Component Analysis (PCA), Kernel Independent 
Component Analysis (KICA), and Autoencoder (AE) - are compared using data sets that combine plant 
measurements with internal variables. The methodology was tested on a hot-dip galvanizing line dedicated 
to the production of automotive steel and compared to the use of only plant measurements for the 
development of the reconstruction methods. The results showed that the incorporation of internal variables 
significantly enhances the overall fault detection rate. Finally, contribution plots were used to identify the 
faulty sensor. 
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1. INTRODUCTION 

Process industries, also known as manufacturing industries, 
transform raw materials into products through physical and 
chemical phenomena, as opposed to discrete industries, which 
focus on assembling distinct, countable items. Process 
industries, which typically include sectors such as chemicals, 
food and beverages, pharmaceuticals, oil refining, and metal 
industry, are characterized by continuous or batch production 
processes (Kadlec et al., 2009). Meanwhile, assembly lines in 
the automotive industry are examples of discrete industries.   

Process industries are characterized by complex and integrated 
operations, which require sophisticated approaches for quality 
and process monitoring. Kano & Nakagawa (2008), 
considered that enhancing product quality in process industries 
fundamentally relies on predicting product quality from 
operational conditions, identifying optimal operational 
conditions, and detecting and diagnosing faults. These three 
objectives encompass the majority of research efforts in 
process industry monitoring. 

Even if process industries are very different, the monitoring 
issues are very similar (Kadlec et al., 2009; Kano & 
Nakagawa, 2008). Therefore, in this paper, we focus on 
galvanizing lines which are an excellent example of complex 
process industries. As such, all the aforementioned objectives 
for monitoring galvanizing lines can be found in the literature. 

Firstly, mechanical properties, key indicators of the quality of 
galvanized steel, are not measurable in real-time. Quality 
assessment typically awaits test results from the steel strip's 
head or tail, which are known several hours after the end of 
galvanization, thus precluding adjustments to operational 
conditions based on achieved quality (Wang et al., 2022). 
Consequently, significant research has been conducted to 

predict the mechanical properties based on the process 
parameters and the product characteristics. Artificial neural 
networks have been widely used for this purpose (Lalam et al., 
2019; Wang et al., 2022). Orta et al. (2020) found that 
incorporating an analytical model of recrystallization 
annealing as an input to the neural network, alongside process 
parameters and steel's chemical characteristics, enhances 
prediction accuracy. 

Quality monitoring and assessment of galvanizing lines 
involves also deriving better operational conditions. This is 
particularly challenging due to product characteristic 
variations and uncertainties, furnace inertia, and disturbances, 
making it difficult to maintain uniform operational parameters 
throughout a steel strip's treatment (Sanz-Garcia et al., 2015). 
Inconsistencies in mechanical properties along a steel strip are 
a major customer complaint (Colla et al., 2020), leading to the 
implementation of MPC based on analytical (Strommer et al., 
2018) or data-driven (Cho et al., 2023) models for controlling 
galvanizing lines. 

The final aspect of galvanizing line monitoring focuses on 
fault diagnosis, primarily concerning roll faults. Steel strip 
transport through the lengthy galvanization process is 
facilitated by rolls, which also maintain tension essential for 
strip flatness. Tension meters placed along the line measure 
strip tension, regulating the dancer roll angle, rotation speed, 
and transport rolls' current in a closed-loop system (Liu et al., 
2011). Despite this, tension faults can occur, potentially 
leading to catastrophic consequences such as strip breakage, 
causing over 24-hour production halts and equipment damage 
(Qiang Liu et al., 2013). To detect the occurrence of tension 
faults, multivariate statistical methods have been applied, 
using techniques such as PCA, Partial Least Squares (PLS), 
Canonical Correlation Analysis, ICA, and their non-linear or 
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industry, are characterized by continuous or batch production 
processes (Kadlec et al., 2009). Meanwhile, assembly lines in 
the automotive industry are examples of discrete industries.   

Process industries are characterized by complex and integrated 
operations, which require sophisticated approaches for quality 
and process monitoring. Kano & Nakagawa (2008), 
considered that enhancing product quality in process industries 
fundamentally relies on predicting product quality from 
operational conditions, identifying optimal operational 
conditions, and detecting and diagnosing faults. These three 
objectives encompass the majority of research efforts in 
process industry monitoring. 

Even if process industries are very different, the monitoring 
issues are very similar (Kadlec et al., 2009; Kano & 
Nakagawa, 2008). Therefore, in this paper, we focus on 
galvanizing lines which are an excellent example of complex 
process industries. As such, all the aforementioned objectives 
for monitoring galvanizing lines can be found in the literature. 

Firstly, mechanical properties, key indicators of the quality of 
galvanized steel, are not measurable in real-time. Quality 
assessment typically awaits test results from the steel strip's 
head or tail, which are known several hours after the end of 
galvanization, thus precluding adjustments to operational 
conditions based on achieved quality (Wang et al., 2022). 
Consequently, significant research has been conducted to 

predict the mechanical properties based on the process 
parameters and the product characteristics. Artificial neural 
networks have been widely used for this purpose (Lalam et al., 
2019; Wang et al., 2022). Orta et al. (2020) found that 
incorporating an analytical model of recrystallization 
annealing as an input to the neural network, alongside process 
parameters and steel's chemical characteristics, enhances 
prediction accuracy. 

Quality monitoring and assessment of galvanizing lines 
involves also deriving better operational conditions. This is 
particularly challenging due to product characteristic 
variations and uncertainties, furnace inertia, and disturbances, 
making it difficult to maintain uniform operational parameters 
throughout a steel strip's treatment (Sanz-Garcia et al., 2015). 
Inconsistencies in mechanical properties along a steel strip are 
a major customer complaint (Colla et al., 2020), leading to the 
implementation of MPC based on analytical (Strommer et al., 
2018) or data-driven (Cho et al., 2023) models for controlling 
galvanizing lines. 

The final aspect of galvanizing line monitoring focuses on 
fault diagnosis, primarily concerning roll faults. Steel strip 
transport through the lengthy galvanization process is 
facilitated by rolls, which also maintain tension essential for 
strip flatness. Tension meters placed along the line measure 
strip tension, regulating the dancer roll angle, rotation speed, 
and transport rolls' current in a closed-loop system (Liu et al., 
2011). Despite this, tension faults can occur, potentially 
leading to catastrophic consequences such as strip breakage, 
causing over 24-hour production halts and equipment damage 
(Qiang Liu et al., 2013). To detect the occurrence of tension 
faults, multivariate statistical methods have been applied, 
using techniques such as PCA, Partial Least Squares (PLS), 
Canonical Correlation Analysis, ICA, and their non-linear or 
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involves also deriving better operational conditions. This is 
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variations and uncertainties, furnace inertia, and disturbances, 
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throughout a steel strip's treatment (Sanz-Garcia et al., 2015). 
Inconsistencies in mechanical properties along a steel strip are 
a major customer complaint (Colla et al., 2020), leading to the 
implementation of MPC based on analytical (Strommer et al., 
2018) or data-driven (Cho et al., 2023) models for controlling 
galvanizing lines. 

The final aspect of galvanizing line monitoring focuses on 
fault diagnosis, primarily concerning roll faults. Steel strip 
transport through the lengthy galvanization process is 
facilitated by rolls, which also maintain tension essential for 
strip flatness. Tension meters placed along the line measure 
strip tension, regulating the dancer roll angle, rotation speed, 
and transport rolls' current in a closed-loop system (Liu et al., 
2011). Despite this, tension faults can occur, potentially 
leading to catastrophic consequences such as strip breakage, 
causing over 24-hour production halts and equipment damage 
(Qiang Liu et al., 2013). To detect the occurrence of tension 
faults, multivariate statistical methods have been applied, 
using techniques such as PCA, Partial Least Squares (PLS), 
Canonical Correlation Analysis, ICA, and their non-linear or 

dynamic variants  (Liu et al., 2018). To identify the roll at the 
origin of the tension fault, contribution plots are used. 

However, beyond tension faults, sensor (e.g. temperature) or 
process actuator faults in furnaces and cooling chambers, or 
other process elements in galvanizing lines remain 
unaddressed. Detecting sensor and actuator faults in 
galvanizing lines is challenging due to the coupling of 
metallurgical, thermal, and mechanical phenomena, as well as 
the extensive range of diverse products, resulting in transition 
phenomena. Furthermore, the variation of certain product 
characteristics along a strip, such as emissivity, can cause 
significant fluctuations in measured values even under steady-
state conditions. 

Additionally, research on predicting mechanical properties 
and determining optimal operating conditions to enhance 
quality has resulted in the adoption of MPC for controlling 
galvanizing lines. This implementation has led to improved 
product reproducibility and reduced instances of non-quality. 
However, when faults are present, MPC tends to mask the 
appearance of some or propagate others, thus delaying their 
detection or complicating the identification of the root cause 
(Sotomayor & Odloak, 2005). Meanwhile, unmeasurable 
internal variables, calculated by MPCs alongside product 
quality predictions, contain valuable diagnostic information 
but are seldom reported in factory databases.  

Fault detection and diagnosis methods are often classified into 
three categories: model-based, data-based, and knowledge-
based. Data-driven methods have gained widespread 
acceptance in process industries due to the complexity of 
analytical models, the poor performance of knowledge-based 
methods as process size increases, and the availability of 
massive data in process industries (Adil et al., 2016). 
Reconstruction methods, also referred to as latent variables 
methods, are the most extensively employed among data-
based methods for fault diagnosis in process industries 
(Lakshmi Priya Palla & Kumar Pani, 2023). These methods 
are optimal because they only necessitate normal process 
operating data to be implemented. In fact, historical fault data 
are rarely present in process industries (Li et al., 2020). 

Consequently, this paper proposes a new methodology based 
on MPC logs to enhance sensor data for fault detection and 
diagnosis through reconstruction methods. The proposed 
methodology is employed to diagnose sensor faults on a 
galvanizing line. To validate the benefits of adding internal 
variables and MPC predictions, the reconstruction methods are 
applied without and with these parameters. 

The rest of the paper is organized as follows. Section 2 
describes typical reconstruction methods, including PCA, 
ICA, and AE. Section 3 presents the proposed methodology, 
covering the combination of internal variables with plant 
measurement, as well as the fine-tuning of the detection 
threshold. Application results in a hot-dip galvanizing line are 
presented in Section 4. Finally, Section 5 summarizes the 
conclusions and perspectives. 

2. RECONSTRUCTION METHOD FOR FAULT 
DETECTION AND DIAGNOSIS 

Fault detection through reconstruction methods is a three-step 
process. Firstly, data dimensionality is reduced. Secondly, the 
data is reconstructed from the latent space. Lastly, a detection 
index and threshold are used to classify new observations as 
either fault-free or faulty.  The reconstruction error serves as 
the most commonly employed detection index. In certain 
studies, particularly ones based on multivariate statistical 
process monitoring techniques, such as PCA, ICA, and PLS, 
this index is synonymous with the square prediction error or 
Q-statistic. Its definition is based on the norm of the difference 
between the observation and its reconstruction using the 
model. In essence, it evaluates the quality of the reconstruction 
of an observation. Thus, although the general principle of these 
methods is identical, they differ in the way they achieve 
dimension reduction. In the following, we will briefly present 
the functional principle of three reconstruction methods. The 
presentation is based on (Qin, 2012) for PCA, (Lakshmi Priya 
Palla & Kumar Pani, 2023) for ICA, and (Yang et al., 2022) 
for AE. 

2.1 Principal component analysis 

PCA reduces the dimensionality of a data set by transforming 
the original data X into a new set of variables, the principal 
components, which are orthogonal and capture the most 
variance in the data. Mathematically, this is achieved through 
eigenvalue decomposition of the covariance matrix Σ of X, 
where Σ = 1

𝑛𝑛−1 𝑋𝑋𝑇𝑇𝑋𝑋  and n is the number of samples. 

The original data X can be approximated by projecting it onto 
the first k principal components. If 𝑉𝑉𝑘𝑘 denotes the matrix 
containing the first k eigenvectors, the projection Z is given by 
𝑍𝑍 =  𝑋𝑋𝑉𝑉𝑘𝑘. The reconstruction 𝑋̂𝑋 from the latent space is 𝑋̂𝑋  =
𝑍𝑍𝑉𝑉𝑘𝑘

𝑇𝑇.  

2.2 Independent component analysis 

ICA aims to represent a multivariate data set X as a 
combination of independent non-Gaussian signals or 
components. This is achieved by finding a separating matrix 
W such that 𝑆𝑆 =  𝑊𝑊𝑋𝑋 approximates the independent 
components, where S is the matrix of source signals assumed 
to be statistically independent. Since ICA assumes that the data 
are mixtures of independent sources, reconstruction involves 
the inverse operation. If W is the unmixing matrix, the 
approximation of the original data 𝑋̂𝑋 can be obtained as 𝑋̂𝑋  =
 𝑊𝑊−1𝑆𝑆. 

2.3 Autoencoder 

An AE consists of two parts: an encoder and a decoder. The 
encoder maps the input data X to a latent space representation 
Z using a function f, i.e., Z = f(X). The dimensionality of Z is 
typically less than that of X, achieving dimensionality 
reduction. The decoder part of the AE aims to reconstruct the 
input data from the latent representation. It uses a function g to 
map Z back to the original data space, producing the 
reconstructed data 𝑋̂𝑋, where 𝑋̂𝑋  =  𝑔𝑔(𝑍𝑍). The AE is trained to 
minimize the difference between X and 𝑋̂𝑋, often using the 
mean squared error as the loss function. 
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3. COMBINING INTERNAL VARIABLES WITH PLANT 
MEASUREMENT FOR FAULT DIAGNOSIS 

The methodology adopted in this article involves two main 
stages. The first involves extracting internal variables from the 
MPC logs and merging them with the plant measurements. The 
second stage consists of training the reconstruction models, 
setting the detection threshold, and then evaluating the 
detection system. 

 MPC is a sophisticated control algorithm widely employed in 
process industries due to its ability to handle multivariable 
control problems with constraints. At its core, MPC uses a 
mathematical or empirical model to predict the future behavior 
of a process over a defined prediction horizon. This model 
incorporates various inputs, including setpoints, process 
measurements, and the targeted quality, to forecast process 
outputs (Figure 1). Estimated process outputs are of two types. 
The first type is internal variables, which are physical 
quantities that cannot be measured by sensors, but are essential 
for process control. Examples include enthalpy or phase 
fractions in galvanizing processes. The second type is product 
quality, which is also not measurable in real-time, but is 
assessed in the laboratory through destructive testing. The 
quality assessed in the laboratory is not known until well after 
production has been completed. As a result, it cannot be used 
for real-time fault detection and diagnosis. Instead, we propose 
to use the quality estimated in real-time by the MPC. In the 
remainder of this article, for the sake of language simplicity, 
we will use the term internal variable to designate both the 
internal variables and the quality estimated by the MPC.  

 

 
Figure 1. Simplified block diagram of MPC 

Internal variables are rarely stored in production databases. 
Therefore, an essential step in their integration into a fault 
detection and diagnosis system is their extraction from MPC 
logs. The obtained data are then merged with sensor 
measurements to create a learning database for reconstruction 
methods as shown in Figure 2. 

 
Figure 2. Combining internal variables with plant measurements  

To implement the fault detection system, we proceed in three 
stages. The first is to train the reconstruction models. Next, we 
set the detection threshold for each model, and finally, we 
evaluate the detection system consisting of the reconstruction 
model and its detection threshold (Figure 3). For this purpose, 

fault-free data are subdivided into three parts, while faulty data 
are divided into two parts. 

 
 

Figure 3. Development of fault detection models 

The second segment of the fault-free data and the first segment 
of the faulty data are used to set the detection threshold. This 
approach enables verification that the reconstruction error of 
the unused fault-free data matches the distribution of the 
reconstruction error of the training data. Incorporating faulty 
data in setting the threshold allows for adjustment of the 
detection threshold based on the estimated distribution of the 
faulty data reconstruction error. For instance, if the 
reconstruction error distributions of fault-free and faulty data 
do not overlap, setting the detection limit at 95% or 99% 
confidence will produce superfluous false alarms. It may also 
entail prioritizing the detection of one fault over another and 
adjusting the detection threshold correspondingly. It is worth 
noting that the impact of some faults may be more severe than 
others. It could also include giving priority to specific products 
whose quality is more vulnerable to faults when optimizing the 
detection threshold. Finally, fault-free and faulty test data are 
used to evaluate the fault detection system. 

4. Case Study 

4.1 Process description 

The galvanization line under consideration in this study plays 
an essential role in the manufacture of steel for automotive 
applications. The line comprises several components essential 
to ensure the production of high-quality galvanized steel. The 
sequential process starts with the entry section, followed by an 
annealing furnace, a zinc bath, vertical cooling, horizontal 
cooling, and a skin-pass station, and culminates in the exit 
section. 

The annealing furnace, a critical stage in the process, subjects 
the steel to controlled heating and cooling cycles to optimize 
its mechanical properties. In this study, we focus on the 
cooling phase of the annealing furnace. This segment is of the 
utmost importance, as it significantly influences the final 
characteristics of the galvanized steel. 

An MPC system is already deployed for precise control of the 
cooling process. It ensures that the cooling control is 
dynamically adjusted to adapt to disturbances and meet the 
stringent specifications required for automotive-grade 
galvanized steel. In the following subsections, reconstruction 
methods for sensor fault detection and diagnosis are compared 
in the context of this crucial phase of the galvanizing process. 
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an essential role in the manufacture of steel for automotive 
applications. The line comprises several components essential 
to ensure the production of high-quality galvanized steel. The 
sequential process starts with the entry section, followed by an 
annealing furnace, a zinc bath, vertical cooling, horizontal 
cooling, and a skin-pass station, and culminates in the exit 
section. 

The annealing furnace, a critical stage in the process, subjects 
the steel to controlled heating and cooling cycles to optimize 
its mechanical properties. In this study, we focus on the 
cooling phase of the annealing furnace. This segment is of the 
utmost importance, as it significantly influences the final 
characteristics of the galvanized steel. 

An MPC system is already deployed for precise control of the 
cooling process. It ensures that the cooling control is 
dynamically adjusted to adapt to disturbances and meet the 
stringent specifications required for automotive-grade 
galvanized steel. In the following subsections, reconstruction 
methods for sensor fault detection and diagnosis are compared 
in the context of this crucial phase of the galvanizing process. 

4.2 Data gathering 

The product characteristics of the 71 most commonly 
produced steel strips over one year are used in this study. The 
cooling process during the annealing of these strips with 625 
different actuator configurations is simulated using the MPC 
deployed on the galvanizing line and an analytical model that 
simulates the cooling operation. Hence the fault-free database 
contains 44,375 samples, with 37 plant measurements and 15 
internal variables extracted from the MPC logs. 

Similarly, the MPC and the plant model are used to simulate a 
fault database. The simulated faults, proposed by the engineers 
of the line, are described in Table 1. 

Table 1. Fault types 

Fault Description 
Fault 1 Negative bias on the measurement of one 

of the steel's chemical characteristics 
Fault 2 Positive bias on the measurement of one of 

the steel's chemical characteristics 
Fault 3 Negative bias on the measurement of the 

soaking temperature 
Fault 4 Positive bias on the measurement of the 

soaking temperature 
Fault 5 Negative bias on the measurement of the 

snout temperature 
Fault 6 Positive bias on the measurement of the 

snout temperature 
 

The first two faults are related to the measurement of the same 
chemical characteristic of the steel strip. Measurements of 
chemical properties are taken during continuous casting and 
are then reused by the MPC of the galvanizing line to calculate 
the output of the cooling actuators. Faults in chemical 
measurements can affect steel quality but are difficult to 
detect. Two distinct faults are considered, depending on the 
direction of the bias. Since the cooling process generates 
distinct responses, the aim is to assess the ability of diagnostic 
models to determine the direction of sensor bias. Similarly, 
two faults are retained for the soaking pyrometer and two 
faults for the snout pyrometer. The soaking pyrometer 
measures the temperature of the steel strip as it enters the 
cooling process.  This measurement is an input to the MPC. A 
fault in this pyrometer therefore distorts the calculations made 
by the MPC. The snout pyrometer measures the strip 
temperature at the end of the cooling process. The snout 
temperature is one of the target variables of the MPC. 

4.3 Fault detection 

The fault-free and faulty databases were used as described in 
Section 3 to implement reconstruction methods for fault 
detection. To determine the effectiveness of incorporating 
internal variables, two scenarios were examined. The first 
scenario involved creating three reconstruction models by 
solely utilizing plant measurements. In the second scenario, 
the reconstruction models were constructed using both plant 
measurements and internal variables. The three models 
compared each time are PCA, KICA, and AE. A Hermite 

polynomial kernel was used for the KICA. The company's goal 
is to limit the number of false alarms and to maximize the 
detection rate of Fault 1 and Fault 2. The detection threshold 
was set accordingly in both cases. Table 2 displays the Missed 
Detection Rate (MDR), i.e., the percentage of faulty samples 
considered to be normal, in the test set for each of the three 
models in Scenario 1, while Table 3 presents the MDR for all 
three models in Scenario 2. It is noteworthy that there were no 
false alarms in the test data for both scenarios considered 
across all three models. There were 35,500 samples for each 
fault in the test set. 

Table 2. MDR (%) without internal variables 

Fault PCA KICA AE 
Fault 1 98.64 73.49 28.36 
Fault 2 91.64 75.9 7.8 
Fault 3 99.7 98.52 40.06 
Fault 4 98.31 96.2 59.68 
Fault 5 98.59 99.45 56.76 
Fault 6 99.21 96.65 66.22 

 

Comparing the two tables, it can be seen that the inclusion of 
internal variables leads to a significant improvement in the 
fault detection rate for all three models, except for KICA for 
Fault 5 and Fault 6. For instance, in the second scenario, 
despite the implementation of a high detection threshold to 
prevent false alarms, the KICA and the AE were able to 
identify all instances of Fault 1 and Fault 2 in the test data.  

 

Figure 4. Comparison of MDR of Fault 3 with and without internal 
variables 

Although no model successfully detected all occurrences of 
Fault 3 and Fault 4, as shown in Figure 4, there was a 
significant decrease in MDR. KICA and AE exhibited a 
significant improvement in their detection rate. The MDR is 
divided by approximately four and three, respectively, when 
transitioning from the first scenario to the second scenario.  

The improvement observed for the other faults for PCA, and 
AE was maintained for the last pair of faults, while the 
performance of KICA stagnated or even deteriorated. These 
two faults concern the variable controlled by the MPC with a 
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predefined target. The MPC reacted by adjusting the actuator 
commands when the target was not met, making the detection 
of this fault more complex.   

Table 3. MDR (%) when internal variables are used 

Fault PCA KICA AE 
Fault 1 88.09 0 0 
Fault 2 89.83 0 0 
Fault 3 91.49 21.88 13.88 
Fault 4 89.71 27.76 26.86 
Fault 5 85.15 99.97 46.62 
Fault 6 65.54 99.93 23.15 

 

Overall, the AE outperforms the other models with the lowest 
MDR in both scenarios. It is followed by KICA, which has a 
lower MDR than PCA, except for the two faults involving the 
controlled variable. This can be attributed to the non-linear 
nature of the galvanizing process, which is in contrast to the 
linear model employed by PCA. Moreover, PCA assumes a 
Gaussian distribution of data, which has not been verified by 
the collected data on the process. Therefore, in this study, the 
AE will be utilized to diagnose the detected faults. 

4.4 Fault diagnosis 

The objective of this section is to identify the faulty sensor and 
its bias (whether it is negatively or positively biased). This was 
achieved through the use of contribution plots which helped to 
determine and display the contribution of each variable to the 
reconstruction error through bar graphs. 

For instance, Figure 5.a illustrates the contribution plot for a 
sample in the fault-free test data. All variables have minimal 
contributions, particularly in contrast to Figure 5.c and Figure 

5.d where KC1, the variable measured by the faulty sensor, 
exhibits the highest contribution in absolute value. Figure 5.c 
and Figure 5.d represent the contributions of the variables for 
a sample in the Fault 1 and Fault 2 test data, respectively. It is 
worth noting that KC1 has a negative contribution for the 
sample of Fault 1, but a positive one for the sample of Fault 2. 
Therefore, the simulated bias sign has been recovered. 

Figure 5.b demonstrates that the observations on one sample 
are consistent with all the samples in the test data. Moreover, 
the KC1 variable has a contribution around zero for all fault-
free data samples. In addition, all Fault 1 data samples exhibit 
a KC1 contribution of less than -1, whereas the Fault 2 data 
samples exhibit a KC1 contribution of greater than 1. 

Finally, it is of interest to evaluate the contribution of KC1 data 
to the reconstruction error of the remaining faults. In fact, if 
the contribution of this variable to the reconstruction error of 
the other faults is as high as its contribution to the 
reconstruction error of Fault 1 and Fault 2, then it cannot be 
used to isolate the latter two faults. Thus, Figure 6 compares 
the contribution of KC1 to the reconstruction error of the fault-
free data and that of the six studied faults. The results indicated 
that while the contribution of KC1 to the reconstruction error 
of some faulty samples was not null, specifically Fault 5 and 
Fault 6, it was significantly smaller than for Fault 1 and Fault 
2. In fact, there was no overlap between the distributions of 
Fault 1 and Fault 2 and the remaining faults.  

Similarly, for all other faults, there existed a variable with the 
largest absolute contribution, whose sign was dependent on the 
simulated bias. This variable was used to isolate the faults from 
one another, whereas its contribution sign was used to 
establish the direction of the bias.

 
Figure 5. Contribution to the reconstruction error for a sample from, a) Fault-free data; c) Fault 1 data; d) Fault 2 data. b) Distribution of 

KC1’s contribution 



	 Abdoul Rahime Diallo  et al. / IFAC PapersOnLine 58-4 (2024) 538–543	 543

predefined target. The MPC reacted by adjusting the actuator 
commands when the target was not met, making the detection 
of this fault more complex.   

Table 3. MDR (%) when internal variables are used 

Fault PCA KICA AE 
Fault 1 88.09 0 0 
Fault 2 89.83 0 0 
Fault 3 91.49 21.88 13.88 
Fault 4 89.71 27.76 26.86 
Fault 5 85.15 99.97 46.62 
Fault 6 65.54 99.93 23.15 

 

Overall, the AE outperforms the other models with the lowest 
MDR in both scenarios. It is followed by KICA, which has a 
lower MDR than PCA, except for the two faults involving the 
controlled variable. This can be attributed to the non-linear 
nature of the galvanizing process, which is in contrast to the 
linear model employed by PCA. Moreover, PCA assumes a 
Gaussian distribution of data, which has not been verified by 
the collected data on the process. Therefore, in this study, the 
AE will be utilized to diagnose the detected faults. 

4.4 Fault diagnosis 

The objective of this section is to identify the faulty sensor and 
its bias (whether it is negatively or positively biased). This was 
achieved through the use of contribution plots which helped to 
determine and display the contribution of each variable to the 
reconstruction error through bar graphs. 

For instance, Figure 5.a illustrates the contribution plot for a 
sample in the fault-free test data. All variables have minimal 
contributions, particularly in contrast to Figure 5.c and Figure 

5.d where KC1, the variable measured by the faulty sensor, 
exhibits the highest contribution in absolute value. Figure 5.c 
and Figure 5.d represent the contributions of the variables for 
a sample in the Fault 1 and Fault 2 test data, respectively. It is 
worth noting that KC1 has a negative contribution for the 
sample of Fault 1, but a positive one for the sample of Fault 2. 
Therefore, the simulated bias sign has been recovered. 

Figure 5.b demonstrates that the observations on one sample 
are consistent with all the samples in the test data. Moreover, 
the KC1 variable has a contribution around zero for all fault-
free data samples. In addition, all Fault 1 data samples exhibit 
a KC1 contribution of less than -1, whereas the Fault 2 data 
samples exhibit a KC1 contribution of greater than 1. 

Finally, it is of interest to evaluate the contribution of KC1 data 
to the reconstruction error of the remaining faults. In fact, if 
the contribution of this variable to the reconstruction error of 
the other faults is as high as its contribution to the 
reconstruction error of Fault 1 and Fault 2, then it cannot be 
used to isolate the latter two faults. Thus, Figure 6 compares 
the contribution of KC1 to the reconstruction error of the fault-
free data and that of the six studied faults. The results indicated 
that while the contribution of KC1 to the reconstruction error 
of some faulty samples was not null, specifically Fault 5 and 
Fault 6, it was significantly smaller than for Fault 1 and Fault 
2. In fact, there was no overlap between the distributions of 
Fault 1 and Fault 2 and the remaining faults.  

Similarly, for all other faults, there existed a variable with the 
largest absolute contribution, whose sign was dependent on the 
simulated bias. This variable was used to isolate the faults from 
one another, whereas its contribution sign was used to 
establish the direction of the bias.

 
Figure 5. Contribution to the reconstruction error for a sample from, a) Fault-free data; c) Fault 1 data; d) Fault 2 data. b) Distribution of 

KC1’s contribution 

 

 

 

 

 

 

 

 

 

 

 

5. CONCLUSIONS 

Model predictive control is a widely adopted methodology in 
process industries. This study introduces an innovative 
approach to enhance the detection efficiency of 
reconstruction-based techniques. Specifically, internal 
variables obtained from MPC’s operation are added to the 
plant measurements. The proposed approach was validated 
through experiments conducted on a galvanizing line.  The 
findings indicated that the integration of internal variables 
substantially enhances the performance of reconstruction 
methods. The use of contribution plots in our approach offered 
two advantages. First, it allowed for precise fault isolation, 
improving the efficiency and accuracy of the diagnostic 
process. Second, it aided in detecting bias signals, contributing 
to a better understanding of underlying issues that led to faults. 
As a perspective, our research will concentrate on uncertainty 
quantification in fault detection. This requires the development 
of methods to better measure and account for the uncertainties 
inherent in process data and model predictions to further refine 
the reliability of the fault detection system. 
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