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Abstract

This work offers a detailed examination of the phase field approach for modeling brittle
fracture, emphasizing its theoretical foundations, mathematical descriptions, and
computational strategies. Central to our discussion is an in-depth analysis of strain
energy decomposition methods integral to phase field models. We introduce an
innovative technique using a cleavage plane based degradation that has shown
promising results under various loading scenarios. We meticulously evaluate each
method’s inherent limitations and challenges to highlight their respective advantages
and drawbacks across different loading scenarios. This review aims not only to catalog
existing knowledge but also to pave the way for future research directions in the
application of phase field approach to fracture analysis.

Keywords: Phase field method, Brittle fracture, Fracture mechanics, Damage, Strain
energy formulation

Introduction
Continuum damage mechanics (CDM) has emerged as a foundational framework for
predicting the behavior of materials that undergo progressive degradation. It is a pow-
erful tool for understanding and preventing failure in engineering materials as fracture
and crack propagation are fundamental aspects of material behavior, and understanding
and predicting crack evolution has led to significant advancements in structural design,
safety, and reliability across various industries. In CDM the phenomenology of fracture
and crack growth is considered through the use of a continuous damage variable that
will represent the density of the cracks and voids, and the loss of stiffness or strength in
a material due to the accumulation of strain. In the context of Finite Element Method
(FEM), solving continuum damage mechanics holds several drawbacks that can compro-
mise the accuracy and robustness of the analyses. These limitations encompass mesh
dependency as the evolution of damage and the resultant stress distribution are highly
sensitive to the discretization of the problem. Furthermore, issues such as loss of ellipticity
in static scenarios and challenges in ensuring hyperbolicity in dynamic scenarios under-
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score the complexities in achieving unique and stable numerical solutions. Addressing
these challenges, the Extended Finite Element Method (XFEM) [21] offers a robust alter-
native. By employing level sets and enrichment functions, XFEM circumvents traditional
mesh constraints, enabling dynamic simulation of crack propagation without necessitat-
ing mesh modifications. Despite its advantages, XFEM’s integration into existing codes
bears complexity, requiring additional functions (enrichment functions) and managing
extra degrees of freedom. Moreover, the enriched solution space escalates computational
demands, posing challenges in large-scale or multifaceted crack scenarios.
Parallelly, non-local damage models, advocated by pioneering studies [4], incorporate

the influence of neighboring zone damage, addressing mesh sensitivity through interac-
tions defined over a physical length scale. This approach not only captures complex inter-
actions within materials but also excels in scenarios where cracks are distributed rather
than localized, as observed in quasi-brittle materials like concrete. However, the broader
consideration of damage interactions necessitates significant computational resources
and intricate calibration of model parameters, often relying on extensive experimental
data.
The phase-field model presents an innovative mathematical framework for interface

evolution between material phases. It offers a distinct advantage by blurring out bound-
aries and introducing a continuous development of field variables across the interfacial
zone. This smearing of the interface enables a more realistic representation of crack prop-
agation and other interfacial phenomena. The inspiration for the phase field method can
be traced back to the Ginzburg-Landau equation developed to determine surface ten-
sion at the boundary between distinct phases. They introduced the concept of an order
parameter and its gradient to track the values of superconductivity. The key feature of
the phase field is the use of the gradient of the field variable that is added to the free
energy functional to penalize the formation of sharp interfaces, ensuring that the phase-
field variable remains smooth over a defined characteristic width. These advantages have
led to their widespread application in simulating solidification processes, grain growth,
fracture mechanics, and a variety of other phenomena. In the context of brittle fracture,
the phase field approach provides a versatile framework for modeling crack propagation.
Rather than explicitly tracking crack boundaries, the phase field model incorporates an
order parameter. In the context of fracture, this parameter is the damage variable (d),
which describes the presence and extent of cracks within the material. The idea of phase
fieldmodeling would be representing the damage variable as continuous everywhere, with
a process zone of a characteristic length where it would rapidly change value to transi-
tion from the undamaged area to the cracked area. By introducing the gradient of the
damage (∇d) and a crack width parameter (or characteristic length, lc), gradient crack
evolution can be accurately captured within the numerical model. Another alternative
method for modeling diffuse crack behavior is the gradient damage model proposed by
[8], drawing inspiration from a variational approach rooted in Griffith’s seminal work
[10]. This approach addresses the traditional methods’ limitations by facilitating crack
nucleation and determining crack propagation paths. Their numerical model for brittle
fracture involves minimizing a weak functional, similar to Mumford-Shah’s model for
image segmentation and the volume integral approximation done by Ambrosio and Tor-
torelli, and incorporatesΓ -convergence regularization for numerical implementation [5].
The Francfort–Marigo model serves as the foundation for many variational approaches
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and has paved the way for phase field models of fracture. [18] also outlined a phase field
model for crack propagation based on these works but from a continuum mechanics
and thermodynamics outline with a gradient-type regularized surface energy. All of these
non-local gradient damage models share a similar numerical structure, using regulariza-
tion parameters that represent thematerial’s internal length scale and employing gradient
damage models. The distinguishing factor lies in the interpretation of the formulations
and their specific decomposition approaches.
The primary focus of the various decomposition approaches lies in identifying the

key factors driving damage evolution. These approaches typically involve separating the
influence of active and inactive components on damage progression. The active compo-
nent facilitates damage evolution, while the inactive component inhibits further damage
growth. This decomposition is largely based on distinguishing tensile and compressive
loading modes. Tensile loads, associated with positive strains and stresses, contribute sig-
nificantly to damage progression, whereas compressive loads, linked to negative strains
and stresses, are generally not considered to exacerbate damage. There exists in the lit-
erature various split approaches for the elastic strain energy to account for the unilateral
aspect of damage. The most prevalent works being the preliminary decomposition by
[2,20]. Both of these rely on the split of the strain tensor. Several alternative models have
been proposed in the literature, exemplifying diverse approaches to structural analysis.
Notably, the model by [22] utilizes a split based on the orthogonality between traction
and compression components. Additionally, the work of [26] introduces a modified per-
spective on the volumetric-deviatoric split, while the study presented in [9] features a
reformulation of the compliance tensor. Other significant contributions include models
that depend on the decomposition of the stress tensor, as exemplified in [28], and the
directional split of the stress tensor, as detailed in [24]. The latter model forms part of
a broader category of directional split methods, which also encompasses the studies by
[7,25]. Furthermore, we introduce a new decomposition in the subsequent sections of this
work, aligning with the directional split methods.
In this work, we present a comprehensive study of phase field modeling for brittle

fracture, focusing on different approaches adopted in existing models.

• Weexplorefive establishedmethods for thedecompositionof the elastic strain energy,
• We introduce a sixth technique, a novel approach intended for anisotropic materials

that involves considering a weakest cleavage plane inherent to the material,
• We compare the results of the different decomposition methods in the case of ten-

sion/compression and pure shear testing,
• We elucidate the advantages and limitations of each approach for the different loading

cases.

By revisiting the remarkable strides made in the last decades, this work aims to both
honor the legacy of earlier research and contribute to the ongoing development of
phase field modeling, fostering a deeper comprehension and refining the methodologies
employed in the study of material degradation and fracture mechanics.
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Fig. 1 Diffuse fracture modeling

Phase fieldmodel for brittle fracture
In the phase field model for brittle fracture, the damage variable, denoted as d, quantifies
the extent of material damage. This variable ranges from 0, representing a sound state,
to 1, indicating complete material failure. The initiation and progression of cracks are
governed by a critical threshold related to the surface energy, as conceptualized byGriffith.
The fracture toughness, Gc, signifies the energy dissipation required for crack extension
per unit area. Consequently, the total energy of a body, comprising volumeΩ and cracked
surface Γ , integrates both elastic and surface energies as follows:

E(ε(u), d) =
∫

Ω

ψ(ε, d) dΩ +
∫

Γ

GcdΓ (1)

The elastic energy is stored within the body, while fracture energy is accounted for by
integrating over the cracked surface. To incorporate the regularization of the crack surface
via the phase field parameter, represented by damage in brittle fracture contexts, and to
address the interface smearing across a characteristic width, lc, the energy formulation is
adapted using [18]’s crack surface density function γ :

E(ε(u), d,∇d) =
∫

Ω

ψ(ε, d)dΩ +
∫

Ω

Gcγ (d,∇d)dΩ (2)

This reformulation transforms the surface integral into a volume integral, simplifying
the computational approach by eliminating the need to explicitly track the evolving crack
surface. Instead, the integration spans the entire volume, treating the crack representation
as an inherent part of the material’s continuum description.

The crack surface density function

The phase field model characterizes the crack surface area, AΓ , through the crack surface
density function per unit volume, γ , effectively translating the traditional concept of a
discrete crack into a continuous field within the material volume Ω :

AΓ =
∫

Γ

dΓ =
∫

Ω

γ (d,∇d) dΩ (3)

This approach delineates the phase field model’s non-local nature, with γ as a function
of both the damage variable d and its gradient ∇d. The characteristic length scale, lc,
signifies the transition zone’s width from undamaged to damaged material, facilitating
a smooth damage gradient rather than a sharp discontinuity (Fig. 1). As lc narrows, the
model approaches the traditional sharp crack representation. A prevalent formulation for
γ is:

γ (d,∇d) = 1
c0

(
1
lc

α(d) + lc∇d · ∇d
)

(4)
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with c0 normalizing the regularization to ensure fidelity to the physical crack surface,
defined as:

c0 = 4
∫ 1

0

√
α(β)dβ (5)

The function α(d) correlates the damage variable to crack geometry. Its common expres-
sion is:

α(d) = dξ1 + d2ξ2 + d3ξ3 + · · · + dmξm (6)

with the most used form being:

α(d) = ξd + (1 − ξ ) d2 (7)

Here, ξ modulates the function’s shape, aligning α(d) and d within the [0, 1] interval,
ensuring α(0) = 0 and α(1) = 1. The literature primarily recognizes quadratic (ξ = 0,
yielding α(d) = d2) and linear [ξ = 1, yielding α(d) = d] forms.
The quadratic expression [18]:

γ (d,∇d) = 1
2lc

(
d2 + l2c∇d · ∇d

)
(8)

lacks an initial pure elastic response, with damage onset coinciding with loading applica-
tion. In contrast, the linear form [23]:

γ (d,∇d) = 3
8lc

(
d + l2c∇d · ∇d

)
(9)

introduces a threshold, delaying damage initiation until a critical elastic strain energy
density is reached.

Damage evolution equation

The progression of damage within the material, adheres to the Allen–Cahn equation, first
introduced in [1], also recognized as the Ginzburg–Landau time-dependent evolution
equation:

ḋ = −L
δF
δd

(10)

where L represents the mobility factor, inversely proportional to the viscosity parame-
ter, and F denotes the Helmholtz free energy of the system that encompasses both the
volumetric energy and the crack surface energy contributions:

F =
∫

Ω

ψ(ε, d)dΩ +
∫

Ω

Gcγ (d,∇d)dΩ (11)

To facilitate analysis, the Helmholtz free energy density, Ψ , is defined as the sum of the
elastic energy density and the energy density associated with crack formation:

Ψ = ψ(ε, d) + Gcγ (d,∇d) (12)

The degradation function

The phase field model accounts for the influence of damage on the stored energy by
dividing it into two distinct components:

ψ(ε, d) = g(d)ψ+
0 (ε) + ψ−

0 (ε) (13)

Here, ψ+
0 is the part of the elastic energy density contributing to damage growth, while

ψ−
0 denotes the energy portion that remains unaffected by damage progression. The
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degradation function, g(d), modulates the impact of damage, inversely correlating with
the damage variable d. As d evolves from 0 to 1, g(d) shifts from 1 to 0, hence the decrease
in the ψ+

0 component’s contribution correlatively with escalating damage.
To accurately model material behavior under damage, g must satisfy:

• g(0) = 1, indicating that in absence of damage (d = 0), the material exhibits full
stiffness with no degradation.

• g(1) = 0, marking the fully damaged state (d = 1) as a point of stiffness loss, elimi-
nating the damaging energy contribution.

• g ′(d) ≤ 0, ensuring that the degradation function monotonically decreases with
increasing damage, reflecting the intuitive decrease in material stiffness.

• g ′(1) = 0, ensuring the elastic energy contributing to further damage ceases at full
degradation.

Commonly, the degradation function is represented as:

g(d) = (1 − d)2 (14)

For this quadratic model, the elastic energy decomposition adapts as follows:

ψ(ε, d) = ((1 − d)2(1 − k) + k)ψ+
0 (ε) + ψ−

0 (ε) (15)

where k represents a residual stiffness parameter, chosen to be as small as possible often
taken between 10−6 and 0 to enhance numerical stability during the resolution process.

The damage driving force

As in [18], it is possible to define the damage criterion based on the crack driving force,
in a manner akin to Griffith’s criterion, to determine the necessary energy for crack
propagation:{

D̄ < 0 ⇒ ḋ = 0
D̄ ≥ 0 ⇒ ḋ ≥ 0

(16)

D̄ is the thermodynamic force associated to the damage variable d and given by:

D̄ = −
[

∂ψ(ε, d)
∂d

+ Gcδdγ

]
(17)

The evolution of damage, governed by the Kuhn Tucker conditions, is delineated as
follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ḋ ≥ 0

−∂ψe(ε, d)
∂d

≤ Gcδdγ

ḋ
(

−∂ψe(ε, d)
∂d

− Gcδdγ

)
= 0

(18)

The variation in the crack surface density function, δdγ , is quantified as:

δdγ = 1
c0lc

(
α′(d) − 2l2cΔd

)
(19)

This formulation allows for a generalized expression of D̄:

D̄ = −g ′(d)ψ+
0 (ε) − Gc

c0lc
[
α′(d) − 2l2cΔd

]
(20)

For a linear crack geometric function (α(d) = d) and a degradation function of g(d) =
(1 − d)2, the crack driving force simplifies to:

D̄ = 2(1 − d)ψ+
0 (ε) − 3Gc

8lc
[
1 − 2l2cΔd

]
(21)
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and the damage criteria becomes:{
2(1 − d)ψ+

0 (ε) − 3Gc
8lc

[
1 − 2l2cΔd

]
< 0 ⇒ ḋ = 0

2(1 − d)ψ+
0 (ε) − 3Gc

8lc
[
1 − 2l2cΔd

] ≥ 0 ⇒ ḋ ≥ 0
(22)

In the scenario with a quadratic crack geometric function, α(d) = d2, the damage
driving force becomes:

D̄ = 2(1 − d)ψ+
0 (ε) − Gc

2lc
[
2d − 2l2cΔd

]
(23)

and, the damage criteria is described by:{
2(1 − d)ψ+

0 (ε) − Gc
lc

[
d − l2cΔd

]
< 0 ⇒ ḋ = 0

2(1 − d)ψ+
0 (ε) − Gc

lc
[
d − l2cΔd

] ≥ 0 ⇒ ḋ ≥ 0
(24)

Irreversibility criterion: discussion on the use of history variable

To ensure the irreversibility of damage growth and inhibit crack healing, [18] introduced
a history-dependent mechanism. With this mechanism, a history variable, H, captures
the maximum value attained by the local contribution to the driving force,ψ+

0 , across the
loading history:

H = max
t

(ψ+
0 (ε)) (25)

This history variable fulfills the Kuhn–Tucker conditions, ensuring the irreversibility of
damage:⎧⎪⎨

⎪⎩
H − ψ+

0 (ε) ≥ 0
Ḣ ≥ 0

Ḣ(ψ+
0 (ε) − H) = 0

(26)

Though this history function can only be used freely in the case of a quadratic crack
geometric function because of its local minima at d = 0. At the onset of damage (d = 0),
the critical strain energy,Hc, necessary for crack propagation initiation, is determined by:

Gc
c0lc

α′(d) + Hc g ′(0) = 0 ⇒ Hc = − 1
g ′(0)

Gc
c0lc

α′(d) (27)

Hc signifies the threshold of strain energy for damage initiation. Adopting a quadratic
geometric function yields

Hc = 0 (28)

suggesting that damage evolves immediately upon loading. But for a linear crack geometric

function
(

α(d) = d, c0 = 8
3

)
and considering g(d) = (1 − d)2, we obtain:

Hc = 3Gc
16 lc

(29)

When replacingH in the damage evolution equation for resolution of the numerical prob-
lem, in the initial stageH < Hc will lead to negative values for the damage. Consequently,
to avoid the negative damage values the history variable becomes:

H = max
t

(ψ+
0 (ε),Hc) (30)

The use of the history function defined in the previous section to ensure the irreversibil-
ity leads to an excessive crack spread perpendicularly to the crack propagation direction.
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Fig. 2 Diffusive crack topology for linear crack geometric function with horizontal sharp crack and a numerical
implementation with a history variable condition to ensure irreversibility, lc = 0.005 mm

In [27], for a linear crack geometric function (α(d) = d), the half-bandwidth of the crack
D is:

D = 2lc (31)

And for the quadratic crack geometric function
(
α(d) = d2

)
:

D = +∞ (32)

In Fig. 2 we have a 1 × 1 mm structure with pre-existing crack defined by enforcing
Dirichlet boundary condition setting d = 1 over the cracked zone, and with lc = 0.005
mm.The structure remains unexposed to anymechanical loading.When the irreversibility
is assured by the history function, it is noticeable that the damage is diffused over a zone
larger than expected with D > 10lc = 0.05 mm as depicted in Fig. 2.
Whereas, when using the bound constrained optimization solver on the damage variable

as done in the Fig. 3, the half-bandwidth is equal to 2lc = 0.01 mm.
Which is why in our numerical implementation, the irreversibility of damage is ensured

through the bound constrained optimization scheme on the damage variable, rather than
relying on the history variable. This approach guarantees the conservation and proper
sequencing of the free energy term at each time step within the coupled system.
For subsequent discussions and numerical implementations presented in this paper, we

will be considering:

• a linear crack geometric function α(d) = d,
• alongside a quadratic degradation function g(d) = (1 − d)2,
• the use of bound constrained optimization scheme to ensure damage irreversibility

ḋ ≥ 0 and d ∈ [0, 1],using variational inequality solver SNES provided by PETSc [3].

The elastic energy decomposition

This section explores the methodologies employed to partition the elastic strain energy,
distinguishing between components that contribute to damage evolution and those that
do not influence the damage process.
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Fig. 3 Diffusive crack topology for linear crack geometric function with horizontal sharp crack and a numerical
implementation with solver constrains, lc = 0.005 mm

Symmetric formulation (no energy decomposition)

In the symmetric (or isotropic) formulation, the entire energy stored in the solid bulk
contributes to damage.

ψ+
0 (ε) = ψ0(ε), ψ−

0 (ε) = 0 (33)

Thus giving:

ψ(ε, d) = g(d)ψ0(ε) (34)

whereψ denotes the stored energy density, g(d) represents the degradation function, and
ψ0 is the elastic strain energy density of the undamaged elastic solid

ψ0(ε) = 1
2
κ Tr2(ε) + μ Tr(ε2) (35)

Here, κ = λ+2μ/n signifies the bulkmodulus, with λ andμ being the Lamé coefficients,
and n the dimension number.
The stress tensor is thus given by:

σ = ∂ψ(ε, d)
∂ε

= g(d)
∂ψ0(ε)

∂ε
= g(d)σ0 = g(d) (λTrace(ε)I + 2με) (36)

This symmetric formulation neglects the possibility of crack closure effects, which can
occur under compressive loads, potentially mitigating damage progression and altering
the material’s response.

The deviatoric-spherical decomposition of the strain tensor

Introduced by [2], this method builds upon the strain tensor’s division into spherical and
deviatoric components [14]. We write:

ε = εd + εs (37)

with εs = 1
nTr(ε) I, and εd = ε − εs and I is the identity tensor.

According to [2], all deviatoric strains and the positive spherical strain are deemed
damaging. The elastic strain energy density is then formulated as:

ψ0(ε) = 1
2
κ 〈Tr(ε)〉2+ + 1

2
κ 〈Tr(ε)〉2− + μ εd : εd (38)
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The Macaulay brackets 〈·〉 discern the positive and negative traces:

〈Tr(ε)〉+ = max(Tr(ε), 0), 〈Tr(ε)〉− = max(−Tr(ε), 0) (39)

ψ0 splits into ψ+
0 and ψ−

0 components:

ψ+
0 (ε) = 1

2
κ 〈Tr(ε)〉2+ + μ εd : εd, ψ−

0 (ε) = 1
2
κ 〈Tr(ε)〉2− (40)

and the stress tensor is given by:

σ = g(d)
∂ψ+

0 (ε)
∂ε

+ ∂ψ−
0 (ε)
∂ε

= g(d)σ+ + σ− (41)

with

σ+ = κ〈Tr(ε)〉+I + 2μεd, σ− = κ〈Tr(ε)〉−I (42)

This decomposition method presumes that volumetric compression does not facilitate
damage formation and propagation. Conversely, volumetric expansion indicates poten-
tial damage development, leading to the release of elastic strain energy.Moreover, damage
evolution may occur irrespective of volumetric changes, as induced by shear strains con-
tributing to damage progression.

The spectral decomposition of the strain tensor

The spectral decomposition method, introduced by [18], effectively separates the elastic
strain energy, ψ0, into two components based on the strain’s nature: the ‘positive’ com-
ponent, ψ+

0 , which is driven by tensile strains conducive to damage evolution, and the
‘negative’ component,ψ−

0 , which results from compressive strains and is considered non-
damaging, hence not influencing damage development. This differentiation is achieved
through spectral decomposition of the strain tensor, ε, into eigenvalues, εi, and their
corresponding eigenvectors, ni:

ε =
∑
i

εi ni ⊗ ni (43)

The positive and negative components of the strain energy density are expressed as:

ψ+
0 (ε) = λ〈Tr(ε)〉2+

2
+ μ

(〈ε1〉2+ + 〈ε2〉2+ + 〈ε3〉2+
)

(44)

ψ−
0 (ε) = λ〈Tr(ε)〉2−

2
+ μ

(〈ε1〉2− + 〈ε2〉2− + 〈ε3〉2−
)

(45)

and the stress is computed using:

σ = g(d)
∂ψ+

0 (ε)
∂ε

+ ∂ψ−
0 (ε)
∂ε

= g(d)σ+ + σ− (46)

with

σ+ =
∑
i

(
λ〈

∑
i

εi〉+ + 2μ〈εi〉+
)

ni ⊗ ni

= λ〈Tr(ε)〉+I + 2μ
(〈ε1〉+ + 〈ε2〉+ + 〈ε3〉+

)
(47)

and

σ− =
∑
i

(
λ〈

∑
i

εi〉− + 2μ〈εi〉−
)

ni ⊗ ni

= λ〈Tr(ε)〉−I + 2μ
(〈ε1〉− + 〈ε2〉− + 〈ε3〉−

)
(48)
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Themodel accounts for tensile strains entirely in the damage process, attributes a partial
contribution to shear strains, and disregards compressive strains. Notably, the initial term
on the right side of the equations (involving the λ coefficient) considers the sign of the
strain tensor’s trace—indicating volumetric change—without segmenting into individual
strain components, unlike the latter term.

The spectral decomposition of the stress tensor

The spectral decomposition of the stress tensor, introduced by [28] and building upon
the foundational work of [18], applies the principles of strain tensor decomposition to the
unbroken (undamaged) stress tensor, σ0. The spectral decomposition is done along the
eigenvalues σi and the eigenvectors si:

σ0 =
∑
i

σi si ⊗ si (49)

In alignment with the strain decomposition approach, tensile stresses—indicated by posi-
tive eigenvalues—contribute to damage evolution, while compressive stresses, denoted by
negative eigenvalues, are considered non-contributory to damage progression. The con-
struction of positive (P+) and negative (P−) projection tensors follows the methodologies
outlined by [19].

P
+ = ∂σ[σ+

0 ], P
− = I − P

+ (50)

The resultant stress tensors, representing the damaging (‘positive’) and non-damaging
(‘negative’) components of stress, are expressed as:

σ+
0 = P

+ : σ0 (51)

σ−
0 = P

− : σ0 (52)

Subsequently, the elastic strain energy positive and negative contributions are given by:

ψ+
0 (ε) = 1

2
σ+
0 : ε, ψ−

0 (ε) = 1
2
σ−
0 : ε (53)

And the stress tensor is given as:

σ = g(d)σ+
0 + σ−

0 (54)

The orthogonal decomposition of the strain tensor

Building upon the innovations of [12,22], this method introduces an orthogonal decom-
position approach to the stiffness tensor. This technique is predicated on dividing the
fourth-order stiffness tensor,C0, which is fundamental to the formulation of elastic strain
energy density.
The stiffness tensor, C0, can be decomposed into a series of eigenvalues, Λi, and their

corresponding second-order orthonormal eigentensors, ωi:

C0 =
∑
i

Λiωi ⊗ ωi (55)

The square root of the stiffness tensor, C
1
2
0 , is calculated to facilitate the orthogonal

decomposition:

C
1/2
0 =

∑
i

Λ
1/2
i ωi ⊗ ωi (56)
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This process yields the pseudo-stress tensor, ε̃, as follows:

ε̃ = C

1
2
0 : ε (57)

Leveraging the orthogonality condition between the positive and negative parts of the
strain tensor, this method distinctly separates the pseudo-stress into tensile (positive
values) and compressive (negative values) components:

ε̃ = ε̃+ + ε̃− (58)

The corresponding positive (σ+) and negative (σ−) stress tensors are thus formulated
as:

σ+
0 = C

1
2
0 ε̃+, σ−

0 = C

1
2
0 ε̃− (59)

Finally, the elastic strain energy positive and negative can be computed as:

ψ+
0 (ε) = 1

2
σ+
0 : ε, ψ−

0 (ε) = 1
2
σ−
0 : ε (60)

And the stress tensor is obtained through:

σ = g(d)σ+
0 + σ−

0 (61)

The cleavage plane based degradationmethod

In this section we will be using a newmethod based on increasing the appropriate compli-
ance tensor components corresponding to the weakest cleavage plane as described in [17].
This approach to be used for anisotropic materials with an embedded weakest cleavage
plane, induces degradation specifically along said plane while preserving integrity in other
directions. Unlike the previous methods based on decomposition reliant on the deforma-
tion response, this approach relies on the material’s inherent properties to guide damage
evolution.
The stress acting along the weakest cleavage plane, defined by normal vectorm, is:

σm = mT · σ · m (62)

We define two projection tensors N andM as:

Nijkl = mimjmkml (63)

Mijkl = 1
4

(
mimkδjl + mimlδjk + mjmkδil + mjmlδik

)
(64)

WhileN captures normal components relative to the weakest cleavage plane,M encom-
passes off-diagonal components. The equivalent forms forYoung’smodulus (En) and shear
modulus (Gn) are derived from the undamaged compliance tensor S0 = C

−1
0 :

1
En

= NijklS0ijkl (65)

1
Gn

= 2
(
MijklS0ijkl − 1

En

)
(66)

with the use of the Einstein summation convention.
We define the tensor H that denotes the component that amplifies compliance in

response to tensile stress (σm > 0):

H =
(

1
En

− 1
Gn

)
N + M

Gn
(67)



N. HABIB et al. AdvancedModeling and Simulation in Engineering Sciences           (2025) 12:7 Page 13 of 36

Under compression (σm < 0), H accounts solely for shear stress contributions:

H = 1
Gn

(M − N) (68)

The compliance and elasticity tensors, updated to reflect damage, are:

S = S0 + gs(d)H (69)

The degradation of the material is modeled by an increase in the compliance tensor
components using the function gs:

gs(d) = 1 − (1 − d)2

(1 − d)2
= 2d − d2

(1 − d)2
(70)

gs must satisfy:

• gs(d = 0) = 0, the material retains its original compliance tensor, ensuring full
stiffness without any degradation in absence of damage.

• gs(d = 1) = ∞, leading to infinite values of the compliance tensor components,
thereby effectively nullifying any contribution of damaging energy once the material
is fully damaged.

With the updated elasticity tensor

C = S
−1 (71)

the stress–strain relationship is thus represented as:

ψ(ε, d) = 1
2
ε : C : ε (72)

The stress tensor is then given by:

σ = C : ε (73)

The work of [6] also leverages the phase field method to examine fracture propagation
within crystalline structures, specifically focusing on crack propagation along the weakest
cleavage plane. Theirmethodology involves penalizing deviations fromplanes that are not
perpendicular to the normal vector of this weakest plane. Their method differs from the
newcleavage plane-based degradationmethodpresented in this article, as the penalization
technique is embedded within the crack surface density function as follows:

γ (d,∇d) = 3d
8lc

+ 3lc
8

∇d · ∇d + β
3lc
8
(∇d · ∇d − (m · ∇d)2) (74)

where β represents the penalization factor, and m denotes the normal vector to the
weakest cleavage plane. When β � 0, fracture on planes not normal tom are penalized.
The phase field evolution equation, modified to accommodate this framework, is:

ḋ = −1
η
(−2(1 − d)ψ+ + 3

8lc
Gc − 3lc

4
GcΔd − 3lc

4
Gcβ(Δd − m · ∇(m · ∇d)) (75)

The penalization technique adopted in [6] is designed for use with conventional decom-
position approaches such as symmetric, volumetric-deviatoric, or strain spectralmethods.
Consequently, it does not address some of the primary shortcomings of these methods,
which will be discussed later in this work. In contrast, the new cleavage plane-based
degradationmethod, integrated directly into thematerial characteristics, emphasizes that
damage evolution occurs only along the predeterminedweakest cleavage plane and avoids
the use of traditional energy decomposition approaches coupled with a penalization tech-
nique.
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Governing balance equations

The model seeks solutions for the displacement field, u, and the damage variable, d,
while adhering to the principles of mechanical equilibrium. The mechanical equilibrium
equation is formulated as:

divσ + f = 0 (76)

where

σ = ∂ψ(ε, d)
∂ε

(77)

The stress considered is a composite of the degraded stress component (σ+
0 ) and the

residual, non-degraded part (σ−
0 ):

σ = g(d)
∂ψ+

0 (ε)
∂ε

+ ∂ψ−
0 (ε)
∂ε

= g(d)σ+
0 + σ−

0 (78)

For the phase field model, the damage variable’s evolution follows the Allen–Cahn
equation:

ḋ = −L〈∂ψ

∂d
(ε, d) − Gcδdγ 〉+ (79)

where the mobility, L is function of η, the viscosity of the crack:

L = 1
η

(80)

A coupled monolithic algorithm is employed to solve for both the displacement and
the phase field variable simultaneously implemented in Idaho National Laboratory’s open
source FEM codeMultiphysics Object Oriented Simulation Environment (MOOSE) [15].

Numerical implementation
This investigation embarks on a comprehensive series of numerical tests to scrutinize
the effects of different elastic energy decompositions on fracture mechanics simulations.
With a constant set of geometry andmaterial properties, the study contrasts the outcomes
derived from six meticulously selected models, each embodying a unique approach to
elastic energy decomposition:

1. Model 1: Symmetric formulation,
2. Model 2: Deviatoric/spherical decomposition of the strain tensor,
3. Model 3: Spectral decomposition of the strain tensor,
4. Model 4: Spectral decomposition of the stress tensor,
5. Model 5: Orthogonal decomposition of the strain tensor,
6. Model 6: Cleavage plane based degradation.

The essence of this endeavor is to meticulously compare and contrast the performances
of these models under various loading conditions to illuminate their respective strengths
and limitations in faithfully representing the material behavior under study. Through
this numerical exploration, we aim to furnish a nuanced understanding of how different
decomposition methods influence simulation accuracy and the predictive capabilities of
phase field models in fracture mechanics.

Tension and compression testing on a material (integration) point

This section delves into the examination of tension and compression responses using a
singlematerial point.We employ a 3D cubic element (HEX8) with dimensions of 1×1×1
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Fig. 4 Tension and compression testing geometry and boundary conditions

Table 1 Material properties

Material property Value

E 210 × 103 MPa

ν 0.3

Gc 2.7 N/mm

lc 0.04 mm

η 1.0 × 10−3 Ns/mm2

mm for this purpose. Model dimensions and boundary conditions are illustrated in Fig. 4.
Material properties pertinent to the study are summarized in Table 1. The experimental
setup subjects the model to incremental tensile displacement initially, followed by com-
pressive displacement, then another tensile displacement in a cyclic displacement loading
as delineated in Fig. 5, applied along the top edge in the y-direction.
With imposed uy at the top boundary (Fig. 4), the strain tensor is:

ε =
⎡
⎢⎣

εx 0 0
0 εy 0
0 0 εz

⎤
⎥⎦ (81)

Fig. 5 Prescribed displacement over time
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with εx = εz = −νεy, and the stress tensor is:

σ =
⎡
⎢⎣
0 0 0
0 σy = Eεy 0
0 0 0

⎤
⎥⎦ (82)

ν being the Poisson ratio and E the Young modulus for homogeneous material.

Model 1: Symmetric formulation

Model 1 operates under the premise that the elastic strain energy, in its entirety, con-
tributes to damage evolution and is modulated by the degradation function. This model
eschews any form of elastic energy decomposition, treating all strains as equally dam-
aging. The outcome of the finite element numerical resolution is illustrated in Fig. 6. It
shows the damage progression during tensile loading and, notably during the compression
phase, a marginal increase in compression stress is observed which contradicts expecta-
tions, as crack closure under compressive strains should ostensibly amplify stress—yet
this anticipated response remains absent in the numerical results.
When d = 0, this uniaxial tensile loading yields:

ψ(ε, d) = g(d)ψ0(ε) = g(d)
1
2
ε : C0 : ε = 1

2
Eε2y (83)

since g(d = 0) = 1. Upon the damage variable nearing 1 g(d = 1) = 0, the formula
simplifies to:

ψ(ε, d) = g(d)ψ0(ε) = 0 (84)

It is noteworthy that once the damage variable reaches a high enough value, there is
no further contribution to the damaging energy, but in instances where the damage is
still in its benign stage, potential damage evolution would have been observable alongside
compression modes, provided the critical strain energy value had been attained.

Model 2: Deviatoric/spherical decomposition of strain tensor

Model 2 employs a deviatoric/spherical decomposition of the strain tensor proposed by
[2], to partition elastic strain energy into damaging and non-damaging components. As
shown inFig. 7, initial tensile loading induces an elastic response,withdamageonset.Upon
the application of compressive forces, the model appears to revert to its original state;
however, the negligible stress values obtained contradict with the expectation of a clear
recovery of stiffness and a greater stress due to the closure of cracks under compression.
The resulting strain tensor ε, considering linear isotropic elasticity, is segmented into

deviatoric (εd) and spherical components (εs).

ε = εd + εs (85)

ε =

⎡
⎢⎢⎢⎢⎣

−1
3
(ν + 1)εy 0 0

0
2
3
(ν + 1)εy

0 0 −1
3
(ν + 1)εy

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

1
3
(1 − 2ν)εy 0 0

0
1
3
(1 − 2ν)εy 0

0 0
1
3
(1 − 2ν)εy

⎤
⎥⎥⎥⎥⎦

(86)

The decomposition leads to the definition of the damaging and non-damaging contribu-
tions to elastic strain energy as in (40). For εy > 0, we obtain:

ψ+
0 (ε) = 1

2
Eε2y (87)
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Fig. 6 Tension and compression testing with symmetric formulation

ψ−
0 (ε) = 0 (88)

Upondamage reaching 1, only non-damaging components contribute, implyingno further
energy addition or damage progression:

ψ(ε, d) = ψ−
0 (ε) = 0 (89)

For compressive loading with εy < 0 and damage at 1:

ψ+
0 (ε) = Eεy2(ν + 1)

3
(90)

ψ−
0 (ε) = Eεy2(1 − 2ν)

6
(91)

ψ(ε, d) = ψ−
0 (ε) = 0.067Eε2y (92)

Figure 8 presents the outcomes of a loading scenario wherein the damage remains
markedly below 1 following tensile loading. It is remarkable that the stress evolution at
the outset of compressive loading is characterized by a slope significantly inferior to the
original (prior to damaging). This observation underlines the insufficiency of the decom-
position approach to restore initial stiffness levels, thereby indicating the inadequacy of
the model in effectively simulating crack closure phenomena under compressive forces.
Furthermore, an intriguing development of damage under compression is observed, cul-
minating in the stress diminishing to zero. This analysis underscores the complex inter-
play between damage evolution and mechanical response, particularly in the context of
compressive strain effects.
In summary, the application of these first twomodels necessitates prudence, particularly

in scenarios characterized by cyclic loading or dynamic testing conditions leading to
compressive strains.
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Fig. 7 Tension and compression testing with deviatoric/spherical decomposition of the strain tensor

Fig. 8 Tension and compression testing with deviatoric/spherical decomposition of the strain tensor—not fully
damaged



N. HABIB et al. AdvancedModeling and Simulation in Engineering Sciences           (2025) 12:7 Page 19 of 36

Model 3: Spectral decomposition of the strain tensor

With this spectral decomposition of the strain tensor, from the Eqs. (44) and (45) we
obtain:

ψ+
0 (ε) = Eε2y

2(ν + 1)
(1 − ν(1 − 2ν)) (93)

ψ−
0 (ε) = Eν2ε2y

2(ν + 1)
(94)

For a tensile loading. Unlike the spheric/deviatoric model, the spectral approach eval-
uates both positive and negative values of the strain tensor’s trace, as well as individual
diagonal terms, offering a nuanced understanding of strain contributions to damage.
Upon damage escalation to 1, only the non-damaging energy component remains sig-

nificant:

ψ(ε, d) = ψ−
0 (ε) = 0.07Eε2y (95)

Considering compression with εy < 0 and d = 1:

ψ+
0 (ε) = Eν2ε2y

2(ν + 1)
(96)

ψ−
0 (ε) = Eε2y

2(ν + 1)
(1 − ν(1 − 2ν)) (97)

The strain energy under compression at d = 1 is dominated by the non-damaging com-
ponent, ψ−:

ψ(ε, d) = ψ−
0 (ε) = 0.43Eεy

2 (98)

The resultant stress, therefore, reflects only the non-damaging stress, σ−
0 :

σ = σ−
0 (99)

Figure 9 illustrates the stress–strain relationship for Model 3. Due to d = 0 and the
degradation of ψ+

0 , the slope is slightly less steep but barely noticeable as ψ+
0 is already

overshadowed by the value ofψ−
0 in the case of compressive strains. The stiffness recovery

in compressive strain is important but not complete.

Model 4: Spectral decomposition of the stress tensor

Model 4 results are shown in Fig. 10. Upon transitioning to compression loading, the
stress–strain slope mirrors the one observed during at the beginning of tension loading.
Elastic strain energy decomposition in this model, under initial tensile loading (σy > 0)

with damage d = 0, is determined by the stress tensor:

σ =
⎡
⎢⎣
0 0 0
0 σy 0
0 0 0

⎤
⎥⎦ (100)

Themodel emphasizes the separationof stress tensor eigenvalues into positive andnega-
tive domains, with a uniaxial tension test predominantly engaging the positive component,
and a compression test favoring the negative component. Consequently, for εy > 0:

ψ+
0 (ε) = 1

2
Eε2y = 1

2
σ 2
y

E
, ψ−

0 (ε) = 0 (101)
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Fig. 9 Tension and compression testing with strain spectral decomposition

Fig. 10 Tension and compression testing with stress spectral decomposition
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Fig. 11 Tension and compression testing with strain spectral decomposition—not fully damaged

Conversely, for εy < 0:

ψ+
0 (ε) = 0, ψ−

0 (ε) = 1
2

σ 2
y

E
(102)

Distinctly, this model does not facilitate damage progression under compressive forces,
diverging from the strain-based spectral method that allows for potential damage devel-
opment after exceeding a critical strain value. Figure 11 showcases an instance where the
material does not attain a fully damaged state during tensile loading but when reaching
a critical value later during compression loading, resumes damage progression for the
strain spectral decomposition, which is halted when tensile loading is applied again, only
to continue evolving when ψ+

0 (ε) reaches its highest value attained in the previous ten-
sile loading. This is not the case for the stress spectral method shown in Fig. 12 where
damage evolution halts upon the application of compressive loading and remains stag-
nant throughout the rest of the test. This distinction underscores the model’s reliance
on stress tensor decomposition, which inherently disregards transverse dilatation and
positive strain effects on damage enhancement.

Model 5: Orthogonal decomposition of the strain tensor

Model 5 introduces the novel approach of orthogonal decomposition of the strain tensor,
amethod yet to be extensively explored in the context of tension and compression loading.
As depicted in Fig. 13, the stress response under sustained compression does not lead to
recovery of the initial stiffness of the undamaged material. This divergence is attributed
to the spectral decomposition into positive and negative terms of the pseudo stress tensor
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Fig. 12 Tension and compression testing with stress spectral decomposition—not fully damaged

obtained through computation using the square root of the original stiffness tensor (C0).
The pseudo-stress ε̃ = C

1
2
0 : ε is calculated as:

ε̃ =

⎡
⎢⎢⎢⎢⎢⎣

√
Eεy

(
(1−2ν)

√
− ν+1

2ν−1 −(ν+1)
)

3
√

ν+1 0 0

0
√
Eεy

(
(1−2ν)

√
− ν+1

2ν−1 +2(ν+1)
)

3
√

ν+1 0

0 0
√
Eεy

(
(1−2ν)

√
− ν+1

2ν−1 −(ν+1)
)

3
√

ν+1

⎤
⎥⎥⎥⎥⎥⎦

(103)

ε̃ =
⎡
⎣ −0.17

√
Eεy 0 0

0 0.971
√
Eεy 0

0 0 −0.17
√
Eεy

⎤
⎦ (104)

The positive and negative components of the strain energy, dependent on the sign of
ε̃i, are mirrored in tension and compression scenarios. Consequently, the resulting elastic
strain energy components in tension (εy > 0) are:

ψ−
0 (ε) =

Eε2y

(
0.44ν2

√
− 1

2ν−1 + 0.22ν
√

− 1
2ν−1 − 0.11ν · √

ν + 1 − 0.22
√

− 1
2ν−1 + 0.22

√
ν + 1

)
√

ν + 1
(105)

ψ+
0 (ε) =

Eε2y

(
−0.44ν2

√
− 1

2ν−1 − 0.22ν
√

− 1
2ν−1 + 0.11ν

√
ν + 1 + 0.22 ·

√
− 1

2ν−1 + 0.277 · √
ν + 1

)
√

ν + 1
(106)

ψ+
0 (ε) = 0.47ε2y , ψ−

0 (ε) = 0.029ε2y (107)

In compression (εy < 0), the roles of ψ+ and ψ− are inverted:

ψ+
0 (ε) = 0.029Eε2y , ψ−

0 (ε) = 0.47Eε2y (108)

This model predicts a similar behavior to the strain spectral method, with Fig. 13 illus-
trating the stress–strain relationship. The slope of the stress-negative displacement is
slightly less steep than the initial tensile phase. Damage evolution under compressive
loading is possible due to the nonzero ψ+

0 component.
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Fig. 13 Tension and compression testing with orthogonal decomposition

Model 6: Cleavage plane based degradation

Model 6 explores a novel approach by selectively degrading components associated with
theweakest cleavage plane, characterized by the normal vectorm = (0, 1, 0). The response
of thismodel, as illustrated in Fig. 14, embarks with an elastic phase during tensile loading,
followed by damage evolution that escalates as stresses diminish to zero. This model
shows a complete recovery of the stiffness upon the application of compressive forces,
which upholds the correct representation of crack closure. This behavior underscores the
critical role of H in the model’s response under compression.
In compression, form = (0, 1, 0), E reverts to E0, mimicking the behavior of an undam-

aged material under compressive stress. This model would lead to the progression of
damage when shear stresses are present which is not the case for this loading scenario
since εshear = 0.

Pure shear ton a material (integration) point

In this section, we detail a numerical implementation of a pure shear test on a singlemate-
rial point with the samematerial characteristics as previously defined in Table 1, and with
the geometry and boundary conditions defined in the Fig. 15. The forced displacement at
the top is set to Δux = 10−5 mm per time increment (Δt = 10−5s).

Model 1: Symmetric formulation

The symmetric formulation in Model 1 degrades the entirety of the elastic strain energy
and this is very clearly demonstrated in the Fig. 16. As damage progresses, the stress
diminishes to zero as expected.
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Fig. 14 Tension and compression testing with cleavage plane based degradation method

Fig. 15 Geometry and boundary conditions for the shear test on a material (integration) point

Fig. 16 Shear test with Model 1 and Model 2
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Model 2: Deviatoric/spherical decomposition of the strain tensor

Model 2 which employs the deviatoric/spherical decomposition of the strain tensor of [2],
considers all deviatoric strains to be damaging. For shear loading with d = 0:

ε =
⎡
⎢⎣

0 εxy 0
εxy 0 0
0 0 0

⎤
⎥⎦ (109)

The decomposition defines the damaging and non-damaging contributions to elastic
strain energy as:

ψ+
0 (ε) = E

ν + 1
ε2xy, ψ−

0 (ε) = 0 (110)

And when the damage is around 1, only the residual energy contributes to the stress
calculation:

ψ(ε, d) = ψ−
0 (ε) = 0 (111)

Which aligns perfectly with the results obtained in the Fig. 16 also similar to the results
of the previous method.

Model 3: Spectral decomposition of the strain tensor

Model 3 considers a spectral decompositionof the strain tensor, thedivisiononly considers
the sign of the eigenvalues for the decomposition so when shear stresses are applied, the
elastic strain energy is equally contributing to the damaging part of the total strain energy
(ψ+

0 ) and the residual part (ψ−
0 ).

ψ+
0 (ε) = E

2(ν + 1)
ε2xy (112)

ψ−
0 (ε) = E

2(ν + 1)
ε2xy (113)

At the onset of the test (d = 0):

ψ(ε, d) = ψ+
0 (ε) + ψ−

0 (ε) = E
1.3

ε2xy (114)

And for d = 1:
ψ(ε, d) = ψ−

0 (ε) = E
2.6

ε2xy (115)
This shows that even after full damage, there is still a significant non-degraded part of the
elastic strain energy leading to a stress increase, just as depicted in the results presented
in Fig. 17.
It is also noticeable that the elastic stage lasts longer than the previous two models, this

is because ψ+
0 in Model 3 takes half the value obtained with Model 2 or Model 1 and

thus, necessitates higher stresses to reach the critical strain energy needed for the damage
initiation.

Model 4: Spectral decomposition of the stress tensor

Model 4, just like Model 3 is a spectral decomposition, separating the damaging elastic
strain energy from the residual depending on the sign of the eigenvalues of the stress
tensor. In a pure shear test, when expressed in the principal direction basis, the strain
tensor is given by:

ε =
⎡
⎢⎣

εxy 0 0
0 − εxy 0
0 0 0

⎤
⎥⎦ (116)
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Fig. 17 Shear test with Model 3, Model 4, and Model 5

The stress tensor is then:

σ =
⎡
⎢⎣

σxy 0 0
0 − σxy 0
0 0 0

⎤
⎥⎦ (117)

with σxy = E
1 + ν

εxy. Thus, the elastic strain energy decomposition writes:

ψ+
0 (ε) = 1

2
σxyεxy = E

2(ν + 1)
ε2xy and ψ−

0 (ε) = 1
2
σxyεxy = E

2(ν + 1)
ε2xy (118)

just like in the results obtained with Model 3 decomposition method (Fig. 17).

Model 5: Orthogonal decomposition of the strain tensor

Model 5 also follows in the footsteps on the previous two spectral decomposition (Model
3 and 4), this one decomposes the pseudo-stress obtained from the square root of the
elasticity tensor:

ε̃ = C

1
2
0 : ε (119)

Using the previously defined C

1
2
0 in , the resulting pseudo-stress ε̃:

ε̃ =

⎡
⎢⎢⎢⎢⎣

√
E

2(1 + ν)
εxy 0 0

0 −
√

E
2(1 + ν)

εxy 0

0 0 0

⎤
⎥⎥⎥⎥⎦ (120)

And according to Eq. (53), we write:

ψ+
0 (ε) = E

2(ν + 1)
ε2xy and ψ−

0 (ε) = E
2(ν + 1)

ε2xy (121)

These results show that the stress can still be increasing even after d = 1 due to the
non-zero ψ−

0 component, which matches the results obtained in Fig. 17.

Model 6: Cleavage plane based degradation

Model 6 uses a method which degrades the components associated with the weakest
cleavage plane. In this test we considerm = (0, 1, 0) the normal to the cleavage plane. Fig-
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Fig. 18 Shear test with cleavage plane based degradation

Fig. 19 Geometry, boundary conditions of the 2D shear test model

ure 18 shows the pure shear test results that match with those obtained when considering
Models 1 and 2 (Fig. 16).
We can see that the stresses diminish to 0 as the damage increase, which is what is

expected as a result of a pure shear test.

Pure shear test on a notched edgemodel

In this section, we focus on the shear test of a square notched specimen in plane strain
formulation. This test has previously been explored by [5,18]. The geometry and boundary
conditions of pre-cracked specimen are shown in Fig. 19. The mesh is made up of 14,400
QUADelements and as for the previous numerical implementations, a coupledmonolithic
algorithm is used to solve for the displacement vector and phase field variable. Utilizing
the same decomposition methods and material properties as previously discussed, except
for the characteristic length which is chosen to be lc = 10−5 m, allows for a focused
comparison under these specific conditions.
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Figure 20 presents the force-displacement curve for all six models, where a consistent
response is observed in the elastic stage across allmethodologies, characterized by a steady
increase in stress. This uniformity diverges as damage approaches a critical level at the
crack tip, as depicted in Fig. 21.
Model 1’s symmetric formulation results in a stress reduction as the crack propagates,

culminating near zero as the crack bisects the structure (Fig. 21c). This model’s complete
degradation of elastic strain energy is mirrored in the stress reduction correlating with
damage increase.
Model 2, employing deviatoric/spherical decomposition of the strain tensor, displays a

precipitous stress fall as the crack fully traverses the structure. This method’s distinction
with the first one lies in its exclusion of negative hydrostatic stress values from damage
calculation, affecting the stress–strain curve’s sharper decline and influencing the crack
path’s direction, contrasting with Model 1’s symmetric bifurcation. For Model 2, a part
of the spherical strains (the negative values representing compression modes) doesn’t
account for damage evolution and the results represented in Fig. 21f shows that some
elements appear to be under compression leading to only a downward curved crack path.
Model 3, based on [18]’s strain spectral decomposition, shows a stress decline initiation

that abruptly ceases despite the crack’s complete passage (Fig. 21i), contradicting expected
behavior under full structural bisecting by a crack. This model’s division of shear-induced
strain energy into damaging and non-damaging components yields an unreliable outcome
for pure shear loading, as when the damage is equal to 1,ψ(ε, d) = ψ−

0 (ε) which isn’t null
and will lead to an increase in the stresses after full damage. Similar results can be seen in
the application of the other spectral decompositionmethods, Model 4 with stress spectral
decomposition (Fig. 21j–l) andModel 5with the orthogonal decomposition (Fig. 21j–n, p).
Therefore, it’s advisable to exercise caution when employing these decomposition meth-
ods in scenarios involving shear loading, particularly in cases involving polycrystalline
materials where normal loading may generate shear stresses within the material due to its
heterogeneous microstructure, potentially triggering damage evolution, and as demon-
strated, the outcomes yielded by these decomposition methods may not be suitable for
such circumstances.
Conversely,Model 6’s cleavage plane based degradationmethod results in a pronounced

stiffness loss, evidenced by stress diminishing to negligible levels upon the crack extending
across the entire structure, as seen in Figs. 21q–s. The model exhibits a higher initial
stress peak, stemming from an extended elastic phase caused by the alteration in the
critical elastic strain energy required for damage initiation. But once triggered, the damage
evolution and propagation of the crack happen very quickly. Unlike other outcomes, the
crack path follows a horizontal trajectory, attributed to the cleavage plane specified in this
model, where its normal vector is (0, 1, 0). A crack path for a normal vector of (0.707,
0.707, 0) would have a crack path similar to the previous Models as can be seen in the
Fig. 22. This method is interesting as it’s only penalizing the weakest cleavage plane and
not all directions in the structure, so for a direction of (0.707, 0.707, 0) therewould still be a
substantive force residual as seen in the Fig. 23, considering that the damage is not affecting
the entirety of the stresses pertaining to the uniaxial loading direction, but only those
affected to the direction of the normal to the weakest cleavage plane. This is interesting
when regarding polycrystalline material where the material’s inherent anisotropy could
suggest direction dependent damage evolution. Experimental observation have shown
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Fig. 20 Force–displacement curves for the shear tests

Table 2 Material properties

Material property Value

E 210 × 103 MPa

ν 0.3

Gc 2.7 N/mm

lc 0.02 mm

η 5.0 × 10−4 Ns/mm2

crystalline material to have a preferred plane along which cleavage fracture occurs such
as the plane {111} for silicon [11], {100} for halite [16], {0001} for zinc [13].

Compression and tension test on holed square

In this section, we examine a two-dimensional square with dimensions of 1mm by 1mm,
containing a central circular holewith a radius of 0.2mm.Themesh is composed of 56,576
linear triangular elements. The square is subjected to compression then tension loading
as defined in Fig. 25 and the geometry and mesh can be found in Fig. 24. The material
properties used for the calculations are in Table 2. The vector normal to the weakest
cleavage plane in Model 6 is (0, 1, 0).
Figure 26 presents the force-displacement curve for all six models and Fig. 27 shows the

crack propagation path.
The damage evolution in Models 1 and 2 under compressive loading results in signif-

icant material degradation, ultimately leading to complete structural failure. The crack
propagates through the entire structure, eliminating residual stiffness and leaving no
remaining load-bearing capacity. During tensile loading, this degradation persists, as the
initial stiffness is degraded, and no stiffness recovery occurs under tensile modes.
Model 3, using the spectral decomposition of the strain tensor, demonstrates damage

evolution under compressive loading but with significantly reduced extent compared to
Models 1 and 2. This degradation manifests as a minor reduction in stiffness during
tensile loading, evidenced by a slight decrease in the slope of the stress–strain curve.With
continued tensile loading, the crack propagates further, leading to a stress reduction that
eventually reaches zero.
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Model 4 exhibits no damage evolution under compressive loading, thereby maintain-
ing consistent stiffness throughout both compressive and tensile phases. However, upon
reaching the critical elastic strain energy during tensile loading, crack propagation begins,
eventually leading to a loss of load-bearing capacity.
Model 5 exhibits behavior similar to Model 3, with minor damage evolution under

compressive loading. This stiffness is very slightly degraded and this degradation persists
into the tensile phase, where the stress–strain slope is slightly diminished. As the crack
propagates, stiffness is fully lost, causing stress to drop to negligible levels.
For Model 6, we have considered a weakest cleavage plane with a normal vector aligned

with the y-axis (0, 1, 0). This energy decomposition is based on the stress tensor acting on
the cleavage plane, as articulated in Eqs. 67 and 68. As illustrated in Fig. 28, the damage
progression starts under compressive loads owing to the significant damaging shear stress

Fig. 21 Comparison of crack paths in shear test for the six models
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Fig. 21 continued

Fig. 22 Model 6 crack path form = (0.707, 0.707, 0)
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Fig. 23 Force–displacement curves for the Model 6 considering two different weak cleavage planes

Fig. 24 Compression-tension test on a holed square: geometry, boundary condition, and mesh

Fig. 25 Prescribed displacement over time
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Fig. 26 Force-strain curves for compression-tension tests on a holed square

Fig. 27 Comparison of the different crack paths of the compression-tension test

observed at the midspan between the vertical and horizontal edges. The evolution of
damage under these compressive loads exhibits a distinct pattern,manifesting as a vertical
sequence of short horizontal cracks. When subjected to tensile loads, the stress escalates
until it attains the peak load-bearing capability of the partially damaged structure. Crack
propagation then proceeds horizontally along the peripheries of the hole, with the stress
subsequently diminishing to zero, as depicted in Fig. 27.
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Fig. 28 Compression-tension test with Model 6: stress, strain and damage evolution

Conclusion
Throughout this comprehensive study, we have meticulously explored the evolution of
phase field modeling in the context of brittle fracture, with a particular focus on the
role of elastic strain energy decomposition methods. Our investigation sheds light on the
limitations of existing models under certain loading scenarios and identifies models that
demonstrate superior performance. All methods have shown to be reliable in the case of
tensile loading, but some have failed in other loading scenarios. The strain volumetric-
deviatoric decomposition’s limitations are evident in compressive testing on pre-damaged
materials, urging caution in its application, particularly under cyclic loading conditions.
Spectral decomposition methods demand meticulous scrutiny in scenarios where shear
stress plays a critical role, particularly in the context of polycrystalline materials with
strongly anisotropic properties or preferred crystallographic orientations. Among the
methods assessed, the cleavage plane based degradation method for anisotropic mate-
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rial with embedded weakest cleavage plane stands out for its effectiveness, consistently
delivering accurate results across various fracturemodes and loading conditions. This dis-
tinction is especially relevant given the relative scarcity of phase field literature addressing
these complex scenarios. The cleavage plane based degradation model, by virtue of its
adaptability and precision, offers significant promise for advancing our understanding
of fracture mechanics in polycrystalline materials. It provides a potent framework for
capturing the nuanced behaviors inherent to brittle fracture, paving the way for more
refined and accurate predictive models. As such, continued research into and application
of this model represent vital steps forward, with the potential to enhance both theoretical
insights and practical applications within the field of fracture mechanics.
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