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Abstract 

In the present study, numerical simulations have been employed to understand the 

effect of the density inversion on the finger structures dynamics and mixing process. 

A numerical methodology based on the finite volume method with high accuracy 

schemes were employed to solve the two-dimensional Navier-Stokes equations for 

high buoyancy ratio ( 6R = ) and moderate thermal Rayleigh number ( 67 1  0TRa =  ). 

The density is assumed to depend quadratically on the temperature and linearly on 

the salinity. Three cases of nonlinear parameters were considered : linear  case 0 =

, weak nonlinear  case 1 =  and  highly nonlinear  case 3 = . 

A qualitative and quantitative description of the fingers dynamics emphasizing 

the mixing properties has been performed. It was found that the density inversion 

affect significantly the flow pattern, and its motions become asymmetric with respect 

to the mid-height of the computational domain as nonlinear parameter increase. In 

the nonlinear cases, the sinking fingers evolve quickly and dramatically increasing, 

owing to the enhancement of the buoyancy force acting them. The mixing properties 

were inspected by using the probability density function of the salinity PDF(S*). The 

results illustrate that the density inversion acts a significant role in the mixing  
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process. It was shown that the increase in the nonlinear parameter enhances the 

dynamic of mixing in the lower layer of the system. 

Keywords: Double-diffusive convection; Salt finger; Density inversion; Instabilities; 

Probability density function. 

1. Introduction 

Fingering convection is a significant topic in research due to its ubiquitous in several 

natural situations such as oceans [1], lakes [2], and stellar radiative regions [3], as 

well as in many procedures engineering applications, such as solar ponds [4], 

storage [5], crystal growth and magma chambers [6], semiconductor [7], geothermal 

energy [8], and chemical processes [9]. 

In quiescent aquatic and marine environments, double-diffusive convection can be 

generated when there is an overall statically stable density gradient, but a slower 

diffusing component overlies a faster diffusing one. In the oceanography double-

diffusion instability can generate when warm salty water overlaying colder fresh water 

due to the difference in the molecular diffusivities between them [10]. This instability 

leads to the formation of an alternative sinking and rising of narrow or wide vertical 

cellular structures, called double-diffusive salt fingers, which can be considered as an 

important process in the transport of salt and heat [10-11]. 

During past years, considerable efforts theoretically [12-14], numerically [15-17] and 

experimentally [18-20], have been conducted to investigate fingering convection in a 

stagnant ambient. Stern [8] investigated the conditions under which salt finger 

structures can be occurred by using instability analysis. He reported that salt fingers 

structures could exist for buoyancy ratio values (expressed as : 
T SR T S  =   ) 

ranging between from 
3 21 R  −  , where 

S Tk k =
 
is the ratio of the diffusivities of 

the faster diffusing component (originally heat) to the slower diffusing component 
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(originally salt). This upper limit on the formation of salt fingers was confirmed 

experimentally by Huppert and Manins [20].  

The survey of literature displays that many investigators have focused only on 

the buoyancy ratio as a key parameter to determine the behavior of the finger 

characteristics. However, Taylorand Veronis [18], Shen and Veronis [21] revealed 

that Rayleigh number as independent parameter plays a significant role on the flux 

ratio produced in the system. Later, Sreenivas et al. [22] demonstrated that the 

reason for the huge difference in the flux ratio reported by different investigators from 

laboratory experiments was mainly due to the difference in the thermal Rayleigh 

number. They also reported that vertical velocity is inversely proportional to the 

buoyancy ratio and proportional to the Rayleigh number. Furthermore, Singh and 

Srinivasan [23] demonstrated that a finger characteristic are strongly affected by 

Rayleigh numbers even if buoyancy ratio remains constant. They revealed that at 

high Rayleigh numbers the formation of large-scale shearing convection affected the 

finger growth. The same results are found by Ouzani et al. [24-25] showed that the 

strong horizontal convection chop off the finger tips, reducing and limiting the finger 

growth to a value probably even smaller than the initial finger length. 

Despite considerable progress in the field of double diffusion fingering 

convection researchs, up to now, this field is still rich with unresolved problems. In 

the literature, most analytical and numerical simulations studies of double-diffusive 

fingering convection dealing with Boussinesq fluid are based on linear density-

temperature equation of state as model (e.g. Stern [8],  Schmitt [26],  Kunze [12] 

Piacsek and Toomre [27], Ozgokmen et al. [16]). One common aspect of these 

studies lies in the symmetric evolution of the salt fingers. However, a major anomaly 

occurs near 4°C (e.g., ice-covered lakes) where the density of water can be varied 
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non-linearly with the temperature and can be presented a density maximum induced 

by change in the thermal expansion coefficient sign in the corresponding temperature 

range (above their freezing temperature), [28], [29]. In this work, we consider a non-

linear Boussinesq approach employed by Özgökmen and Esenkov [30] which is 

quadratic with temperature. In stratifying aquatic systems above their freezing 

temperature, this non-linear approach may modify the finger structures and their 

evolution. Indeed, the salt fingers convection becomes more complex where the 

convective structures evolve asymmetry as has been reported in the laboratory 

experiments by McDougall and Schmitt [31], [32]. In the same context, several 

researches [33], [34], [35], have been numerically investigated the effect of the 

nonlinear equation of state, which is quadratic with temperature, on the Rayleigh-

Bénard convection within the pure water around its density maximum at 4°C. They 

also reported that this special property dramatically alters the nature of convective 

flows pattern and which leads to breaking the vertical symmetry of the system. 

It is well known that cold aquatic environments in which the temperature is 

below 5°C cover  ~70% of the Earth's biosphere and include principally the oceans, 

and polar regions. These aquatic environmental data prompts us to shed light on 

fingering convection under these particular conditions whose temperatures are even 

at subzero. The purpose of this research work is therefore to study the effect of the 

density inversion induced by the nonlinearity of the equation of state on the finger 

structures' dynamics and their interactions. We also focus on the diagnostic of the 

mixing characteristics using the probability density function of salinity. 

More recently, Yang and al.[36] have been conducted a computational study 

of two dimensional and three dimensional direct numerical simulations to analyze the 

double-diffusive salt finger. They have been indecated strong similarities between 
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tow and three dimensional results. The same conclusion has been reported by Shen 

[37] and Kamakura and Ozoe [38]. These studies promote our choice of the two 

dimensional model used in the current study applied of such systems, see also [39]. 

Furthermore, it is important to mention that the Reynolds numbers correspond the 

salt-finger motion are very low (less than 10), which means that the three 

dimensional turbulent convection is neglected and do not have a dominant effect 

unlike to the turbulent case [40]. 

This paper is structured as follows: In section 2, we will introduce the physical 

problem, governing equations, and numerical methods. Next, we will present the 

simulation results and will discuss the effect of the nonlinearity in the equation of 

state on the salt-finger convection and mixing properties in section 3. Finally, we will 

give the main conclusions in section 4. 

2. Mathematical model and numerical method 

As shown in figure 1, the model configuration dealt with consists of a rectangular 

reservoir filled with two different fluids, whose hot and salty fluid lies over a cold and 

fresh fluid. This initial condition, lead to the formation of an alternative rising and 

sinking convective structures in the computational domain. The system is subject to 

the gravity action-oriented in a negative z -direction.   

Throughout the current study, the thermophysical properties of the both salty and 

fresh fluid are kept constant except for the density variation, whose we adopt the 

Boussinesq assumption to describe the density of the fluid as follows [31]: 

1 2

2

0 0 0 0( , ) 1 ( ) ( ) ( )T S TT S T T S S T T     = − − + − − −   (1) 

Where 
0T , 

0S  and 
0 are the reference temperature, salinity and density, 

respectively. The variation of the density induced by the temperature variation is 
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defined by linear and nonlinear terms with corresponding expansion coefficients 
1T

and 
2T , while 

S  is the linear contraction coefficient for salinity. 

 

Figure1. Physical model for double diffusive fingering convection showing initial and 

boundary conditions.  

To facilitate the analysis of the effect of this nonlinear density relationship on the salt 

finger system, we introduce the nonlinear parameter which expressed as :

2 1
2 /T TT  =  . 

The two-dimensional governing equations for the double-diffusive system are given 

as follows [22], [25],[41]: 

0
u w

x z

 
+ =

   

(2) 

2 2

2 2

0

1
( )

u u u p u u
u w

t x z x x z




     
+ + = − + +

     
 

(3) 

( )
1 2

2 2
2

0 0 02 2

0

1
1 ( ) ( ) ( )T S T

w w w p w w
u w T T S S T T g

t x z z x z
   



      
+ + = − + + − − − + − − − 

      

 

(4) 

Interface 

Upper layer: hot and saline 

……………………fluid 

Lower layer: cold and fresh                 

……………………fluid 

X  

Z  

g  

0
W

X


=



 

0
T

X


=



 

0
S

X


=


 

0U =  
 

0
T

Z


=

 ,
0

S

Z


=

 , 0U = , 0W =  
 
 

 

0
T

Z


=

 ,
0

S

Z


=

 , 0U = , 0W =  
 
 
 

0
W

X


=



 

0
T

X


=


 

0
S

X


=



 

0U =  
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2 2

2 2
( )T

T T T T T
u w k

t x z x z

    
+ + = +

      

(5) 

2 2

2 2
( )S

S S S S S
u w k

t x z x z

    
+ + = +

      

(6) 

Where u , w , p , T and S  are the velocity components, pressure and temperature 

and concentration of fluid, respectively.  . 
Tk and 

Sk  are the kinematic viscosity, 

thermal and concentration diffusivity, respectively.  

 thermal  

diffusivity 

salinity  

diffusivity 

thermal  

expansion 
coefficient 

salinity  

expansion  

coefficient 

kinematic 
viscosity 

domain 
height 

aspect 
ratio 

Unity 

Tk
 

2 1m s− 
   

Sk
 

2 1m s− 
   

1T  

0 1C− 
   

S  

1s− 
   

  

2 1m s− 
   

H  

 m
 

Ar  

 

Values 71.4 10−  
91.4 10−  

42 10−  
48 10−  

61.0 10−  0.15  0.5  

Table 1- Thermophysical properties of the double diffusive system. 

The corresponding dimensionless governing equations system are given as 

follows[25]: 

0
U W

X Z

 
+ =

   

(7) 

2 2

2 2
Pr( )

U U U P U U
U W

t X Z X X Z

     
+ + = − + +

       

(8) 

2 2

2 2
Pr( ) Pr(  (1 ) )

2
T S

W W W P W W
U W Ra T T Ra S

t X Z Z X Z

  



     
+ + = − + + + + −

       

(9) 

2 2

2 2

T T T T T
U W

t x Z X Z

    



     
+ + = + 

       

(10) 

2 2

2 2

PrS S S S S
U W

t X Z Sc X Z

    



     
+ + = + 

       

(11) 

x
X

H
= , 

z
Z

H
= , 2

Ttk
t

H

 = , 
T

uH
U

k
= , 

T

wH
W

k
= ,  

2

2

0T

pH
P

k 
= ,

bottomT T
T

T

 −
=


, 

bottomS S
S

S

 −
=

  
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Where X  and Z  are the cartesian coordinates in the horizontal and vertical 

directions, respectively , t   is the time, U  and W  the velocity components, P  is the 

pressure, T   is the temperature and S  is the salinity. 
Top BottomT T T = − , and

Top BottomS S S = −  are the temperature and the salinity differences between the top and 

bottom layers. 

The dimensionless parameters are : Prandtl number Pr
Tk


= , Schmidt number 

S

Sc
k


= , thermal Rayleigh number 1

3

T

T

T

g TH
Ra

k






= , and salinity Rayleigh number

3

S
S

S

g SH
Ra

k






= . 

The boundary conditions in the dimensionless form are given as follows [22], [23]: 

0U = , 0
W

X


=


, 0

T

X


=


, 0

S

X


=


at 0X = , 0 Z H   (12-a) 

0U = , 0
W

X


=


, 0

T

X


=


, 0

S

X


=


 at X B= ,0 Z H   (12-b) 

0U W= = , 0
T

Z


=


, 0

S

Z


=


 at 0Z = , 0 X B   (12-c) 

0U W= = , 0
T

Z


=


, 0

S

Z


=


 at Z H= , 0 X B   (12-d) 

For the initial conditions ( 0t = ), the fluid is considered stationary and a step profile 

across a horizontal interface at mid-depth ( 0.5Z = ) is imposed for both temperature 

and salinity [53]: 

( , ) (0,0)U W =  

for 0
( , 0)

for <00

ZT
T X t

Z



 


= = 


 
(12-e) 
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for 0
( , 0)

for <00

ZS
S X t

Z






= = 


 

2.1. Computational procedure 

In this study, the numerical methodology that was employed to solve the 

dimensionless Navier–Stokes equations (8-11) is described as the following:  

• Approximation of the convective and the diffusive terms 

The tow-dimensional diffusion-convection equations (8-11) are rewritten as: 

( )
f

L f
t


=
  

(13) 

, ,

2 2

2 2
( ) ( ) n n

i j i jdiff conv

f f f f
L f A U W D D

X Z X Z
 

   
= + − − + = + +

     

(14) 

where f  represents U , W , T

, S   and  the term source D . 

The discretization scheme for the second partial derivatives

2

2

f

X



 , 

2

2

f

Z





 
can be 

obtained by using employing central differencing with fourth-order accuracy. 

The discretization scheme for the first partial derivatives 

f

X



 , 

f

Z



  can be obtained by 

using the fifth-order  WENO scheme [42], [43] as follow: 

We calculate the smoothness indicators 
iIS , 0,1,2i = .  

The iIS +  are given by: 

2 2

0 2 1 2 1

13 1
( 2 ) ( 4 3 )

12 4
j j j j j jIS f f f f f f+ + + + + + +

− − − −= − + + − + , (15) 

2 2

1 1 1 1 1

13 1
( 2 ) ( )

12 4
j j j j jIS f f f f f+ + + + + +

− + − += − + + − , (16) 

2 2

2 1 2 1 2

13 1
( 2 ) (3 4 )

12 4
j j j j j jIS f f f f f f+ + + + + + +

+ + + += − + + − + , (17) 
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And the 
iIS −  are given by: 

2 2

0 1 2 3 1 2 3

13 1
( 2 ) (3 4 )

12 4
j j j j j jIS f f f f f f− − − − − − −

+ + + + + += − + + − + , (18) 

2 2

1 1 2 2

13 1
( 2 ) ( )

12 4
j j j j jIS f f f f f− − − − − −

+ + += − + + − , (19) 

2 2

2 1 1 1 1

13 1
( 2 ) ( 4 3 )

12 4
j j j j j jIS f f f f f f− − − − − − −

− + − += − + + − + , (20) 

we compute the nonlinear stencil weights : 

2( )

i
i

i

d

IS




 =
+

, 0,1,2i =  

Here we choose 610 −=  to avoid the denominator to become zero. The linear 

weights are given by: 

0

1

10
d = , 1

6

10
d = , 2

3

10
d =  

and 

2 2 2

0 1 2

0 1 2

1 1 6 1 3 1
, ,

10 10 10IS IS IS
  

  

  

  

     
= = =     

+ + +    
 

(21) 

In order to get a convex combination of ENO stencils, the WENO stencil weights are 

normalized to give: 

0 1 2
0 1 2

0 1 2 0 1 2 0 1 2

, ,w w w
  

        

  
  

        
= = =

+ + + + + +
 

(22) 

where:  ( )0,1jw , 0,1,2j = , and 0 1 2 1w w w  + + =  

Finally, the numerical fluxes are defined as: 

1 0 2 1 1 1 1

2

2 1 2

2 7 11 1 5 2ˆ ( ) ( )
6 6 6 6 6 6

2 5 1
( )
6 6 6

j j j j j j
j

j j j

f w f f f w f f f

w f f f

+ + + + + + + + +

− − − +
+

+ + + +

+ +

= − + + − + +

+ + −

 (23) 
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and 

1 2 1 1 1 1 2

2

0 1 2 3

1 5 2 2 5 1ˆ ( ) ( )
6 6 6 6 6 6

11 7 2
( )

6 6 6

j j j j j j
j

j j j

f w f f f w f f f

w f f f

− − − − − − − − −

− + + +
+

− − − −

+ + +

= − + + + + −

+ − +

 (24) 

,
1 1 1 1

2 2 2 2

1 ˆ ˆ ˆ ˆ
n
i jconv j j j j

f f f f
x

 + + − −

+ − + −

    
= − − + −    

      

 
(25) 

• Approximation of time 

For the time approximation of equation (13), we employed the third-order accurate 

TVD Runge-Kutta scheme to advance in time:  

(1)

1 1 ( )n nf f t L f  = +   (26) 

(2) (1) (1)

2 2 ( )nf f f t L f    = + +  
 (27) 

1 (2) (2)

3 3 ( )n nf f f t L f +   = + +  
 (28) 

where: 
1 1 = , 2

3

4
 = , 3

1

3
 = ,

1 1  = , 2

1

4
  = , 3

2

3
  =  and t  is the time step. For 

further details see Gottlieb and Shu [44]. 

2.2. Numerical validation tests 

In order to verify the accuracy and the correctness of the in-house code used in the 

current study we have considered the work carried out by Nishimura et al. [45] as a 

reference case which is corresponding to double-diffusive natural convection flow in a 

vertical rectangular enclosure. Their work is considered as an excellent benchmark 

which employed extensively by many investigators (see, for instance,  [46], [47], [48]) 

to check the validity and the efficiency of computational codes.  
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The computational conditions are as follows: the Prandtl number Pr 1=  ; the Lewis 

number 2Le =  and the Rayleigh number 510Ra = . The buoyancy ratios values used 

( 1.3R = , 1.3  and 1) cover different flow regimes. The same dimensions (aspect ratio 

2Ar = ) and grid resolution (31 41 ) as [45] were performed.  

R
 

Streamline Temperature Concentration 

Nishimura et 
al. [45] 

 Present 
code 

 Nishimura et 
al. [45] 

Present 
code  

 Nishimura et 
al. [45] 

Present 
code 

1
.3

 

   

0
.8

 

   

1
.0

 

   

Figure 2. Comparisons between the results from the present code and the numerical 

results from Nishimura et al. [45]. 
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Figure 2 display a clear comparison between numerical results of (streamline, 

isotherms and concentration) plots obtained by the present code and those of 

Nishimura et al. [45]. Three behaviors of the steady flow have been taken in counts 

corresponding to thermally dominated flow, compositional dominated flow oscillatory 

flow corresponding to the buoyancy ratios 1.3R = , 0.8R =  
and 1R = , respectively. 

As can be seen, the comparison showing a good concordance with the results 

reported by Nishimura et al. [45], thus corroborates the capacity and the numerical 

accuracy of our computational code for simulating the double-diffusive natural 

convection flow. 

The reliability of the computational method to capture accurately the finger structures 

and their evolution/interaction in time and space was also confirmed by reproducing 

the results published in the literature,  Ref. [25]. 

3. Results and discussions 

In this section we investigate the influence of the density inversion, induced 

by the nonlinearity of the equation of state, on the development of fingers and their 

dynamics. To do this, three numerical tests have been reported regarding the 

nonlinear parameter 0 = , 1 =  and 3 = . The first case 1 ( 0 = ) which 

corresponds to the linear equation of state for comparison. The nonlinear term 

activates when 0  . Indeed, for the second case ( 1 = ) the nonlinear term 

becomes important compared to the linear term for temperature. For the third case 

( 3 = ) the nonlinear term becomes predominant in the equation of state. The 

results of our numerical simulations have been performed with 400 300  grids 

mesh, which selected as an optimal number of nodal points to solve accurately the 

evolution pattern of finger convection in the enclosure. In the present work, we set 

the Prandtl and the Schmidt numbers at 7 and 700, respectively, i.e., the Lewis 
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number 100Le = , which are the typical values for seawater system see, e.g., [49], 

[50]. For all simulations the buoyancy ratio, the thermal Rayleigh number and 

salinity Rayleigh number were held fixed at 6R = ,
 

67 10TRa =   and 

61.167 10SRa =  . 

3.1. Finger structures dynamics and mixing properties  

a) Reference case : linear equation of state 

We start by looking at the first case 0 = , this linear case constitutes a reference that 

helps us to quantify well the effect of the the nonlinearity of the equation of state on 

the salt fingers evolution.  

Figure 3 (a-f) shows a global glimpse of evolution of salt fingers convection at 

buoyancy ratio 6R =  from a dynamic point of view. 

In the initial phase, we can see that the interface separating the cold and fresh fluid 

starts to thickness linearly with time due to a purely molecular diffusion. With time the 

interface separating becomes unstable and begins to take a wavy shape see figure 3 

(c). afterwards, structures in the form of mushroom plumes have been developed 

from this interface. We can clearly distinguish the formation of thirty-six finger 

columns (eighteen pairs of rising and sinking cells) which corresponds exactly to the 

number of waves in the interface. 

In the inside of each finger, the salt concentration is preserved and maintains the 

initial value of the layer from which it originates (S* 0=  for the rising fingers and S* 1=

for sinking fingers), with the exception of the fingreing interface where still changed 

by molecular diffusion process. The fingers structures grow rapidly due to the 

acceleration of the flow induced by advection motion see the velocity vector (figure 

4(a)). Because the mass flux is conserved inside the fingers, we observe a reduction 
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of fingers width with increasing in its length. Hence, fingers take a vertical wavy form 

which makes them gravitationally unstable. 

a) b)  

c) d)  

e)  f)  

Figure 3. Evolution of salt-fingers at 10 h, 14 h 40 min, 20 h, 23h , 26 h 25 min, 30 h 30 min, 

38 h 6 min and 46 h, respectively. In this case 67. 10TRa = 
 ,

6R = and 0 = . 

At the end of the each finger we observe an engulfment at the finger tips due to the 

accumulation of the fluid called blob structures (figure 3 (c)), as found by Taylor and 

Veronis [51]. As time elapses, these blobs become unstable due to the gravity effect 

and detached from the finger bodies and become independent cores in the form of 

vortex dipoles called ‘bulbous’ (figure 4 (b)). These structures have been observed in 

previous works, by Pringle and Glass [52] and Rehman and Singh [53]. We also 

notice that when blobs break off from the finger bodies a new blob regenerated and 

replaced them. 

When fingers reach the ends of the domain, we observe the formation of so-called 

umbrella-shaped structure that spread horizontally and becomes flat allowing to 
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coalesce together (see figure 3 (d-e)) and this lead to the formation of the upper and 

lower mixed layers in the same time as shown figure 3 (f).  As results, the salt finger 

structures sandwiched between these mixed layers forming so-called ‘salt-finger 

zone’. In this stage, the system becomes dynamically less active and the vertical 

salinity flux diminish.  

In the final stage, the salt finger structures begin to vanish, as consequence, the 

mixing activity weaken and the system become dominated by molecular diffusion. 

The main important conclusion, in this linear case, is the strong symmetry of the flow 

motions between upper and lower layers about the mid-height of the computational 

domain, in contrast to the nonlinear cases that will be discussed in the following 

subsection.  

a)   b)  

Figure 4. Close-up view of : a) instantaneous contours of salinity field on which the velocity 

vector is superimposed, b) isolated blob on which the velocity vector (colored by vorticity 

magnitude) is superimposed to illustrate the dipolar vortex. 

The figure 5 (a) show the horizontal averaged profiles of salinity at different times. At 

t=0, the initial distribution of the salinity takes value 0S  =  for 0 Z 0.5   and 1.0S  =  
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for 0.5 Z 1   which corresponding to the salinity of the upper and lower layers 

respectively. 

For (t<2h), salt profiles are almost identical to the initial distribution state with a weak 

change at the mid-height of the computational domain produced by diffusive 

processes.  

As time increases (t > 13 h 15 min), salt profiles begin to spread progressively about 

the mid-height of the domain forming the so-called ‘spread zone’. Indeed, at t = 15 h 

50 min, we can see that in the range 0.35Z   and 0.65Z   the values of salt keep 

their initial values * 0S =  and * 1S =  correspond to the lower and upper layers 

respectively, whereas, outside these ranges, salt takes values between 0 * 1S   (this 

means that salt gradient 1.0Top BottomS S S  − =   ). 

When the time t > 19 h 50 min, the salt gradient becomes 1.0S     which implies 

that the salt fingers reach the ends of the domain. We notice that with the formation 

of mixed layers the initial distribution of the salinity disappears completely. 

 As time increases, mixing efficiency in the salt-finger system increase, and the 

salinity tends to an asymptotic value 0.5S  =  which makes the salinity distributions 

uniform in the system (i.e., salt gradient 0S  ) and constitutes stable layers at the 

end (figure 10 (a) at t = 29 h 30 min). It is interesting to note that profiles remain 

symmetric in this case in time.  

Figure 5 (b) depicts the temporal evolution of non-dimensional kinetic energy 

representing as 
kE  is given by 

2 21 2< + >kE U W= , where < >  means averaged 

domain. 
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a) b)  

Figure 5. a) Vertical profiles of mean salinity, b) Time evolution of the system kinetic energy. 

In this case, 67. 10TRa =   and 6R =  
and 0 = . 

When analyze the evolution of kinetic energy, we can observe three distinct stages. 

In the first stage, kinetic energy 0kE =  which implies the total energy of the system is 

initially stored in the form of the potential energy in the salinity interface. In the 

second stage *13 25h t h  , with the development of the finger structures, the 

potential energy of the system is released and converted into kinetic energy and the 

kinetic energy quickly reaches its maximum value 1650kE = . In the last stage 

* 25t h , the kinetic energy of the system starts to decrease again progressively with 

time under the effects of the viscosity, and the fingers’ motion is damped and 

disappears completely. 

We now discuss the mixing process induced by double convection salt finger, we use 

the probability density function of the salinity PDF(S*), [54-56]. The PDF(S*) is 

considered an excellent tool to quantify the evolution of the mixing properties of the 

system.  

Figure 6 illustrates the evolution of probability density functions ‘PDFs’ in the z-

direction at different times. For all simulations, we displace the origin location to the 

middle of the domain (i.e., the center of the symmetric of the system) in order to 
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better quantified the contrast in the mixing between upper and lower layers with 

respect to the nonlinear parameter. 

a)  b)  

c)  d)  

Figure 6. Evolution of the probability density function at moderate thermal Rayleigh number 
67. 10TRa =   for 6R = and 0 = . 

The PDF distribution in figure 6 (a) illustrates that there is a very weak mixing activity 

near the mid-height of the domain 0Z =  which is driven by molecular diffusion. 

As time passes,  PDF shows abroad range of the salinity having weak PDF values 

take place in the zone limited between 0.3Z = −  and 0.3Z =  . This zone known as the 

“diffusion zone”, see figure 6 (b). 

It must also be noted that there is a high probability to find pure unmixed salt with 

salinity values * 0S =  and * 1S =  corresponding to the lower and upper layers,  

respectively. This can be explained by the fact that finger structures grow 
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monotonically without interactions. Indeed, large amounts of salt are moved up and 

down without mixing, as the fluids inside the fingers maintain their initial values 

(figure 6 (b)). 

The diffusion zone continues to extend with time as fingers increased in a 

monotonous way and encompass the whole domain without interacting dynamically 

with their neighbors. Consequently, the mixing process in this stage remains 

controlled by molecular diffusion. It is important to note that the mixing process 

between the upper and lower layers is symmetric with respect to the mid-domain. 

When fingers reach the domain ends, the mixing is enhanced close to the boundaries 

due to the horizontal spread of the bulbous which merges bulbous with each other 

and forms so-called mixed layers see figure 6 (c). The PDF indicates that there is no 

probability to find pure unmixed fluid close to the top and bottom boundaries. 

Furthermore, the PDF refers that salinity taking values range between 0.4 * 0.6S  , 

this implies that the mixing appears practically in equal proportion and becomes more 

homogeneous in these regions (see figure 6 (d)). Conversely, a high probability of 

pure unmixed salt is detected in the zone spanning in 0.4 Z 0.4−    namely the 

“finger zone” (see figure 6 (c)). In this region, fingers with pure unmixed liquid remain 

trapped between the mixed layers because they are less dynamic, hence the mixing 

intensity is very weak. This finding is well corroborated by figure 3 (f). 

As time progresses, the finger zone becomes more dynamic and the probability of 

finding values of salinity confined between 0.4 * 0.6S   is clearly visible in the mid- 

domain proving hence the better mixing of the fluid. 

Moreover, in the vicinity of the computational domain ends, we note that convection 

becomes less intense allowing again the injection of pure salt into the mixed layers 
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as referred in the PDF distribution. Indeed, the salinity values are ranging 

0.6 * 0.8S   in the upper mixed layer and 0.4 * 0.2S   in the lower mixed layer. 

b) Nonlinear equation of state effect 

Turning now to the influence of nonlinearity of the equation of state on the 

development of fingers, their dynamics and we will also look at mixing properties. In 

this study two cases of nonlinear parameters have been then considered: weak 

nonlinear  case 1 =  and  highly nonlinear  case 3 = . 

The first overview in figure 8 shows clearly that the number of fingers developed in 

the system is identical to this of the linear case (18 pairs of rising and sinking). 

However, the qualitative analysis of instantaneous salinity fields reveals a net 

difference in the rising and sinking fingers dynamics especially at highly nonlinear 

case, compared to the linear case. 

The flow system starts by the stable phase generated from the initial state where no 

fingers have been detected at the interface (this phase has not been presented in 

figure 8). This phase is characterized by an increase in the interface thickness under 

the effect of molecular diffusion in both cases like in the linear one. In the following 

phase, we observe the appearance of instability at the interface, which leads to its 

undulation and then the trigger of the wavy fingers structures, see figure 8 (a-d). We 

note that the onset of instability is delayed unlike the linear. The physical reason for 

this delay is that the fingering interface becomes stably stratified due to the increase 

of the nonlinear parameter   which improved the stabilizing effect of the 

temperature, see figure 9 (e) and (f). Hence, the effect of the nonlinear parameter 

prevents the formation of the rising fingers while promoting the sinking finger motion. 

In the next phase, for the weakly nonlinear case figure 8 (e), a monotonic increase in 

the fingers’ length is obvious. Therefore, fingers can still grow the whole height of the 
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computational domain without interacting. As distinct feature of the linear case, rising 

fingers ascend slowly compared to those sinking, see figure 9 (a). As a consequence, 

the evolution of rising fingers length is slightly smaller than the sinking.  

a)   b)  

c)   d)  

e)   f)  

g)  h)  

i)   j)  

k)   l)  

Figure 8. Evolution of salt-fingers at moderate thermal Rayleigh number 67. 10TRa = 
 
and 

6R = ( 1 = , left panel), ( 3 = , right panel).  
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A quantitative comparison of finger lengths indicates that rising fingers occup 

approximately 45%  height of the computational domain compared to the sinking 

occupying 25%  see figure 8 (e). Furthermore, the sinking fingertips are characterized 

by intense vorticity, high vertical velocity, and kinetic energy as shown in the figures 9 

(a), (c) and 10 (a) and 10 (c). Moreover, in figure 8 (g) we clearly see that the sinking 

fingers reach the end of the field before the rising fingers and hence begin to interact 

with the boundary resulting the earlier formation of the lower mixed layer contrary to 

the upper one in the figure 9 (i) and (k). 

a)  b)   

c) d)  

e)  f)   

  
Figure 9. Instantaneous contours of : a-b) velocity , c-d) kinetic energy , e-f) temperature, at 

moderate thermal Rayleigh number 67. 10TRa = 
 
and 6R = : ( 1 =  left panel), ( 3 = ,right 

panel).  
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For the highly nonlinear case ( 3 = ), the evolution of the fingers is qualitatively very 

different and seems more complicated from that obtained for both 0 =  and 1 = . A 

considerable difference in the morphology of flow dynamics has been observed. In 

the lower layer, we note a rapid transient of the salt finger system from a regular 

array shape to an irregular shape. Indeed, the sinking fingers begin to interact quickly 

with each other resulting in a new reorganization of the finger structures. 

a)  b)  

c)  d)   

 
Figure 10. Instantaneous contours of vorticity modulus at moderate thermal Rayleigh 

number 67. 10TRa =  an 6R = : ( 1 = , left panel), ( 3 = , right panel). 

As seen in figures 8 (d) and (f) the adjacent fingers approached each other and 

merged into finger-like plumes resulting hence a ‘tree-like’ with a branching pattern 

occupying a greater lateral space ranging 0 Z 0.2   than at an early time. These 

plumes produce convective motions of strong recirculation cells (see, figure 8 (h)) 

making the system behavior dynamically and structurally much more complicated, 

figure 10 (d) depict this more clearly. The last phenomena play a prominent role in 
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the dynamic of mixing in the system as we will see later when inspecting the PDF 

fields. 

Let us now look at the upper layer, one can observe the formation of small rising 

fingers (see figures 8 (d) and (f)), with a very small vertical velocity, kinetic energy  

and     intense vorticity  as shown in figures 9 (b) , (d) and 10 (b), hence, their vertical 

length cannot be extended and seem blocked due to the stable density stratification. 

More precisely, when sinking fingers reach the end rising fingers occup 

approximately 10% height of the computational domain as shown by figure 8 (f). This 

can be explained by a large diffusivity of the temperature field in the upper layer as 

shown in the figure 9 (f)  where only arise wavy structures, and no thermal fingers 

can be detected. Conversely, in the same time, we observed the formation of mixed 

layer near the bottom boundary.  

With time, the influence of the stabilizing temperature stratification diminished, and a 

rising fingers become able to accelerate again, hence, they commence to expand up 

progressively without interacting dynamically with each other even reaching the top 

boundary, conversely to the sinking ones. We also note that blobs are well-formed at 

the ends of the rising fingers. Figure 8 (j) also indicates that the nonlinear parameter 

affects the size of the rising fingers and leads to very thinner neck fingers. 

Next, while the lower mixed layer continues to thicken upward into the mid-height of 

the computational domain, the upper mixed layer slowly builds up and takes place 

close to the top boundary. It is remarkable, then, that the asymmetric evolution of the 

dynamic of the flow system appears clearly in this case ( 3 = ). 

To deepen our insights about the influence of the nonlinear parameter on fingers the 

behavior, we calculate the average concentration of salinity in the horizontal direction 

for both cases 1 =  and 3 =  . Figure 11 illustrates the horizontal averaged profils of 
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salinity at different times. At t=0 the initial distributions of the salinity take values 

0S  =  for 0 Z 0.5   and 1.0S  =  for 0.5 Z 1   which corresponding to the salinity of 

the upper and lower layers respectively. 

a)  b)  
 
Figure 11. Horizontally averaged mean of salinity profiles at moderate thermal Rayleigh 

number 67. 10TRa = 
 
and 6R = : a) 1 =  , b) 3 = . 

 

It is interesting to note that initial salt profiles for both cases 1 =   and 3 =  at ( t=9h 

20 min) are almost identical to the initial distribution state with a weak change at the 

mid-height of the computational domain produced by diffusive processes. Obviously, 

in the diffusion phase, the symmetry of the profile is clearly remarkable, however, the 

break in symmetry is observed with the formation of fingers for (t>9 h 20 min). 

Indeed, salt profiles show clearly a dissimilarity in the spread zone distribution with 

respect to the mid-height owing to the difference in the velocity between rising and 

sinking fingers recall that the spread zone is the zone bounded between   S* 0 =  

and   S* 1 = . This zone corresponds to the part of the computational domain 

invaded by the fingers. Because the system has asymmetric features, the spread 

zone can be redefined by two subzones, the first one is called the upper spread zone 

limited between   S* 0.5 =  and   S* 1 = , and the second one is called the lower 

spread zone limited between   S* 0 =  and   S* 0.5 = .  
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For 1 =  (t = 31 h 40 min), the spreading zone in the upper layer extends from  0.5  

to 0.7  i.e., 0.25apperZ = , while in the lower layer, fingers reach the end of the bottom 

boundary which means that  0.5lowerZ = . Indeed, the growth rate between the two 

layers is / 2lower upperZ Z  =  . This discrepancy is due to the difference in the velocity 

between rising and sinking fingers. 

For 3 =  (t=15 h 40 min), the spreading zone in the upper layer extends from  0.5  to 

0.6  i.e., 0.1apperZ  , while in the lower layer 0.5lowerZ = . Indeed, the growth rate 

between the two layers is / 5lower upperZ Z  = . This implies that increasing in 

asymmetric becomes more obvious when the nonlinear parameter increases. In 

addition, the sinking finger reach earlier the bottom layer for 3 =  compared 1 = . 

Moreover, the mixed zone develops early in the lower layer for both cases, where the 

salinity maintains its initial value   S* 1 =  , which means that rising fingers have not 

yet reached the top of the boundary and continue to grow (t=33 h 30 min for 1 =  

and t=19 h 15 min for 3 = ). As time passes, we notice that the fluid continues to mix 

well near the bottom boundary which makes the profiles carried back quickly toward 

an asymptotic value of the salinity, around   S* 0.5 = . Moreover, the vertical 

gradient of the salinity 
*

lowerS
 

i.e., the salinity distribution is approximately 

equipartitioned and it becomes very weak with time leading to homogeneous mixing 

in the lower layer. We recall that   S* 0.5 =  is a good indicator of mixing efficiency. 

However, the upper mixed zone thickness is smaller than that of the lower and the 

profiles indicate clearly that the salinity value stays away from the asymptotic value 

  S* 0.5 = , conversely to the lower mixed zone. Additionally, the spread of the upper 

mixed zone toward the mid-height of the computational domain becomes slow when 

the nonlinear parameter is strong. This implies that the increase in the nonlinear 
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parameter diminishes the mixing intensity making the gradient of the salinity 

distribution in the vertical direction inhomogeneous. It is worth noting that the 

presence of fluctuations in the spreading zone is explained by the variation in the 

lengths of the fingers and their wavy shape. 

To understand the nonlinear parameter on the mixing properties we now diagnose 

with scrutiny the temporal evolution of the probability density function (PDF) for 

salinity presented in figure 12. 

Regardless of the first stage (not shown), we can clearly see that the increase of the 

nonlinear parameter affects significantly the mixing processes. A global glimpse of 

figure 12 reveals that there is an asymmetric in the salt mixing behavior compared to 

the linear case. The analysis of this figure exhibits a remarkable enhancement of 

mixing in the lower layer compared to the upper layer. 

With the formation of the fingers, salt is transported vertically alternatively in upward 

and downward motions. The molecular diffusion between layers turns into horizontal 

diffusion through the sides surfaces that formed fingers.  

For the weak nonlinear case 1 = , figures 12 (a), (c), (e) and (g) show clearly that the 

mixing process evolution is not affected much by nonlinear parameter and seems 

much similar to those in the linear case (see the previous subsection) with a small 

delay in the mixing process between the upper and lower layers due to the faster 

growth of the sinking fingers, additionally, both rising and sinking evolve 

monotonically without interaction as in the linear case 0 = . 

However, for the high nonlinear case 3 = , the mixing dynamics is completely 

different. Indeed, in figure 12 (b) in the lower layer, it is observed that the mixing 

process by molecular diffusion seems limited at  Z 0.2=  in the upper layer because 
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the rising fingers grow slowly, while it remains diffuse rapidly in the lower layer as 

fingers continue to increase. 

a)  b)  

c)  d)  

e)  f)  

g)  h)  

Figure 12. Evolution of the probability density function of the salinity at moderate thermal 

Rayleigh number 67. 10TRa =   and 6R = : ( 1 = left panel), ( 3 = ,right panel).  
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One can also see the existence of a broad range where the salinity has values 

bounded between *0.6 S 0   taking weak PDF values while zero pdf to find salinity 

values *0.6 S 1  . This dissimilarity in the PDF distribution implies that a small 

amount of salt ( *S 1= ) that has been transported from the upper layer to the lower 

layer mixed earlier before reaching the bottom boundary due to the coalescence of 

salt finger structures with each other as shown figure 8 (f). The formation of tree-like 

strangles the sinking fingers and prevents then the transfer of salinity ( *S 1= ) into the 

lower layer. Moreover, we also notice a high probability to find pure unmixed salt 

*S 0=  in the system (figure 12 (b)) which indicates that the dynamic of mixing is very 

slow and dominates by diffusion process. 

In figure 12 (d), mixing activity by convection becomes important in the region 

spanning 0.5 0.4Z−   −  where the most probable take values range between 

*0.4 S 0.6   as shown by PDF distribution. This is directly related to the interaction of 

salt finger structures with the bottom boundary which leads to the formation of the 

lower mixed layer. Additionally, the probability of finding pure unmixed salinity ( *S 0=

) stays high in the region spanning 0.3 0Z−    which implies that the no interaction 

of finger structures. In other words, the mixing by molecular diffusion is significant in 

this zone compared to the convective mixing. As time passes, the lower mixed layer 

thickens toward the mid-height of the computational ( 0Z = ), therefore,the probability 

to find a pure unmixed salinity ( *S 0= ) is zero in this region, see figure 12 (f), 

meaning that the fluid in the lower layer is well-mixed. 

On the other hand, in the upper layer, the PDF distribution in figure 12 (f) indicates 

that the mixing by molecular diffusion remains predominant and the diffusion zone 

continues to extend as the rising finger lengths increase. We also note the absence 

of salinity with values * 0.5S  , and this can be explained straightforwardly by the fact 



 

 

31 

 

that the fingers become very thinner highly diffusive features which do not allow 

sufficiently the transport of fluid * 0S =  from the lower to the upper layer. This finding 

is well corroborated by figure 8 (j). Moreover, the velocity of rising fingers is very 

weak, hence  it takes time to reach the end of the computational domain and this 

promotes the diffusion mixing in this region. It must be noted that a high probability to 

find pure unmixed salt *S 1=  is observed in the upper layer indicating that the mixing 

activity is very weak and is purely dominated by molecular diffusion. 

In figure 12 (h), the high values of PDF for salinity values *S 0.2  take place in the 

lower layer which means that there is an intense mixing activity in this zone resulting 

from the vigorous convecting lower layer. This leads to the homogenization of the 

mixture in this zone. However, in the upper zone, close to the top boundary 0.4Z  , 

PDF ( *S 1= ) is zero meaning that the rising fingers reach the top of the domain. 

However, it is also noted that the region 0.2 0.4Z   has high PDF values of salinity 

values *S 1=  corresponding to the region in which the fingers have thinner neck 

structures. This means that mixing intensity is not sufficient to homogenize the 

distribution of salinity in this zone. 

4. Conclusion 

In this study, the impact of the density inversion, induced by the nonlinearity of the 

equation of state, on the development of the finger structures and their end state has 

been studied numerically. A high accuracy schemes have been employed to solve 

the two-dimensional Navier-Stokes equations with a nonlinear equation of state. The 

effects of nonlinear parameter have been investigated ( 0 = , 1 =  and 3 = ) for 

high buoyancy ratio ( 6R = ) and moderate thermal Rayleigh number ( 67 1  0TRa =  ). 
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This paper forms a crucial key to understanding how density inversion modifies 

salt finger convection in cold regions, the main conclusions obtained are as follows: 

Compared with a linear equation of state we found that the nonlinear equation of 

state limits the vertical transport of the salt/heat and the kinetic energy, and depends 

on the nonlinear parameter values. The flow field analysis indicates that the increase 

of the nonlinear parameter affects the flow dynamics and the morphology of the salt 

fingers as well as the mixing process. In fact, the high nonlinear parameter modifies 

significantly the salt fingers evolution. The results show clearly the appearence of an 

asymmetric structure of the salt finger in the system and the finger pattern scenario is 

more complex at the lower layer where fingers develop quickly owing to the 

enhancement of the buoyancy force acting on them. Furthermore, in the low layer, 

the interaction between adjacent fingers is improved and the sinking fingers become 

disorderly in time. Conversely in the upper layer sinking fingers evolve slowly and 

monotonically without interacting with others. It should also be pointed out that the 

nonlinear parameter has no influence on the number of fingers developed in the 

system.  

The effects of the density inversion on the mixing dynamics have also been 

discussed. The probability density function of the salinity PDF(S*) shows that at high 

nonlinear parameter mass transport and the mixing dynamics in the lower layer is 

enhanced while weakening in the upper layer with increasing in the nonlinear 

parameter. It also reveals that a weak nonlinear parameter has minor effect on the 

mixing process of the salinity. 

In our future study, we will extend this work to reveal the influence of the density 

inversion on salt fingers convection for high and low thermal Rayleigh numbers and 

for different buoyancy ratios. 
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