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Abstract: With the integration of power converters into the power grid, it becomes crucial
for the Transmission System Operator (TSO) to ascertain whether they are operating in
Grid Forming or Grid Following modes. Due to intellectual properties, classification can
only be performed based on non-intrusive measurements and models, such as admittance
at the PCC. This classification poses a challenge as the TSO lacks precise knowledge of
the actual control structures and algorithms. This paper introduces a novel classification
algorithm based on Convolutional Neural Networks (CNN), capable of detecting patterns
in sequential data. The proposed CNN utilizes a new architecture to separate admittances
along the d and q axes, and a decision layer allows to determine the correct converter
mode. The performance of the proposed CNN model was assessed through two tests
and compared to the traditional feedforward model. The proposed CNN architecture
demonstrates significant classification capabilities, as it is able to identify the control mode
of the converter even when its control structure is not part of the training dataset.

Keywords: grid forming; grid following; deep learning; convolutional neural network;
frequency admittance

1. Introduction
In recent years, conventional energy production based on synchronous machines

is being replaced by renewable energy sources, connected to the electrical grid through
power converters. Two converter control modes, called Grid Following (GFL) and Grid
Forming (GFM) [1,2], have been developed. GFL, which is the most widespread, controls
the converter as a current source, using a current loop to control the power at the output of
the converter while synchronizing with the grid using a Phase-Locked Loop (PLL) [3]. GFM
controls the converter as a voltage source to emulate the behavior of a synchronous machine,
acting as a Virtual Synchronous Machine [4]. The choice of a control mode by Transmission
System Operators (TSOs) is an important step to ensure the proper functionality and
stability of the grid [5,6]. Moreover, the European Network of TSOs for Electricity (ENTSO-
E) has published a report detailing various requirements for control modes [7], and a guide
of best practices to specify dynamics has been proposed in the United Kingdom [8].

In their process of ensuring stable operation and avoiding stability issues, TSOs
conduct studies and simulations during the planning phase for various scenarios to assess
the grid ability to integrate converters (N-1, N-2 criteria, Low Voltage Ride Through, etc.).
The results of these scenarios are translated into contractual requirements, and therefore,
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manufacturers provide black-box simulation models to assess a correct operation of their
converters. However, TSOs have no access to the real control, which is protected by
intellectual properties, and have no mean to verify that the specified control mode of a
converter has actually been implemented by the manufacturer. The main objective of
this paper is to provide a verification tool for TSOs that allow them to check whether a
converter is operating in GFM or GFL mode according to the contractual specifications.
This verification should use the measurements at the PCC that are the only ones accessible
to the TSOs.

The conventional black box models used for power converters are small-signal models
known as admittance [9]. One of the advantages to use admittance instead of time-domain
model is that it is easy to implement experimentally and can be found from the measure-
ments at the PCC [10]. The admittance is a behavioral modeling which strongly depends
on the control, which are unknown to the TSO, and on the value of their parameters, which
can vary in a large range. Hence, the challenge of verifying whether a converter operates in
GFM or GFL mode only based on admittance patterns is a real challenge that has never
been addressed in the literature.

In a previous study [11], the authors have simulated a large database of GFM and GFL
converters, based on a number of conventional control structures of the literature. Since
the set of admittance with GFL and GFM present some overlap, they explored whether
the classification of control modes using admittances of power converters could be solved
with traditional machine learning algorithms (Decision Tree, Random Forests, Gradient
Boosting, and Support Vector Machines). Table 1 presents the results in terms of accuracy
for two tests: classification and generalization. These algorithms demonstrated an excellent
ability to classify data when the control structures originated from a training set based on
simulations of conventional structures. However, in a real-world context, manufacturers
may design variants of these control structures and the ability of these algorithms was
evaluated through a generalization test and demonstrated poor performances. To alleviate
this issue with generalization, neural networks have been proposed in the literature for
different classification problems. In [12], visible spectrum images and classification algo-
rithms were used to detect the soiling of photovoltaic panels. The convolutional neural
network (CNN) provided the best results compared to other methods. In [13], the CNN
effectively captures the spatiotemporal coupling of heterogeneous loads, thereby improving
forecasting accuracy.

The main contribution of this paper is the proposal of a powerful new algorithm
designed to provide a verification tool for the control mode of a grid-connected converter.
This classification algorithm is based on an innovative CNN architecture that leverages the
specific characteristics of the converter admittances. The superior performance of the algo-
rithm, compared to traditional neural networks and classical machine learning methods,
will be demonstrated through various classification tests and generalization assessments.

Table 1. Machine learning algorithms for power converter classification [11].

Machine Learning Algorithm Classification Generalization

Linear Regression (LR) 94% 80%
Random Forest (RF) 98% 91%
Decision Tree (DT) 92% 40%

Naive Bayes Classifier (NBC) 92% 80%
XGBoost (XGB) 95% 79%

Support Vector Machine (SVM) 95% 84%
K-Nearest Neighbors (KNN) 94% 84%
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This article is organized as follows. Section 2 introduces the different control modes
and their structures. Admittances are presented and the challenge in classifying the
converter is highlighted in Section 3. Section 4 presents how the datasets were generated
and the classification of control modes using a combination of Convolutional Neural
Networks. Special attention will be paid on the generalization of the algorithms and
conclusion will be drawn in Section 5.

2. Power Converter Control Modes and Structures
The following subsections present the GFL and GFM control modes, based on

Proportional–Integral (PI) regulators, along with the corresponding control structures
for each mode. These structures, widely used in HVDC converter systems, Type-4 wind
turbines, and photovoltaic systems, typically neglect DC-side dynamics by considering the
DC bus as an ideal source, focusing the control exclusively on the AC side.

2.1. Structures of GFL Mode

In GFL mode, the converter is controlled as a current source. GFL operates within an
existing grid that sets the voltage and frequency. A PLL synchronizes the local d-q frame
of the converter with the grid voltage at the PCC, with θ̃g being an estimation of the grid
phase angle θ∗g . The estimated angle is used in the Park transformation and its inverse,
denoted as P(θ̃g) and P(θ̃g)−1 [14]. The output current of the converter is controlled with
current control PI controllers. The reference currents i∗d and i∗q for this loop are generated
from different structures: active and reactive power control GFL (pqGFL), active power
and voltage control GFL (pvGFL), and direct current control GFL (viGFL). For pqGFL and
pvGFL structures, the direct reference current i∗d is generated from a PI loop of active power
control. However, the quadrature reference current i∗q is generated using two different
loops [14]. For pqGFL, the current i∗q is generated from a PI loop of reactive power control,
and in pvGFL, it is generated from a PI control loop of voltage at PCC. The control struc-
tures for pqGFL and pvGFL are presented in Figure 1.

igabc

P

P ∗

PI

i∗q

igd

i∗d
PI

PI

ω̃Lc

ω̃Lc

vgd

v∗md

v∗mq

igq

θ̃g

Delay
vmabc

PI

Q

Q∗
P (θ̃g) P (θ̃g)

−1

vgabc vgdq
PLLP (θ̃g)

LPF

PI

Vg

V ∗
0

LPF

pqGFL

pvGFL

LPF

Figure 1. pqGFL and pvGFL control structures.

For viGFL, the direct reference current i∗d is generated through a simple division, where
the active power reference P∗ is divided by the direct component of the voltage measured
at the PCC and filtered through a Low-Pass Filter (LPF). The quadrature reference current
i∗q is also generated by dividing the reference reactive power Q∗ by the same filtered voltage
and multiplying it by a negative unity gain. Figure 2 presents the control structure of
viGFL [14].

The parameters and bandwidths of the different control loops in the GFL structures
are presented as follows: ωp, ωq, ωv, and ωLPF, respectively, represent the bandwidths of
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the active power, reactive power, voltage, and low-pass filter control loops, ωpll and ωcc

denote the bandwidths of the PLL and the current control loop, respectively, and finally,
Delay represents the modulation-related delay.
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Figure 2. The viGFLcontrol structure.

2.2. Structures of GFM Mode

In GFM mode, the converter is controlled as a voltage source. This mode does not
require an existing grid for synchronization, as it enables simultaneous control of both
frequency and voltage at the output, allowing autonomous operation. Several control
structures have been proposed for this mode. The common feature of all GFM approaches
is that they define references for the angle and amplitude of the voltage modulated by the
converter. The angle reference θ∗m can be obtained using various methods, including droop
control, power synchronization control, synchro-converters, Virtual Synchronous Machine
(VSM), or PI control [15–17]. It has been demonstrated that, when properly tuned, these
schemes lead to equivalent dynamic behavior [18]. Among these, the VSM and PI schemes
are the most commonly adopted in the literature for transmission system applications,
as they offer a more intuitive transition from traditional synchronous generation [19].
To control the voltage amplitude of the converter, several structures are also proposed,
such as voltage-controlled GFM (vcGFM), current-controlled GFM (ccGFM), and PI-based
GFM (piGFM).

The vcGFM control structure, illustrated in Figure 3, uses the VSM scheme proposed
in [15] to generate the angle reference θ∗m for active power control. The gains of this loop
are designed to provide inertia and damping effects, represented by H and ξ, respectively.
Additionally, current dynamics are actively damped by adjusting the voltage references
v∗md,q using a Transient Virtual Resistor (TVR) [19,20]. The modulated voltage is controlled
by directly setting the references v∗md,q to (V∗, 0), where V∗ represents the voltage amplitude
reference. These modulated voltages are then rotated according to the generated angle
reference θ∗m.

The ccGFM control structure, also shown in Figure 3, employs the same VSM scheme
to generate θ∗m. Similar to vcGFM, voltage references are set for the modulated voltage.
However, a current control loop is used to generate the modulated voltage references,
as described in [20]. The Quasi-Static Electrical Model (QSEM) of the circuit between
the modulated voltage and the Point of Common Coupling (PCC) voltage is utilized to
determine the reference values for the currents i∗dq [20].

A third structure, piGFM, is also proposed. In this structure, the voltage amplitude is
controlled using the same loop as in vcGFM, while the angle θm is controlled via a dedicated
PI control loop.
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Figure 3. The vcGFM, ccGFM and piGFM control structures.

The parameters and bandwidths of the different control loops in the GFM structures
are defined as follows: H and ξ represent the parameters of the VSM power loop, ωQSEM,
ωLPF, ωcc, and ωpi correspond to the bandwidths of the QSEM model, the low-pass filter
(LPF), the current control loop, and the PI power control loop, respectively, and finally,
Delay represents the modulation-related delay.

In summary, the control schemes described above form the core of the GFM control
strategies. External frequency and voltage control loops can be added to complement the
fundamental loops, enabling additional functionalities.

3. Admittance Model (AM) of the Power Converter
3.1. Definition and Estimation of AM

The AM of a power converter is typically represented in the dq frame by a 2 × 2 matrix
for each frequency, as shown in Equation (1). The diagonal admittances, Ydd and Yqq, repre-
sent the main admittances of the d and q control axis, while the anti-diagonal admittances,
Ydq and Yqd, represent the coupling admittances between the d and q control axis. Each
admittance for a given frequency is a complex number, and for ease of presentation, it is
expressed as a magnitude and a phase gain [21]:[

∆Id

∆Iq

]
=

[
Ydd Ydq

Yqd Yqq

][
∆Vd

∆Vq

]
(1)

Generally, the AM can be obtained through two different methods. The first method
involves analytical derivation when the structure and control parameters are known. In
this approach, the equations of both the control and power parts of the converter are
expressed in small signals and linearized around the operating point. Detailed derivation
procedures are provided in [21]. The second method involves obtaining AM from external
measurements of voltage and current at the PCC. This requires the converter to be excited
by specific perturbations, such as shunt, series, and mixed excitations, as outlined in [22].
The objective of all these methods is to disturb the output voltage of the converter at
the PCC with an excitation signal. The Pseudo-Random Binary Sequence (PRBS) signal
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is commonly used as the excitation signal because it can excite the system at multiple
frequencies with a single measurement. Typically, two uncorrelated PRBS signals (PRBS1,
PRBS2) are employed to measure the AM along both axes, one injected along the d-axis
and the other along the q-axis, as explained in [10]. The AM is derived from external
measurements using the following Equation (2):

Ydd =
∆Id
∆Vd

∣∣∣∣
∆Vd=PRBS1

, Yqq =
∆Iq

∆Vq

∣∣∣∣
∆Vq=PRBS2

Ydq =
∆Id
∆Vq

∣∣∣∣
∆Vq=PRBS2

, Yqd =
∆Iq

∆Vd

∣∣∣∣
∆Vd=PRBS1

(2)

3.2. AM Patterns and Characteristics

The definition of the frequency interval for measuring the AM is a crucial step in
studying the influence of control on the AM.

Figure 4 illustrates four magnitudes of the admittance Ydd: three for the control
structures, i.e., ccGFM, vcGFM, and pqGFL, and a fourth for the passive filter L connected
to the converter output. The power and control parameters required to obtain the models
are presented in Table A1 in the Appendix A. The three AMs of the control structures
converge at low frequencies to the same point, referred to as the static admittance related
to the operating point [23]. At high frequencies, all AMs converge towards the admittance
of the passive filter L. Consequently, in the interval from 1 Hz to 1000 Hz, the three AMs
exhibit different behavior because the AMs in this range are related to the structure and
control parameters.

10-1 100 101 102 103 104

Frequency (Hz)

-20

0

20

40

M
ag

 (
dB

)

Ydd

ccGFM
GFL
Filter L
vcGFM

Figure 4. The variation of the admittance of the converters with respect to frequency.

The variation of control parameters and operating points alters the shapes of the AM,
potentially leading to overlaps in the AM of the two control modes. This overlap may occur
in both the magnitude and the phase of the admittances Ydd and Yqq. Figure 5 illustrates
the magnitudes of the admittance Ydd for the ccGFM and pqGFL structures, with control
parameters and operating points varying within realistic intervals. The ranges of variation
are detailed in Appendix A Table A2. It is important to note that the overlap does not occur
across the entire frequency range but rather in specific zones, depending on the structure
and the variation intervals of the parameters. Classical machine learning techniques, as
presented in the introduction, generally focus on areas where separation is feasible, without
considering the shape of the data. Therefore, in cases where a shift occurs that modifies
these zones—due to, for example, an added filter or a variation of a parameter outside
the training intervals—the classifiers proposed by these algorithms may fail. Due to these
limitations, we are motivated to use more advanced neural network techniques, which
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have gained popularity in recent years and have proven their ability to handle data of
various types, including sequential data.

Figure 5. AMs of ccGFM and pqGFL in the range of parameters.

4. Classification of Control Modes with Neural Networks
4.1. Dataset Generation

As previously mentioned, the main objective is to develop a neural network (NN)
model capable of classifying the generated datasets into two classes, referred to as a
classification test. The second test aims to evaluate the ability of the trained NN model to
generalize the classification to other datasets generated from different control structures,
which are not included in the training datasets, in order to assess their generalization
capability. This is referred to as a generalization test.

To generate the datasets required for both tests, Matlab/Simulink simulations were
developed using the control structures presented in Section 2. The operating points and
control parameters of each control structure were sequentially varied within realistic
intervals, as shown in Appendix A Table A2. These intervals are determined by physical
constraints, such as the switching frequency, where the control loop speed should not exceed
the switching frequency [24]. Additional constraints are imposed by Grid Codes [25], such
as voltage and power response times [23].

For each set of control parameters, the magnitude and phase of the admittances Ydd and
Yqq, along with the mode, were recorded as sample in the datasets, the coupling admittances
Ydq and Yqd are not considered in this study. The flowchart in Figure 6 illustrates the steps
involved in generating the datasets.

∥Ydd∥

405 columns
Number of samples

̸ Ydd ∥Yqq∥ ̸ Yqq Mode

Select a set of control parameters

Run the simulation

Calculate the admittance model

Ydd, YqqSave the magnitude and phase of

Figure 6. Flowchart of dataset generation.
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AM data are measured at 101 distinct frequencies, covering the range from 1 Hz to
1000 Hz, resulting in a total of 404 distinct inputs (magnitudes and phases). Details on
the frequencies generated by the PRBS can be found in Appendix A Table A2. The model
output is the control mode, expressed in Boolean form (0 for GFM and 1 for GFL).

4.1.1. Classification Test

In the context of our classification study, a balanced dataset comprising 5000 samples
for each control mode was generated. These samples were distributed across four control
structures: cvGFM and ccGFM for the GFM mode, and pvGFL and pqGFL for the GFL
mode. To analyze this dataset, the t-distributed Stochastic Neighbor Embedding (t-SNE)
method was employed. t-SNE is a non-linear dimensionality reduction technique designed
to preserve local relationships between samples while projecting high-dimensional data
into a lower-dimensional space. Unlike linear approaches such as PCA, t-SNE excels at
revealing complex structures in data, making it particularly suitable for visualizing clusters
or overlaps in high-dimensional datasets. Using t-SNE, each sample, initially consisting
of 404 points, was represented as a single point in a two-dimensional space, providing
an intuitive and synthetic view of the data. The results of the t-SNE analysis, depicted in
Figure 7, illustrate the distribution of samples corresponding to the different control modes
in the two-dimensional space. Distinct clusters emerge, though overlapping regions are
also observed between the control modes. These overlaps highlight the complexity of the
classification task and emphasize the need for robust and precise methods to effectively
differentiate between these control modes.

Figure 7. t-SNE of the full training dataset.

4.1.2. Generalization Test

In the generalization test, a dataset of 5000 samples was generated by varying the
operating points and control parameters, as previously described, but using two control
structures: viGFL and piGFM. However, these two datasets were not used during the
training of the NN model. The objective is to evaluate the ability of the trained NN model
to generalize its classification to new data derived from control structures different from
those used during training. A t-SNE analysis was also performed on the classification and
generalization datasets to visualize the position of the generalization data relative to the
training data. Figure 8 suggests that the generalization data are positioned between the
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two modes, even though they belong to two distinct modes. This overlap highlights the
challenge of the generalization test and makes the task particularly demanding.

Figure 8. t-SNE with generalization dataset (green and magenta).

4.1.3. Training and Performance Evaluation of a Neural Network Model

To conduct the tests previously described using a neural network (NN), it is essential
to follow the steps outlined below:

• Selecting the type and structure of the NN: Choose an architecture suitable for the
classification task.

• Data preparation: Clean the data by removing missing values, then normalize the
data to facilitate the learning process.

• Data splitting: Divide the dataset into two subsets: 80% for training and 20% for testing.

The NN model is trained using the training dataset, while the test dataset is used for
evaluation [26]. The selection of hyperparameters, such as the number of layers, kernel
sizes, etc., is performed using the Grid Search method, in which multiple combinations of
hyperparameters are tested, and the best combination is selected.

The most commonly used metric for evaluating NN performance in classification tasks
is accuracy, which measures the proportion of correct predictions among all predictions.
Other metrics may be employed in cases where class imbalance is present; however, this is
not applicable here, as the designer can generate an equal number of samples for each class
through simulations.

To assess the classification capability of the NN model for the two control modes,
accuracy is calculated using the following equation:

Accuracy =
PC1 + PC2

Total
, (3)

where:

• PC1 is the number of correctly classified samples in the GFM mode;
• PC2 is the number of correctly classified samples in the GFL mode;
• Total is the total number of samples, including both correctly and incorrectly classi-

fied ones.
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4.2. Feedforward Neural Network (FNN)

An FNN is a type of NN model where information flows through the different layers
of the network in a unidirectional manner, from input to output. The typical structure of an
FNN consists of three types of layers: an input layer that receives initial data, one or more
hidden layers that perform non-linear transformations on the data, and an output layer
that produces the final prediction, as in this case the control mode Figure 9. Each neuron
in a layer is connected to every neuron in the subsequent layer, and each connection is
associated with a weight that is adjusted during the learning process. Neurons in the hidden
layers use non-linear activation functions to introduce complexity into the representation
of data. During the training phase, the network adjusts its weights using backpropagation
to minimize the gap between the model predictions and the actual values. This process
enables the FNN to learn complex patterns and generalize to new data during the testing
phase [27].

Mode

∥Ydd∥

̸ Ydd

∥Yqq∥

̸ Yqq

404

Figure 9. Classification with a Feedforward Neural Network.

4.2.1. Proposed Structure of the FNN

A model of the FNN has been designed to conduct the two tests mentioned earlier.
This model was implemented using the TensorFlow library of Python. The developed FNN
consists of five layers, including an input layer, an output layer, and three hidden layers.
Details regarding the number of neurons, the type of activation function in each layer, as
well as the solver, loss function, and the number of epochs are specified in Table 2.
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Table 2. The structure and options of the FNN model.

Structure

Layer Type Parameters Activation Function

1 Input 404 -
2 Dense 256 relu
3 Dense 128 relu
4 Dense 32 relu
5 Dense 1 sigmoid

Options

Optimizer adam

Loss Function binary crossentropy

Epochs 50

Batch Size 64

4.2.2. Results and Discussion

Figure 10 and Table 3 present the confusion matrix and accuracy metric for both
the classification and generalization tests. According to these results, the FNN model
effectively classified the two control modes, achieving 100% accuracy in the classification
tests. However, during the generalization test, the accuracy decreased to 87%. Thus, while
the FNN model excels in classifying the two control modes when control structures are
present in the training dataset, it exhibits limitations in generalizing to new structures from
both modes that do not exist in the training data.

(a) Classification test (b) Generalization test
Figure 10. FNN test results: confusion matrices.

Table 3. The results of the FNN classification and generalization tests.

Test Classification Generalization

Accuracy 100% 87%

To visualize how the data from both tests are classified with the FNN, a modification
was made to the structure of the FNN model. In this adaptation, the last layer (output
layer) was removed while retaining the other trained layers with their respective weights.
The data used in both tests were then fed into the FNN model, and the output of these data
in the embedding space was visualized using t-SNE. Figure 11 represents the data from
Figure 8 after processing by the FNN, demonstrating that the FNN successfully classified
both modes (red and blue) but generalized poorly (green and magenta datasets).
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Figure 11. t-SNE of the dataset in the embedding space classified by the FNN.

The inability of FNNs to process data presented in grid-like structures and the need
to transform the data into a one-dimensional vector (1D) result in the loss of various
indicators within the data, as demonstrated in our example. Measurements are presented
sequentially, with each measurement representing a series of information taken at different
frequencies. Additionally, for each admittance measurement at a given frequency, there
are two components: magnitude and phase. Thus, the transformation into a 1D vector
leads to the loss of all this information. Another important aspect in our example is that
the two admittances, Ydd and Yqq, represent two distinct axes. Therefore, it is preferable
to handle each admittance individually and make a classification decision based on both.
Many details about the features used in this example are lost due to the transformation into
a 1D vector. To enhance the results of the two tests presented earlier, it is recommended to
use NN algorithms capable of handling sequential data.

4.3. Convolutional Neural Network (CNN)

CNN are specialized NN designed specifically for processing grid-like data, such as
signals and images [28,29]. Acknowledged for their effectiveness, particularly in tasks
related to object recognition and computer vision, CNN leverage convolution operations to
extract crucial features from input data, thereby reducing complexity while preserving the
hierarchical structure of features [30,31]. Within a CNN, various types of layers contribute
to the network functionality:

- The Input layer, which is the first layer of the CNN, is initially sized based on the
input data and corresponds to the size of an individual data sample [32].

- The Convolutional layers, crucial components of CNNs, are widely used to detect
features and patterns in the inputs. A convolutional layer applies a set of filters (or
kernels) in the form of matrices to an input by performing convolution operations,
thereby producing an output called a feature map. The filters enable the detection of
local patterns such as edges, textures, or more complex motifs [29]. The learning of
filter weights occurs through gradient backpropagation during the network training
phase, minimizing a loss function. The equation of the convolutional layer can be
represented as follows:

y = f

(
m

∑
i=1

n

∑
j=1

(xij ∗ wij) + b

)
, (4)
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where x represents the inputs, w denotes the filter weights that change during training,
b is the bias term that also changes during model training, and ∗ is the convolution
operator [26]. To identify complex patterns, the outputs of convolution pass through
a non-linear function called the activation function f , helping in the detection of
complex patterns.

- The Max Pooling layers, positioned after convolutional layers, are responsible for
reducing the spatial dimension of the feature map. By subdividing the map into
disjointed regions (typically 2 × 2 or 3 × 3 windows) and taking the maximum value
from each region, max pooling retains the most important features while reducing the
size of the feature map. The learning process for max pooling layers is generally non-
trainable, meaning this layer has no weights to adjust during backpropagation [30].

Additional layers, such as normalization and reshaping layers, can be incorporated in
specific cases to enhance network performance and reshape data into multiple sizes. The
selection of these layers depends on the nature of the problem and the specific objectives of
the CNN.

CNN architectures can take various forms, incorporating the mentioned layers or
integrating dense layers from an FNN. This adaptability enables CNNs to address diverse
tasks and challenges in processing grid-like data, showcasing their versatility across various
applications [33].

4.3.1. Proposed Structure of the CNN

Figure 12 illustrates the structure of the proposed CNN, designed to classify the two
control modes GFM and GFL. This structure is developed using Python TensorFlow library.
The proposed structure consists of two parts: a convolution part and a part with dense
layers. Table 4 presents details about both parts and the parameters used.

∥Ydd∥
̸ Ydd

input layer1

̸ Yqq

input layer2

∥Yqq∥

Conv1D Conv1D MaxPooling F latten Concatenate Dense Layers

Mode

Figure 12. The proposed CNN structure.

The objective of the convolution part is to identify features and patterns in the ad-
mittances. After this step, the second part aims to classify the extracted features into two
classes. For the convolution part, the important features in the two admittances are iden-
tified separately; two convolution inputs are used, one for Ydd and the other for Yqq. The
two admittances are processed in parallel with the same type of convolution layers, which
preserves the relationship between magnitude and phase as well as the frequency sequence.
After identifying the feature maps of the two admittances with the max-pooling layers,
another layer called flatten is used to reshape the features into a 1D vector to facilitate
its connection to the second part of the CNN structure. The 1D vectors of important fea-
tures from the two admittances are concatenated and connected with dense layers, whose
objective is to classify them into two classes.



Energies 2024, 17, 6458 14 of 18

Table 4. The structure and options of the CNN model.

Structure

Layer Type Parameters Activation Function

CNN 1D

1 Input shape = (101, 2) -
2 Conv1D 16 filters, kernel size = 3 relu
3 Conv1D 32 filters, kernel size = 3 relu
4 MaxPooling1D Pool size = 2 -
5 Flatten - -

FNN

6 Dense 256 relu
7 Dense 16 relu
8 Dense 1 sigmoid

Options

Optimizer adam

Loss Function binary crossentropy

Epochs 50

Batch Size 64

4.3.2. Classification Results and Discussion

To assess the capability of the proposed CNN model in classifying the two control
modes, the classification and generalization tests, previously conducted on the FNN model,
were replicated on the CNN model. However, the input data for this model were refor-
mulated differently. As explained earlier, the proposed CNN structure accepts two inputs,
meaning each AM sample is separated into two components: the magnitudes and phases
of Ydd on input 1, and the magnitudes and phases of Yqq on input 2. Both tests were carried
out using the same data as that used for the FNN structure. Figure 13 and Table 5 present
the accuracy of the classification and generalization tests. According to the results of the
proposed CNN model, it achieved 100% success in both classification and generalization,
showing a 13% improvement over the FNN structure in the generalization test.

(a) Classification test (b) Generalization test.
Figure 13. CNN test results: confusion matrices.

Table 5. The results of CNN classification and generalization tests.

Test Classification Generalization

Accuracy 100% 100%
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To visualize how the data from both tests are classified with the CNN, the same
modification applied to the FNN is carried out on the CNN, where the last layer of the
structure is removed. Then, the data used in both tests are fed into the CNN, and the output
of these data in the embedding space is visualized using t-SNE. Figure 14 represents the
data from Figure 8 after processing by the CNN, demonstrating that the CNN successfully
classified and generalized in both tests.

Table 6 compares the results of the two NN with those from other methods presented
in [11]. It is observed that the CNN algorithm proposed in this paper yielded the best
results in both tests conducted.

Table 6. Classification and generalization results with different classification algorithms.

Machine Learning Algorithm Classification Generalization

Convolutional Neural Network (CNN) 100% 100%
Feedforward Neural Network (FNN) 100% 87%

Linear Regression (LR) 94% 80%
Random Forest (RF) 98% 91%
Decision Tree (DT) 92% 40%

Naive Bayes Classifier (NBC) 92% 80%
XGBoost (XGB) 95% 79%

Support Vector Machine (SVM) 95% 84%
K-Nearest Neighbors (KNN) 94% 84%

Figure 14. t-SNE of the dataset in the embedding space classified by the CNN.

4.4. Discussion on the Results of FNN and CNN

The architecture proposed in this article, with the use of convolutional layers, allowed
the CNN model to demonstrate improved generalization capability compared to the FNN
model, which relies solely on dense layers. This component enabled the CNN to process
the Ydd and Yqq admittances separately and in parallel, while handling the admittances
in sequence form and preserving the relationship between the magnitude and phase of
each frequency. Thus, this approach provides the advantage of efficiently extracting the
essential features from both admittances and transmitting these features to a second part
of the model, based on dense layers, for classification. However, the direct use of dense
layers, as in the FNN model, with a transformation of the data into a 1D vector, impacted



Energies 2024, 17, 6458 16 of 18

the generalization results, as several crucial pieces of information were lost during this
transformation, such as the sequential structure of the data and the relationship between
the magnitude and phase for each frequency.

5. Conclusions
This article explored the classification of the control mode of a power converter

connected to the grid, considered as a black box. The data used for this classification
are based on the admittance measured at the PCC. The classification and generalization
capabilities of two neural networks, an FNN and a CNN, were evaluated with two tests.
Although the classification results are perfect for both modes whose data belong to the
training set, in the generalization test, the CNN demonstrated a greater capacity compared
to the FNN. The processing of the two admittances, Ydd and Yqq, each with their magnitude
and phase in parallel, maintains the sequential frequency relationship and combines the
important information for classification, yielding very good results for the CNN. Future
work could focus on testing the developed algorithms on other control structures, as well
as on the identification of the parameters of these control structures.
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Appendix A
Table A1. System parameters of the converters in Figure 4.

Control Structures Parameters Values

Snom, Sb 1.044 GVA

VSC Unom, Ub 400 kV
Pnom 1 GW
Qmax 300 MVar

Filter Lc 0.15 pu
Rc 0.005 pu

Grid Lg 0.5 pu
Rg 0.05 pu

ωp 30 rad/s
ωq 30 rad/s

pqGFL, pvGFL
ωv 15 rad/s

ωpll 500 rad/s
ωcc 1000 rad/s
ωcc 1000 rad/s

Delay 100 µs

H 1 s
ω f 50 rad/s

vcGFM, ccGFM ξ 1
ωLPF 83 rad/s
ωcc 800 rad/s

Delay 100 µs
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Table A2. Variation ranges of parameters for the training and generalization datasets.

Control Structures Parameters Values

P∗ [−1, 1] p.u.
Operating Points Q∗ [−0.4, 0.4] p.u.

V∗ [0.9, 1.1] p.u.

ωp [6, 38 ] rad/s
ωq [6, 38] rad/s

pqGFL, pvGFL ωv [3, 15] rad/s
viGFL ωpll [50, 1500] rad/s

ωcc [1200, 3000] rad/s
Delay [50, 200] µs

H [0.7, 5] s
ω f [40, 60] rad/s

vcGFM, ccGFM , ωLPF [50, 83] rad/s
piGFM ωcc [1200, 3000] rad/s

ωpi [10, 100] rad/s
Delay [50, 200] µs

PRBS 1 Order 8
fmax 1001

PRBS 2 Order 7
fmax 1020
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