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The three-dimensional global optimal dynamics of a flat-plate boundary layer is
studied by means of an adjoint-based optimization in a spatial domain of long –
but finite – streamwise dimension. The localized optimal initial perturbation is
characterized by a pair of streamwise-modulated counter-rotating vortices, tilted
upstream, yielding at the optimal time elongated streaks of alternating sign in the
streamwise direction. This indicates that perturbations with non-zero streamwise
wavenumber have a role in the transient dynamics of a boundary layer. A scaling
law is provided, describing the variation of the streamwise modulation of the
optimal initial perturbation with respect to the streamwise domain length and to the
Reynolds number. For spanwise-extended domains, a near-optimal three-dimensional
perturbation is extracted during the optimization process; it is localized also in the
spanwise direction, resulting in a wave packet of elongated disturbances modulated in
the spanwise and streamwise directions. The nonlinear evolution of the optimal and
near-optimal perturbations is investigated by means of direct numerical simulations.
Both perturbations are found to induce transition at lower levels of the initial
energy than local optimal and suboptimal perturbations. Moreover, it is observed
that transition occurs in a well-defined region of the convected wave packet, close to
its centre, via a mechanism including at the same time oscillations of the streaks of
both quasi-sinuous and quasi-varicose nature. Hairpin vortices are observed before
transition; they have an active role in the breakdown of the streaks and result in a
turbulent spot which spreads out in the boundary layer.

1. Introduction
Hydrodynamic stability of wall-bounded shear flows has seen a spectacular progress

since the early years of the twentieth century (Orr 1907; Sommerfeld 1908). Theoretical
achievements have gone hand-in-hand with experimental and numerical developments
aimed at unravelling some of the mysteries of transition to turbulence. The small
perturbation analysis of fluid flows has acquired and improved upon, via the
development of global-mode concepts, tools of plasma physics (Briggs 1964; Bers
1983), and it is now understood that the impulse response of a channel or boundary-
layer flow is a wave packet which may decay, grow algebraically, or exponentially
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(depending on the Reynolds number) while travelling downstream at the group
velocity. The response to an impulse forcing contains all frequencies (in time) and
wavenumbers (in space), and this justifies much of the interest behind experimental
works onto the evolution of wave packets in boundary layers (Gaster & Grant
1975; Breuer & Landahl 1990; Cohen, Breuer & Haritonidis 1991; Breuer, Cohen &
Haritonidis 1997). If the regime is subcritical (i.e. all eigenmodes are damped),
only those disturbances with wavenumbers/frequencies for which non-normal growth
is allowed might display some amplification. Non-normal growth arises from the
constructive interference of damped eigenmodes which are nearly antiparallel, and
typically results in the creation of streamwise elongated flow structures, called streaks
(Schmid & Henningson 2001). Work along similar lines has been conducted since the
eighties, when the concept of ‘optimal perturbation’ was introduced, generating much
hope to fill the gap in the understanding of bypass transition. In most cases, optimal
perturbations – within a linearized framework – have been found to consist of pairs of
counter-rotating streamwise vortices, capable to elicit streamwise streaks by the lift-up
effect (Landahl 1980, 1990). If growth is sufficient, such elongated structures could
experience secondary instability and breakdown, due to the inflection of the velocity
profiles in their interaction zones (see Schoppa & Hussain 2002; Brandt, Schlatter &
Henningson 2004). At large enough values of the Reynolds number, nonlinear effects
might kick in, and an impulse perturbation of sufficiently large amplitude typically
induces bypass transition by generating a turbulent ‘spot’, which rapidly grows and
spreads, leading the flow – in a frame of reference moving at the spot velocity –
towards the fully turbulent state.

Since the early observations by Emmons (1951), many studies have been dedicated
to the interior structure of turbulent spots, their shapes, spreading rates and the
mechanism of their rapid growth (Wygnanski, Sokolov & Friedman 1976; Gad-el
Hak, Blackwelder & Riley 1981; Perry, Lim & Teh 1981; Chambers & Thomas
1983; Barrow et al. 1984; Henningson, Spalart & Kim 1987; Sankaran, Sokolov &
Antonia 1988; Lundbladh & Johansson 1991; Bakchinov, Grek & Kozlov 1992;
Henningson, Lundbladh & Johansson 1993; Singer 1996; Matsubara & Alfredsson
2001). Recently, a new scenario of transition has emerged, based on vortex generation
in wall bounded flows (Marusic 2009). The relevance of hairpin-shaped structures
in the sustainment of wall turbulence has been proved in the past decades by
several experimental (Head & Bandyopadhyay 1981) and numerical (Adrian 2007)
studies. A clear evidence of the preponderance of hairpin vortices in the late stages
of transition of a boundary-layer flow has been provided conclusively by Wu &
Moin (2009). By means of a direct numerical simulation, they have observed the
onset of hairpin structures emerging from Λ-shaped vortices excited by free-stream
turbulence.

Nothing has however been done so far to identify the initial, localized states which
most easily bring the flow on the verge of turbulent transition via the formation
of a spot. In other words, since in most practical cases boundary layers undergo
transition by receptively selecting and amplifying exogenous disturbances, such as
those arising from the presence of localized roughness elements or gaps on the wall,
it makes sense to inquire on the initial spatially localized flow patterns which most
easily amplify and cause breakdown. In fact, the transition mechanism based on the –
by now classical – local optimal perturbation concept is very seductive, since it
brings into play some of the main ingredients present in transitional flow fields –
streaks and vortices, with the notable exception of the travelling waves (see Faisst &
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Eckhardt 2003; Wedin & Kerswell 2004) – but has the limitation of focusing onto
a single wavenumber/frequency at a time, plus that of neglecting nonlinear effects.
When a direct simulation is performed to assess the effectiveness of linear optimal
perturbations in triggering transition, the outcome is rather disappointing (Biau &
Bottaro 2009), and suboptimal disturbances are found to be much more efficient than
optimals.

In this work an attempt is made to identify initial localized disturbances capable
to provoke breakdown to turbulence effectively in a boundary-layer flow over a flat
plate. We aim to optimize not simply an initial state (at x = 0 or t = 0) characterized
by a single wavenumber and/or frequency, but a wave packet, localized in the
streamwise direction (and eventually also of limited spanwise extent), composed
by the superposition of small-amplitude monochromatic waves. The procedure to
find such a packet is that of the classical optimization theory, with the remarkable
difference that the optimization is carried out for a non-parallel boundary-layer flow
in a localized domain, and that no assumption is made on the shape and the frequency
spectrum of the perturbation in all directions. To assess whether the optimal localized
flow state is effective in provoking breakdown, direct numerical simulations are then
performed, highlighting the importance of nonlinear effects which lie at the heart of
the initiation of a turbulent spot.

The paper is organized as follows. In § 2, after the definition of the problem,
the numerical tools are briefly described, namely the three-dimensional direct-adjoint
optimization method and the global eigenvalue model. In § 3, a thorough discussion of
the results of the linear optimization analysis is provided, focusing on the streamwise
and the spanwise dynamics. Furthermore, the ‘near-optimal’ perturbation is presented
and discussed. Then, the results of nonlinear simulations are provided, and the
features of the transition mechanism are described. Finally, some conclusions are
drawn.

2. Problem formulation
2.1. Governing equations

The behaviour of a three-dimensional incompressible flow is governed by the Navier–
Stokes equations:

ut + (u · ∇)u = −∇π +
1

Re
∇2u,

∇ · u = 0,

⎫⎬
⎭ (2.1)

where u is the velocity vector and π is the pressure. Dimensionless variables are
defined with respect to the inflow boundary-layer displacement thickness δ∗ and to
the free-stream velocity U∞ so that the Reynolds number is Re = U∞δ∗/ν, where
ν is the kinematic viscosity. Most of the computations have been carried out at
Re =610. Several computational domains are employed, the reference one having
dimensions Lx = 400, Ly =20 and Lz = 2Z = 10.5, x, y and z being the streamwise,
wall-normal and spanwise directions, respectively. The inlet boundary is placed at
xin = 200 downstream of the leading edge of the wall, whereas the outlet one is
placed at xout =600, for the reference domain. For the base flow computations and
the direct numerical simulation (DNS), the following boundary conditions are used.
At inlet points, a Blasius boundary-layer profile is imposed for the streamwise and
wall-normal components of the velocity vector, and the spanwise component is set to
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zero. At outlet points, a standard convective condition is employed. At the bottom
wall, the no-slip boundary condition is prescribed. At the upper-boundary points,
the Blasius solution is imposed for the wall-normal component of the velocity, and
the spanwise velocity component and the vorticity are set to zero. Finally, in the
spanwise direction, periodicity is imposed for the three velocity components. Details
of the numerical method are provided in the Appendix.

2.2. Three-dimensional direct-adjoint optimization

The linear behaviour of a perturbation q = (u, v, w, p)T evolving in a laminar
incompressible flow over a flat plate is studied by employing the Navier–Stokes
equations linearized around the two-dimensional steady state Q = (U, V, 0, P )T . A
zero-perturbation condition is chosen for the three velocity components at the
x and y boundaries, whereas periodicity of the perturbation is imposed in the
spanwise direction. The disturbance is allowed to smoothly exit from the domain
by using a fringe region, whose characteristics are described in the Appendix,
implemented by adding to the equations a forcing term in a limited region for
x >xout .

In order to identify the perturbation at t = 0, which is able to produce the largest
disturbance growth at any given target time T , a Lagrange multiplier technique is
used (Zuccher, Luchini & Bottaro 2004). Let us define the disturbance energy density
as

E(t) =

∫ Z

−Z

∫ Ly

o

∫ xout

xin

(u2(t) + v2(t) + w2(t)) dx dy dz; (2.2)

the objective function of the procedure is the energy of the perturbations at the target
time t = T , i.e. E(T ). The Lagrange multiplier technique consists in seeking extrema
of the augmented functional L written as

L = E(T ) +

∫ Z

−Z

∫ Ly

o

∫ xout

xin

∫ T

0

a(ux + vy + wz) dt dx dy dz

+

∫ Z

−Z

∫ Ly

o

∫ xout

xin

∫ T

0

b

(
ut + (uU )x +Uyv + V uy + px − uxx + uyy + uzz

Re

)
dt dx dy dz

+

∫ Z

−Z

∫ Ly

o

∫ xout

xin

∫ T

0

c

(
vt +Uvx + (vV )y + uVx +py − vxx + vyy + vzz

Re

)
dt dx dy dz

+

∫ Z

−Z

∫ Ly

o

∫ xout

xin

∫ T

0

d

(
wt + Uwx + V wy + pz − wxx +wyy +wzz

Re

)
dt dx dy dz

+ λ0 [E(0) − E0] . (2.3)

The linearized Navier–Stokes equations (direct problem) and the value of the energy
at t = 0 (E0) have been imposed as constraints and a, b, c, d, λ0 are the Lagrange
multipliers. Integrating by parts and setting to zero the first variation of L with
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respect to u, v, w, p leads to the adjoint equations:

bt + bxU + (bV )y − cVx + ax +
bxx

Re
+

byy

Re
+

bzz

Re
= 0,

ct + (cU )x + cyV − bUy + ay +
cxx

Re
+

cyy

Re
+

czz

Re
= 0,

dt + (dU )x + (dV )y + az +
dxx

Re
+

dyy

Re
+

dzz

Re
= 0,

bx + cy + dz = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.4)

where q† = (a, b, c, d)T is now identified as the adjoint vector. By using the boundary
conditions of the direct problem, one obtains

b = 0 , c = 0 , d = 0 , for y = 0 and y = Ly,

b = 0 , c = 0 , d = 0 , for x = xin and x = xout ,

}
(2.5)

plus optimality and compatibility conditions (Zuccher et al. 2004):

−b + 2λ0u = 0 , −c + 2λ0v = 0 , −d + 2λ0w = 0 for t = 0, (2.6)

b + 2u = 0 , c + 2v = 0 , d + 2w = 0 for t = T . (2.7)

The direct and adjoint equations are parabolic in the forward and backward time
direction, respectively, so that they can be solved by a coupled iterative approach.
The optimization procedure for a chosen target time T can be summarized as follows:

(a) An initial guess is taken for the initial condition q0, at t =0, with an associated
initial energy E0.

(b) The direct problem is integrated from t = 0 to t = T .
(c) At t = T , the initial state for the adjoint problem is provided by the compatibility

condition (2.7).
(d) The adjoint problem (2.4) is integrated backward in time from t = T to t = 0,

starting from the initial state of step (c).
(e) At t = 0, the optimality condition (2.6) determines the new initial state q0 for

the direct problem and the Lagrange multiplier λ0 is chosen in order to satisfy the
constraint E(0) = E0.

(f) The objective function E(T ) is evaluated in order to assess if its variation
between two successive iterations is smaller than a chosen threshold. In such a case
the loop is stopped, otherwise the procedure is restarted from step (b).
The Appendix provides the details of the numerical method employed for the
integration of the direct and adjoint equations, the performance of the optimization
procedure, as well as the convergence study.

2.3. Global eigenvalue analysis

The optimization is also carried out by the global model described in Alizard &
Robinet (2007), the perturbation being characterized by only one spanwise
wavenumber β , so that q(x, y, z, t) = q̃(x, y, t)exp (iβz). The shape function is
decomposed in temporal modes as

q̃(x, y, t) =

N∑
k=1

κ0
k q̂k(x, y) exp (−iωkt) , (2.8)

where N is the total number of modes, q̂k are the eigenvectors, ωk are the (complex)
eigenvalues and κ0

k represents the initial energy of each mode. Substitution of such
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a decomposition into the linearized Navier–Stokes equations leads to the eigenvalue
problem of the form

(A − iωkB) q̂k = 0, k = 1, . . . , N. (2.9)

The details of the definition of the matrices A and B can be found in Alizard &
Robinet (2007). At the free-stream and inlet boundaries, a zero-perturbation condition
is imposed, whereas, at the outlet points, a homogeneous Neumann condition is
prescribed. In order to optimize the disturbance energy density, for a given initial
value of the same, the maximum energy gain obtainable at the generic time t over all
possible initial conditions u0 is defined as

G (t) = max
u0 �=0

E (t)

E (0)
. (2.10)

By decomposing the perturbation into the basis of the eigenmodes, it is possible to
rewrite (2.10) in the following form:

G(t) = ‖F exp(−itΛ)F−1‖2
2, (2.11)

where Λ is the diagonal matrix of the eigenvalues ωk , and F is the Cholesky factor of
the energy matrix M of components

Mij =

∫ Ly

o

∫ xout

xin

(û∗
i ûj + v̂∗

i v̂j + ŵ∗
i ŵj ) dx dy, i, j = 1, . . . , N, (2.12)

where the superscript ‘∗’ denotes complex-conjugate. Finally, the maximum
amplification at time t and the corresponding optimal initial condition u0 are
computed by a singular value decomposition of the matrix F exp(−itΛ)F−1 (Schmid &
Henningson 2001). The Appendix provides the details of the numerical method
employed for the global eigenvalue analysis, and the convergence study.

3. Results
3.1. The linear optimal dynamics

Direct-adjoint computations are performed at Re = 610, for a domain with dimensions
Lx =400, Ly = 20, Lz =10.5, the value of Lz being selected in order to obtain the
largest amplification, as shown in § 3.1.2. The optimal energy gain G(t) is found to
reach, at the chosen convergence level e = 10−5 (see the Appendix), a maximum of
about Gmax ≈ 736, at time Tmax ≈ 247. Such a value is greater than that found by a local
parallel flow optimization (Corbett & Bottaro 2000) at the same Reynolds number.

In order to get some insight into the amplification mechanism, the evolution
of the optimal perturbation in time is analysed. In figure 1 the initial (at t = 0)
optimal perturbation is depicted on the plane z–y at the streamwise position x = 450.
The optimal spatially localized initial disturbance is characterized by a counter-
rotating vortex pair in the z–y plane. In previous works, several authors (see Farrell
1988; Butler & Farrell 1992; Corbett & Bottaro 2000; Luchini 2000; Schmid 2000)
have optimized locally the time amplification in terms of the energy density of
a perturbation characterized by a given wavenumber in both the streamwise and
spanwise directions (denoted respectively by α and β). Those authors have found that
the local optimal perturbation is characterized by a counter-rotating vortex pair in
the z–y plane, without any modulation in the streamwise direction (α =0), amplified
in time by means of the ‘lift-up’ mechanism (Landahl 1980). In the present case,
where the perturbation has no pre-assigned wavelength, a modulation is found in
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Figure 1. Optimal initial perturbation on the x =450 plane computed for the target time
t = Tmax and Re = 610. The vectors represent the v and w components, whereas the shading is
relative to the normalized streamwise velocity.

the x direction, the perturbation being composed by upstream-elongated structures
with velocity components of alternating signs also in the x–y plane, as shown by the
iso-surfaces of the streamwise, wall-normal and spanwise velocity in figure 2. The time
evolution of such an optimal solution shows that the perturbation tilts downstream
via the Orr mechanism (Schmid & Henningson 2001), while being amplified by
the lift-up mechanism, resulting at the optimal time Tmax in streaky structures with
alternating-sign velocity components in the x direction, as displayed in figure 3.
Indeed, the amplification of the initial perturbation is also due to the Orr mechanism
and to the spatial growth related to the non-parallelism of the flow. In order to
estimate the importance of such effects, a direct-adjoint optimization is performed
using a two-dimensional domain with Lx =400 and Ly = 20, for which the lift-up
mechanism is inhibited. In this case the energy gain reaches only a maximum value
of 80 at time t ≈ 650, which is very low with respect to the maximum amplification of
the three-dimensional case, proving that both the Orr mechanism and the convective
spatial growth have a secondary role in the three-dimensional optimal dynamics at
Re =610. In order to find how large is the contribution of the convective spatial
growth mechanism, the two-dimensional optimization is also performed using the
parallel flow obtained by reproducing at each abscissa the inlet base flow profile.
The optimization gives an optimal value of the energy gain equal to 35, indicating
that about one half of the two-dimensional energy growth is due to the convective
amplification induced by the non-parallelism of the base flow.

3.1.1. Analysis of the streamwise modulation of the optimal perturbation

To investigate the influence of the longitudinal domain length on the transient
amplification, two computations are performed with Lx2 = 800 and Lx3 = 1200, equal
to two and three times the length of the reference domain. These two domains are
discretized by 1001 and 1501 points in the streamwise direction, respectively. As
shown in figure 4, the optimal energy gain reaches a peak of 1250 at T ≈ 490 using
Lx2, and of 1720 at T ≈ 821 using Lx3, increasing of about 500 and 1000 units with
respect to the value of Gmax obtained in the reference case. Such a strong increase of
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Figure 2. Iso-surfaces of the streamwise (a), wall-normal (b) and spanwise (c) velocity
components of the optimal initial perturbation at Re = 610, for a longitudinal domain
length Lx = 800. Light and dark surfaces indicate positive and negative values of the velocity
components, respectively. The absolute values of their magnitude are 0.01 for the streamwise,
0.1 for the wall-normal, and 0.22 for the spanwise component. All the perturbations are
normalized by the maximum value of the spanwise velocity component.

the energy gain with the longitudinal length of the domain can be mostly ascribed to
a combined effect of the Orr mechanism and of the spatial amplification due to the
non-parallel flow. Indeed, a two-dimensional direct-adjoint optimization performed
using Lx2 = 800 predicts again an increase of about 500 units for the G(t) peak with
respect to the value found using the reference domain with Lx1 = 400. Moreover, the
value of the optimal time increases linearly with the streamwise domain length. This
could be expected by considering that the perturbation is convected by the base flow
through the whole domain while amplifying itself, so that t ∝ Lx/U∞. The effects
of the variation of the domain length on the shape of the optimal perturbation are
shown in figure 5, where the optimal initial solutions are provided for Lx1 and Lx2

using dashed and solid lines, respectively. In order to allow a meaningful comparison,
the perturbation is plotted using normalized coordinates: the wall-normal self-similar
coordinate η = y

√
Re/x, and the scaled abscissa x̄ = xLx1

/Lx . It can be noticed that
the longitudinal extent, the inclination and the modulation of the perturbations are
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Figure 3. Iso-surfaces of the streamwise (a), wall-normal (b) and spanwise (c) velocity
components of the optimal disturbance at t = Tmax . Light and dark surfaces indicate positive
and negative values of the velocity components, respectively. The absolute values of their
magnitude are 1.8 for the streamwise, 0.1 for the wall-normal, and 0.5 for the spanwise
component. All the perturbations are normalized by the maximum value of the spanwise
velocity component at t = 0.

approximately the same, meaning that, when observed in normalized coordinates, the
result of the optimization depends mildly on the streamwise domain size considered to
compute the objective function. To verify such a result, the characteristic streamwise
wavenumber (αc), defined as the most amplified wavenumber recovered in the initial
optimal perturbation by means of a spatial Fourier transform, is extracted from
the optimal perturbation computed at different target times for the three domain
lengths Lx1, Lx2, Lx3 and scaled by Lx/Lx1

. The three normalized curves of αc

are plotted in figure 6 with respect to the scaled time T̄ = T Lx1
/Lx . The three curves

collapse reasonably well onto one another, confirming the result that, using normalized
coordinates, the shape of the optimal perturbation is approximately invariant with
respect to the longitudinal length used in the optimization. Such a result allows us to
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Figure 4. Envelope of the optimal energy gain computed by the direct-adjoint method at
Re = 610 for three longitudinal domain lengths, Lx1 = 400 (�), Lx2 = 800 (�), Lx3 = 1200 (�).
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Figure 5. Contours of the streamwise velocity component of the optimal initial perturbation
for Lx1 (dashed contours) and Lx2 (solid contours) at Re = 610. The perturbations have been
normalized by their maximum value; contours with absolute value equal to 0.15 are shown.
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Figure 6. Normalized most amplified longitudinal wavenumber versus the normalized target
time at Re = 610, for Lx1 = 400 (�), Lx2 = 800 (�) and Lx3 = 1200 (�).

reduce the number of independent parameters in the optimization, as the streamwise
wavelength of the perturbation scales with Lx . It is noteworthy that the characteristic
streamwise wavenumber, αc, is rather high at small times and decreases with time
towards an asymptotic value.



Three-dimensional global optimal dynamics of a flat-plate boundary layer 11

x––x–in

η

100 200 300 4000

5

10

Figure 7. Contours of the spanwise velocity component of the optimal initial perturbation
for Re =610 (solid contours), Re = 300 (dashed contours) and Re = 150 (dotted contours).
The perturbations have been normalized by their maximum value; the contours with absolute
value equal to 0.15 are shown.

A similar analysis is carried out focusing on the influence of the Reynolds number
on the optimal initial perturbation: the direct-adjoint optimization is performed for
two smaller Reynolds numbers, Re =300 and Re = 150. Both values of Re are chosen
with the aim of keeping the entire flow, from the inlet to the outlet, locally stable with
respect to Tollmien–Schlichting modes, in order to ensure that the x-modulation of the
optimal perturbation is not due to the interaction of local optimals with such modes.
Figure 7 provides the spanwise velocity component contours of the optimal initial
perturbation computed at Re = 610 (solid line), Re = 300 (dashed line), Re = 150
(dotted line) and Lx = Lx1. At all values of Re, the optimal perturbation displays a
modulation in the x-direction. Moreover, the streamwise extent of the perturbation
in normalized coordinates is found to vary, with an increase of the characteristic
wavenumber with Re. To assess the variation of the streamwise modulation with the
Reynolds number, the characteristic streamwise wavenumber, αc, is extracted from
the optimal initial perturbations computed for different target times and for the three
values of Re. The values of αc, shown in figure 8(a) for each value of the target
time (T = 166, 247, 330, 420, represented by squares, diamonds, circles and triangles,
respectively) are found to scale well with the square root of the Reynolds number.
Indeed, dividing the αc values by the square root of the Reynolds number, the three
curves collapse onto each other for sufficiently large times (see figure 8b). Therefore,
the results indicate that αc behaves as

αc ∝
√

Re

Lx

, (3.1)

providing the variation of the optimal streamwise modulation with the domain length
employed to integrate the objective function and with the Reynolds number. Using
such a scaling law, one may recover the classical result on the optimal temporal
growth in a parallel boundary-layer flow, since it yields αc → 0 for an infinitely long
domain.

Once the dependence of the characteristic streamwise modulation on the
independent parameters of the optimization, Re and Lx , is analysed, the origin of such
a modulation needs to be investigated. Since the global optimal perturbation is found
to be characterized by more than one wavenumber in x, it is conjectured that it can
originate from a superposition of local optimal single-wavenumber perturbations.
Thus, following the method of Corbett & Bottaro (2000), a local optimization is
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Figure 8. (a) Most amplified longitudinal wavenumber versus the Reynolds number for
T = 166 (—), T = 250 (− − −), T = 330 (− · − · −) and T =420 (· · · ·); (b) normalized
most amplified longitudinal wavenumber versus the normalized target time for Re =610
(�), Re = 300 (�) and Re = 150 (�).

performed using the inlet velocity profile as a base flow. Such an optimization is
carried out for 160 values of α varying in the range from −0.4 to 0.4. To allow
a meaningful comparison, the wavenumber of largest module, 0.4, is chosen larger
than the largest streamwise wavenumber obtained by a spatial Fourier transform of
the global optimal perturbation. Similar criterion is used to pick the wavenumber of
smallest absolute value, 0.005. A three-dimensional perturbation is thus reconstructed
as a superposition of the local optimal (α = 0) and all the suboptimal (α �= 0) solutions
computed at the target time Tmax , namely

q(x, y, z) =

n∑
j=1

κj q̄j (y) exp(iβz − iαjx), (3.2)

where n=160, q̄j (y) is the result of the local optimization at a given value of α (see
Corbett & Bottaro 2000) and κj is linked to the energy of each single-wavenumber
perturbation. For the present analysis, a value of β equal to 0.6 is employed,
corresponding to the optimal spanwise wavenumber (see § 3.1.2). At t =0, all the
locally optimized perturbations are superposed with initial energy equal to 1. Figure 9
shows for t = Tmax that such a reconstruction is able to qualitatively reproduce packets
of counter-rotating vortices as well as the x-modulated streak-like structures, demon-
strating that the three-dimensional dynamics of a boundary layer is characterized
by the superposition of modes with zero and non-zero streamwise wavenumber. The
analysis of the variation of αc with time is also performed for the three-dimensional
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t = Tmax by the superposition of local optimal and suboptimal perturbations for Re = 610. Light
and dark surfaces indicate positive and negative values of the velocity components, respectively,
with absolute value equal to 0.75. The perturbation is normalized by its maximum value.
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Figure 10. Most amplified longitudinal wavenumber versus the target time for Re = 610,
obtained by the direct-adjoint method with Lx = 800 (�) and by the superposition of local
optimal and suboptimal perturbations (�).

perturbation reconstructed as a superposition of local optimals and suboptimals. As
shown in figure 10, the αc curves obtained from the global optimal perturbation and
the superposition of local optimal and suboptimal solutions, for Lx = 800, are found to
be very close for all times but the smallest (t = 41), meaning that such a reconstruction
is able to reproduce the streamwise wavenumber dominating the optimal dynamics.

3.1.2. Analysis of the spanwise modulation of the optimal perturbation

The effect of the spanwise domain length on the optimal dynamics is analysed by
performing the energy optimization for several lengths. Figure 11 shows the behaviour
of the maximum optimal energy gain versus the spanwise minimum wavenumber,
βL =(2π)/Lz, computed by means of the global model (squares) and by the direct-
adjoint procedure (circles). It is worth to point out that, concerning the global model,
the wavenumber of the optimal perturbation is prescribed, β = βL, whereas, in the
direct-adjoint computation, βL represents the minimum allowed value of the optimal
perturbation wavenumber. Since the problem under consideration is homogeneous
in the spanwise direction, it is anticipated that the result of the optimization would
contain only one wavenumber in that direction, namely the one which is able to induce
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Figure 11. Peak value of the optimal energy gain versus the spanwise minimum wavenumber
βL obtained by the global model (�) and by the direct-adjoint method (�) with βL = (2π)/Lz.
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Figure 12. Most amplified longitudinal wavenumber versus the target time at Re =610,
obtained by the direct-adjoint method for βL =0.6 (�), βL = 0.8 (�), βL = 1.0 (�), βL = 1.3 (�)
(a); and for βL = 0.6 (�), βL =0.1 (�), βL = 0.035 (�) (b).

the largest amplification among the multiples of βL. Thus, for small values of βL, the
two optimization methods would give different results, as one can notice in figure 11.
Indeed, the global model predicts a well-defined peak for βL = 0.6, hereafter called βopt ,
corresponding to Lz = 10.5, which is very close to the optimal wavenumber computed
locally by Corbett & Bottaro (2000). In the direct-adjoint optimization, for high values
of βL, the optimal amplification peaks match those computed by the global model,
whereas a plateau is found for subharmonic values of βopt , namely, βL = 0.1, 0.2, 0.3.
For such values, the wavenumber characterizing the perturbation is equal to βopt ,
whereas for βL = 0.4 one has β = 0.8. A similar behaviour is found for the optimal
time (not shown): for subharmonic values of βopt , the time of maximum growth in
the direct-adjoint procedure matches the optimal time found when β =0.6, whereas
the global model predicts a large increase of the optimal time for low values of βL.

The effect of the spanwise size of the domain onto the shape of the optimal
perturbation is now analysed. Figure 12(a) shows the variation in time of the
characteristic wavenumber αc for several values of βL > βopt . The values of αc decrease
for increasing βL, showing a time variation similar to that displayed for βL = βopt (solid
line). Indeed, they are found to slowly converge to a value different from zero, which
is very close to the one achieved asymptotically when βL =βopt = 0.6. Figure 12(b)
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Figure 13. Normalized increment of the objective function versus the number of direct-adjoint
iterations represented in a semilogarithmic scale for a computation initialized using a wave
packet (—) and a single-wavenumber perturbation (− − −) for T = 247 and βL = 0.1. The
crosses indicate the convergence levels at which the ‘near-optimal’ wave packets have been
extracted.

shows the variation of αc with time for two values of βL <βopt , more representative
of realistic cases. The value βL = 0.035 is chosen to be incommensurable with the
optimal one. All the curves almost overlap the optimal one, indicating that, for a
sufficiently large domain, the streamwise shape of the optimal perturbation matches
that obtained for β = βopt . This is true even when the spanwise domain length is not
an exact multiple of the optimal one. In conclusion, the three-dimensional optimal
perturbation in a boundary layer is characterized, for large spanwise domain lengths
(small βL), by streamwise elongated structures alternated in the x and z directions
with an angle Θopt = arctan(αopt/βopt ) (Θopt ≈ 4.5◦).

3.2. The near-optimal linear dynamics

The results of the previous analysis show that the optimal three-dimensional
perturbation is localized in x and characterized by a wide frequency spectrum in the
streamwise direction. On the other hand, it is well known that such a perturbation has
a spanwise sinusoidal shape since the problem under consideration is homogeneous
in the spanwise direction. It could be argued that such a disturbance is not realistic;
indeed, in a real framework, disturbances are most likely characterized by a range
of frequencies, and not by a monochromatic signal, and are often localized in wave
packets, for example when they are caused by a localized roughness element or
by a gap on the wall. Thus, a ‘near-optimal’ perturbation is now focused upon,
characterized by the following features:

(a) it must show a wide spectrum of spanwise frequencies,
(b) it must be localized in both x and z,
(c) it must amplify essentially as much as the ‘true’ global optimal disturbance.
In order to compute such a ‘near-optimal’ perturbation, an artificial wave packet

is built in the two domains of largest spanwise extent (corresponding to βL = 0.1
and βL = 0.035), by multiplying the optimal single-wavenumber perturbation times
an envelope of the form exp −(z2/Lz). Such a wave packet is then used as initial guess
for the optimization procedure. Figure 13 provides the variation of the objective
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Figure 14. Contours of the streamwise component of the perturbation: initial guess (a);
intermediate solution at e1 = 10−3 (b); intermediate solution at e2 = 10−4 (c).

function versus the number of iterations for two computations with βL =0.1: the first
one, initialized by the artificial wave packet (solid line); the second one, initialized
by a single-spanwise-wavenumber perturbation (dashed line). One could observe that
both curves experience a marked change in slope and that, in the first case, the
convergence is slower. The partially optimized perturbation is extracted at two levels
of convergence, e (defined in the Appendix). Figure 14 shows such intermediate
solutions at e1 = 10−3 and e2 = 10−4 (indicated with the crosses in figure 13), as well
as the wave packet used as the initial guess. It is possible to notice that at e1 the
perturbation is still spanwise localized, although its shape has changed. In particular,
the streak-like structures at the edge of the wave packet are inclined with respect to the
z-axis, resulting in oblique waves bordering the wave packet. Such a tilting is linked
to the superposition of different modes in the spanwise direction. Indeed, Fourier
transforms in z of the perturbation at different streamwise locations show that it is
composed by many different modes, the spectrum being centred around the optimal
wavenumber, as displayed in figure 15(a). On the other hand, at the convergence level
e2 the disturbance is spread out in the whole domain, although a single-spanwise-
wavenumber signal is not yet recovered. Most importantly, both solutions, although
strongly different in the spanwise direction, are very much amplified, reaching a value
of G which differs by less than 1 % from the optimal one (G(t)opt = 736, G(t)e1

= 728,
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Figure 16. Iso-surfaces of the streamwise component of the near-optimal perturbation at the
convergence level e1 = 10−3 for Lz = 180, at the time instants t = 0 (a) and t = Tmax (b). Light
and dark surfaces indicate positive and negative values of the velocity components, respectively.
Surfaces of absolute value equal to 0.03 and 3 are shown in (a) and (b), respectively. The
perturbations are normalized by the maximum value of the spanwise component at t = 0.

G(t)e2
= 734). Thus, it is possible to conclude that several near-optimal perturbations

exist, intermediate solutions of the optimization process, characterized by different
shapes in the spanwise direction, and producing very large growth in the disturbance
energy. It is worth to point out that such a result could have been anticipated,
since the linearized Navier–Stokes operator is self-adjoint in the spanwise direction
for the considered flow. Indeed, no transient energy growth can be produced in the
spanwise direction, so that the influence of the spanwise shape of the perturbation
on the energy gain is weak with respect to the streamwise and wall-normal ones.
Therefore, a perturbation composed by a superposition of wavenumbers in the range
0.5 � βL � 0.8 (like the near-optimal wave packets at e1 for βL = 0.1 and βL =0.035
whose spectra are shown in figures 15a and 15b) induces a quasi-optimal energy gain.
Finally, it should be pointed out that the self-adjoint character of the Navier–Stokes
operator in the spanwise direction may also explain the reduction of the convergence
rate observed in figure 13 after level e1, when the largest residual adjustments of the
solution occur in the spanwise direction.

In the following section the nonlinear evolution of a ‘near-optimal’ wave packet
is studied, using the intermediate solution extracted at e1 = 10−3. Figures 16(a) and
16(b) show such a state at t =0 and t = Tmax , respectively, for βL = 0.035.

3.3. The nonlinear dynamics

Although the optimal perturbation computed in the previous section is able to induce
a very significant growth of the disturbance energy density in a linearized framework,
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Figure 17. Distribution of the mean skin friction coefficient Cf at t =700 for the base flow
initially perturbed by: the global three-dimensional optimal (—); the local optimal with α = 0
(−−−); the suboptimal with α = βopt (− · − · −). Three initial energy levels are considered:
E0 = 0.5 (a); E0 = 2 (b); and E0 = 10 (c). The lowest and highest thin lines represent the
theoretical distributions of the mean skin friction coefficient for a laminar and a turbulent
boundary layer, respectively.

it is not straightforward that it should effectively provoke transition. Therefore, the
investigation of the nonlinear evolution of such a global optimal state is worthwhile.

Simulations of the Navier–Stokes equations are thus performed after superposing
the initial optimal disturbance (with a given amplitude) to the base flow. The optimal
transversal domain length Lz = 10.5 and a streamwise length of Lx = 490 are chosen.
To allow a comparison with some of the most probable transition mechanisms
already known in the literature, a direct numerical simulation is performed also
for the evolution of the local optimal (with α =0) and suboptimal (with α =βopt )
perturbation superposed to the base flow, using the same initial energy as for the
global optimal case. Figure 17 shows the mean skin friction coefficient, Cf , obtained
in the simulations initialized with three initial energies: E0(a) = 0.5, E0(b) = 2 and
E0(c) = 10. The lowest and highest thin lines in figures 17 represent the theoretical
distributions of the laminar and turbulent skin friction coefficient in a boundary layer,
whereas the solid, dashed and dash-dotted lines are the mean skin friction coefficients
obtained in the simulations initialized using the global optimal, the local optimal
and the local suboptimal perturbation, respectively. The value of the energy E0(a)

is found to be the lowest one able to cause transition in the flow perturbed by the
global optimal disturbance. Indeed, figure 17(a) shows that in such a case the mean
skin friction (solid line), which initially follows the theoretical laminar value, rises up
towards the turbulent value. On the other hand, the skin friction coefficient curves
relative to the local optimal and suboptimal cases lay on the theoretical laminar curve
for E0(a) = 0.5. Figure 17(b, c) shows that the suboptimal x-modulated perturbation
begins to induce transition for the energy value E0(b), whereas the zero-streamwise
wavenumber perturbed flow experiences transition only for a rather large initial
disturbance energy, E0(c). It is worth observing that such an initial energy value
results in a streak amplitude prior to transition of 28 % of the free-stream velocity
value, which is close to the threshold amplitude identified by Andersson et al. (2001)
for the sinuous breakdown of streaks. Moreover, such results confirm those by Biau,
Soueid & Bottaro (2008), and point out the effectiveness of suboptimal perturbations
in inducing transition. It is interesting to observe that, when initialized by the global
optimal disturbance, transition always starts around x = 400, almost irrespective of
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Figure 18. Contours of the streamwise component of the near-optimal perturbation for
βL = 0.035 on the plane y = 1, at t =0 (a) and its linear evolution at t = Tmax (b).

the initial energy level. This could be the signal of the emergence of a ‘global mode’
(Huerre & Monkewitz 1990).

To generalize the result to larger spanwise domain lengths, the nonlinear evolution
of the ‘near-optimal’ wave packet, discussed in the previous section, is simulated
using a computational domain with Lz = 180. The initial energy is E0 = 0.5 so that
the flow is found to experience transition. Figure 18(a) shows the perturbation on
an x–z plane at t = 0, and the angle Θ in the figure is equal to that obtained in the
optimal case (Θopt ≈ 4.5◦). Figure 18(b) displays a snapshot of the state at the target
time, Tmax = 247, obtained by solving the linearized Navier–Stokes equations, for later
comparison. The wave packet is convected downstream without remarkable structural
changes and the angle Θ is unchanged with respect to the initial time (figure 18a).
Figure 19a provides the snapshot of the state at t = 160, obtained by direct numerical
simulation. The perturbation is mostly convected downstream, while being amplified.
Whereas the streamwise modulation of the packet is almost unaffected compared
to the initial solution, the flow structure experiences spanwise diffusion. At t = 220
(figure 19b), the streaks partially merge, and two ‘kinks’ appear near the leading edge
of the most amplified streak, affecting the streamwise modulation of the wave packet.
To better analyse such a stage of breakdown, local views of the contours of the
wall-normal, spanwise and streamwise perturbation velocity components are shown
in figures 20(a), 20(b) and 20(c), respectively. Two kinks can be observed in the wall-
normal and streamwise perturbation velocity components, alternated in the streamwise
direction and symmetric with respect to the z = 0 axis. On the other hand, an array
of spanwise-antisymmetric transversal velocity packets alternated in the longitudinal
direction are observed in figure 20(b). Such patterns are similar to those observed in the
case of quasi-varicose streak breakdown (see Brandt et al. 2004), likely to occur when a
low-speed streak interacts with a high velocity one incoming in its front. In figure 20(c)
it can be observed that the spanwise perturbations affect not only the streaks A and
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Figure 19. Contours of the streamwise component of the perturbation for βL = 0.035 and
y = 1, obtained by the direct numerical simulation at t = 160 (a), t = 220 (b), t = 250 (c), t =330
(d ) and t = 420 (e).

B on the z =0 axis, but also the high-speed ones on the two sides of the z = 0 axis
(labelled C and D). Indeed, the spanwise perturbations, although antisymmetric about
the z = 0 axis, are almost symmetric with respect to the middle axis of C and D.
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the perturbation for βL = 0.035 and y = 1, at t = 220. The dotted line is the z = 0 axis, whereas
solid and dashed lines in (c) represent the positive and negative spanwise component contours,
respectively.

As a consequence, they induce spanwise oscillations on such streaks, resulting in a
pattern which is typical of quasi-sinuous streak breakdown (cf. Brandt et al. 2004).
Thus, it can be concluded that both the scenarios of quasi-sinuous and quasi-varicose
breakdown can be identified in the present case because of the staggered arrangement
of the streaks, so that both front and side interactions between fast and slow velocity
regions take place simultaneously. Therefore, in the highly symmetric configuration
examined here, four streaks break down simultaneously, explaining the effectiveness
of the global optimal and near-optimal perturbations in inducing transition.

To better study the vortical structure in the interaction zone, the Q-criterion (Hunt,
Wray & Moin 1988) is adopted, which consists in analysing the contours of the
parameter:

Q = 1
2
(‖Ω‖2 − ‖S‖2), (3.3)

Ω and S being the vorticity tensor and the rate-of-strain tensor, respectively. Figure 21
shows that, before breakdown, a hairpin vortex is present in the interaction zone of
the streaks labelled as A, B, C, and D, preceded upstream by a pair of quasi-
streamwise vortices. At the interior of the hairpin, a low-momentum region is
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found, corresponding to the low-speed streak B. This region tilts downstream, as
also observed in the experiments by Lundell & Alfredsson (2004). To illustrate
the mechanism of creation and breakdown of the hairpin vortex, the Q-contours
identifying the hairpin vortex are plotted at four times, together with the velocity
perturbation vectors on the x–y plane through its head. Figure 22(a) shows the
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incipient hairpin at t =145: two quasi-streamwise vortices, which are placed on
the flanks of the low-speed streak, begin to increase their size in the wall-normal
direction, due to the increasing downstream tilting of the low-momentum streamwise
fluctuations. Ahead of such streamwise vortices, an inclined shear layer is produced,
induced by the front interaction of the upstream high-speed streak with the
downstream low-speed one. At time t = 165, due to the further increase (because
of lift-up) of the low- and high-momentum perturbations, nonlinear effects allow the
formation of a vortical region at the edge of the inclined shear layer, as shown in
figure 22(b) by the black circle. Such a region of high spanwise vorticity generates an
arch vortex connecting the two quasi-streamwise vortices, thus forming the head of
the hairpin. At t = 180 (see figure 22c), this head is lifted from the wall, and a second
arch vortex appears upstream of the first, along the inclined zone of interaction of the
low- and high-speed streaks (shown by the second black circle in the figure). Finally,
at t = 190, the first hairpin vortex further increases in size, while breaking up into
smaller coherent patches of vorticity, although remnants of the original structure are
still visible (cf. figure 22d ).

A similar mechanism of generation of packets of hairpins has been discussed by
Adrian (2007) for the case of fully developed turbulent boundary layers; in particular,
the self-generation of packets of hairpins in streamwise succession, with size increasing
downstream, was reported. Evidence for the presence of hairpin vortices in transitional
flows has been recently given by Wu & Moin (2009), which have attributed the
generation of such structures to the presence of Λ-vortices excited by receptivity
to free-stream turbulence. In the present computation, it appears that the front
interaction of the low and high momentum streaks is the primary cause of the hairpin
formation in the early stages of transition, whereas the subsequent induction of new
hairpins is probably linked to the oscillations of the low-momentum fluid comprised
between the legs of the hairpin.

Such a transition scenario is interesting because it somehow connects two opposite
views of transition, namely that grounded on transient growth and secondary
instability of the streaks (Schoppa & Hussain 2002; Brandt et al. 2004), and the other
based on vortex regeneration (Adrian 2007). In fact, in previous studies of transitional
boundary-layer flows under free-stream turbulence (Brandt et al. 2004), the presence
of hairpin vortices was not observed, and the breakdown of the streaks was attributed
to an instability of the inflectional velocity profiles due to the interaction of low and
high-speed streaks.

Going back to the evolution in time of the perturbation, figure 19(c) shows the
presence of several subharmonics in both the streamwise and spanwise direction.
Indeed, due to streak breakdown, close to the linearly optimal time (at t = 250) the
most amplified elongated structures in the middle of the wave packet have already
experienced transition. Later, as shown in figure 19(d ), the turbulent region spreads
out in the spanwise and streamwise direction leading the nearest streaky structures
to break up. Finally, at t = 420 (figure 19e), the linear wave packet has totally
disappeared and the disturbance takes the form of a localized ‘turbulent spot’. The
spanwise rate of spread of the spot, defined as the angle at its virtual origin between
its plane of symmetry and its mean boundary, is measured by using the criterion of
the 2 % free-stream velocity magnitude proposed by Wygnanski et al. (1976). Such
an angle is very close to that measured by Wygnanski et al. (1976) for a boundary-
layer flow, namely about 9◦. It is about twice the optimal inclination of the initial
wave packet (Θopt = 4.5◦), showing that turbulence spreads out more quickly in the
spanwise direction than in the streamwise one. Moreover, figure 19(e) shows the
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presence of a ‘calmed region’ trailing behind the chaotic zone, which is a typical
feature of a turbulent spot (Schubauer & Klebanoff 1955). Thus, the near-optimal
wave packet computed by means of the three-dimensional direct-adjoint approach
represents a linear precursor of a ‘turbulent spot’. The size and position of a turbulent
spot are usually chosen by receptivity, a process which in the present computations
is bypassed by injecting on the base flow a localized disturbance of given energy
resulting from an incomplete optimization procedure. For such a reason, no general
conclusion about the streamwise position of turbulent spots in a real boundary-layer
flow can be drawn from here. Nonetheless, it can be concluded that the transition
mechanism investigated here represents one – among many – viable path of transition
via localized disturbances.

4. Conclusions and outlook
In this work a new attempt has been made to identify initial disturbances capable

to provoke breakdown to turbulence effectively in a boundary-layer flow over a flat
plate. The aim has been to optimize not simply an initial state (at x = 0 or t = 0)
characterized by a single wavenumber (in space) and/or frequency (in time), but a
wave packet, localized in the streamwise and spanwise direction.

A direct-adjoint three-dimensional optimization procedure and a global eigenvalue
analysis are employed to compute the spatially localized perturbation capable
to cause the largest growth of the disturbance energy in a finite non-parallel
flat-plate boundary layer. The optimal initial perturbation is characterized by a
pair of streamwise-modulated counter-rotating vortices, tilted upstream, resulting
at optimal time in streak-like structures alternated in the streamwise direction. This
indicates that perturbations with non-zero streamwise wavenumber have a role in
the transient dynamics of a boundary layer. A scaling law is provided describing
the variation of the streamwise modulation of the optimal initial perturbation
with the streamwise domain length and the Reynolds number. Since the domain is
homogeneous in the spanwise direction, the optimal initial perturbation is always
characterized by a single wavenumber in this direction. Nevertheless, for sufficiently
large domains it is unlikely that a single-spanwise wavenumber disturbance emerges
in a boundary layer as a result of exogenous forcing. Thus, a near-optimal localized
perturbation, characterized by a large spectrum of frequencies, has been extracted
during the optimization process. Such a perturbation has the form of a wave packet
with elongated disturbances modulated in the spanwise and streamwise directions.
Notably, this near-optimal initial disturbance attains a gain which is less than 1 %
smaller than the true optimal disturbance.

The capability of the localized optimal perturbations to induce transition has been
investigated by means of direct numerical simulations. It is shown that the global
optimal disturbance is able to induce transition for lower levels of the initial energy
than local optimal and suboptimal perturbations. Interestingly, the local Reynolds
number at which transition is initiated does not vary much with the initial energy level
of the global optimal disturbance. Simulations are also performed for the nonlinear
evolution of the near-optimal wave packet, which is found to evolve in a ‘turbulent
spot’ spreading out in the boundary layer. Transition is initiated in a region of the
flow close to the centre of the packet, by means of a mechanism including features
of both quasi-sinuous and quasi-varicose breakdown. In fact, it is found that in this
zone the streaks are able to interact on their sides as well as on their fronts, due
to their alternated arrangement, so that more than one streak undergo transition at
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the same time, explaining the efficiency of the optimal perturbation (as well as the
near-optimal one) in yielding a chaotic behaviour. A hairpin vortex emerges in the
region of interaction of the streaks prior to transition, generated by the inclined shear
layer resulting from the front interaction of a low and a high-speed streak. Such an
intense primary hairpin induces secondary hairpins and late stages of the breakdown
see the continuous regeneration of such coherent structures.

The transition scenario presented here appears to connect two different views of
transition: that based on transient growth and secondary instability of the streaks
(Schoppa & Hussain 2002; Brandt et al. 2004) and the one describing breakdown via
the continuous regeneration of vortices (Adrian 2007; Wu & Moin 2009). Although the
present optimization is not capable to determine uniquely the position of a turbulent
spot, an occurrence which depends on both receptivity and nonlinearity, the optimal
and near-optimal wave packets computed by means of the three-dimensional direct-
adjoint optimization represent a linear precursor of the spot, and the mechanism
investigated here is a viable path to transition.

Current works is aimed at including the effects of nonlinearity in the optimization
and at searching the localized perturbation able to lead the flow to turbulence most
effectively.

This work was performed using HPC resources from GENCI-CCRT/IDRIS.
The authors would like to thank R. Verzicco for providing the direct numerical
simulation code, F. Alizard for providing the code for the global eigenvalue analysis,
M. Napolitano for making possible the cooperation between the laboratories in which
this work has been developed and C. Pringle for interesting discussions. This research
has been supported by MIUR and Politecnico di Bari under contracts CofinLab2000
and PRIN2007.

Appendix. Numerical methods
In this section the numerical methods employed for the integration of the direct

and adjoint equations and of the global eigenvalue problem are described. The
performance of such methods are discussed as well.

Both linearized and nonlinear Navier–Stokes equations are integrated by a
fractional step method using a staggered grid (Verzicco & Orlandi 1996). The viscous
terms are discretized in time using an implicit Crank–Nicolson scheme, whereas an
explicit third-order-accurate Runge–Kutta scheme is employed for the nonlinear terms.
A second-order-accurate centred space discretization is used. The same approach is
employed for the integration of the adjoint operator (2.4).

For the solution of the linearized Navier–Stokes equations, a fringe region of length
Lf = 90 is adopted when using the reference domain (Lx = 400, Ly = 20, Lz = 10.5),
whereas, for different domain lengths, the dimension of the fringe region is scaled
proportionally to Lx . The forcing function applied in the fringe region is defined
as

f =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A

1 + e
(

x1−xout
x−xout

− x1−xout
x1−x

)
for xout < x < x1,

A for x1 < x < x2,
A

1 + e
(

xout +Lf −x2
x−x2

− xout +Lf −x2
xout +Lf −x

)
for x2 < x < xout + Lf ,

(A 1)

where x1 and x2 are placed at the abscissae xout +Lf /3 and xout +2Lf /3, respectively,
and A= 100. For the solution of the linearized Navier–Stokes equations, the reference
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Figure 23. (a) Envelope of the optimal energy gain obtained by the direct-adjoint method
(�) and by the global model (—); (b) normalized increment of the objective function e versus
the number of iterations at T =247, represented in a semilogarithmic scale.

computational domain is discretized by a 501 × 150 × 41 Cartesian grid stretched in
the wall-normal direction (the height of the first cell close to the wall is equal to 0.1,
whereas the lengths of the cell in the x and z direction are 0.98 and 0.25, respectively).
In order to ascertain that such a grid is sufficiently fine to accurately describe the
linear dynamics of the considered flow, computations have been performed using a
801 × 200 × 61 grid, and the results have been found to be essentially unchanged.
Nonlinear simulations have been performed using a finer grid (801×200×121) chosen
in order to resolve also the small scales of turbulence. Moreover, the streamwise length
of the physical domain is increased to Lx = 490, to allow for a longer development
of turbulent structures; this is achieved by replacing the fringe region with a non-
reflecting convective boundary condition (Bottaro 1990). A longer domain can thus
be studied at a reduced computational cost.

Concerning the global model, the problem (2.9) is discretized by a Chebyshev/
Chebyshev collocation spectral method employing N = 1100 modes, and solved with a
shift-and-invert Arnoldi algorithm using the ARPACK library (Lehoucq, Sorensen &
Yang 1997), the residual being reduced to 10−12. The modes are discretized using
nx = 230 collocation points in the x direction and ny = 47 collocation points in the y

direction. A study of the sensitivity of the global-model solution to the grid resolution
and to the domain length has been carried out in Alizard & Robinet (2007).

The convergence properties of the algorithms are analysed computing a boundary-
layer flow at Re = 610 using a domain with dimensions Lx = 400, Ly = 20,
Lz = 10.5. The direct-adjoint optimization reaches a maximum value of the optimal
energy gain, G(t), of about 736 approximately at time Tmax ≈ 247 as shown in
figure 23(a). Figure 23(b) provides the normalized increment of the objective function,
e =(E(T )(n)−E(T )(n−1))/E(T )(n), versus the number of iterations, n, for a direct-adjoint
computation performed at the optimal target time. The algorithm is able to reach very
quickly a level of convergence of about 10−4; then, the convergence rate decreases, so
that about 80 iterations are needed to reach a level of convergence of 10−5. Provided
that only minor differences are observed between the solutions corresponding to the
two convergence levels 10−4 and 10−5, the convergence level 10−4 can be considered
satisfactory. Concerning the computational cost of the direct-adjoint optimization, at
the optimal target time, a convergence level of 10−4 is reached in about 8 h of CPU
time on a single processor Intel(R) Core(TM) @ 2.67-GHz.
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Figure 24. (a) Normalized increment of the objective function e versus the number of
iterations at T =247, represented in a semi-logarithmic scale for an initial guess resulting
from: a direct-adjoint optimization stopped at the level of convergence e =10−3 (�); the global
model optimization (�); the global model optimization with a random noise of amplitude 10−8

superposed at the inlet points (�). (b) Envelope of the optimal energy gain obtained by the
global model for N = 1100 (—), N = 1000 (− − −) and N = 900 (− · − · −) at Re =610 and
Lx = 400.

It is worth to point out that the iterative optimization technique is equivalent to
perform power iterations for the maximization of a Rayleigh quotient, a procedure
which is guaranteed to converge to the global optimum. The convergence history
depends slightly on the initial guess, as shown in figure 24(a) which provides the
normalized increment of the objective function, e, versus the number of iterations for
an initial guess resulting from: (i) the direct-adjoint optimization stopped at the level
of convergence e = 10−3 (diamonds); (ii) the global model optimization (squares); (iii)
the global model optimization with a random noise of amplitude 10−8 superposed at
the inlet points (triangles). It is observed that, although the convergence is accelerated
for an initial guess extracted from a previous direct-adjoint optimization, the slope of
the convergence curve slightly varies. Moreover, when the initial guess is perturbed
with some noise, although the normalized increment, e, temporarily increases, a
rapidly decreasing curve is quickly re-established. A study of the convergence history
is carried out also with respect to the time step chosen for the computation: the
convergence curves are found to be independent of such a parameter.

To validate the results of the direct-adjoint method, the optimal energy gain is
computed also by the global model of § 2.3. The resulting curve follows qualitatively
the data obtained by the direct-adjoint method, although the maximum G(t) is lower
than that previously computed, and is equal to 710 at t = 235, as shown in figure 23(a)
(solid line). Such a small discrepancy might be due to the different outflow boundary
conditions employed in the two approaches. Another possible reason is that the
continuous spectrum is captured only in a discrete sense by the present procedure.
Hence it becomes important to employ both a large value of Ly (together with
acceptable resolution along y) while including the largest possible number N of
modes. For the solution of (2.11) and (2.9), N = 1100 modes have been employed
which is the maximum allowed by the available memory allocation capacity for the
storage of the matrices. To verify that N = 1100 is sufficient, the convergence of the
global model optimization has been studied by varying the number of modes chosen
for the optimization. Figure 24(b) shows the optimal energy gain curves computed
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with N = 900 (dashed-dotted line), N = 1000 (dashed line) and N = 1100 modes (solid
line). Although for the two most accurate computations the energy gain curves change
only slightly, the convergence is not yet perfect. Concerning the computational cost,
with N = 1100 modes, about 70 h are needed to compute the global spectrum using
the eight cores of two Intel Itanium 2 Quad core @ 667 MHz processors. Once the
spectrum is computed, such a method can quickly determine the energy gain curve
with a high resolution in time; for example, 3 h are needed using a single core of
an Intel Itanium 2 @ 667 MHz processor to compute the energy gain curve with a
time increment of 10 in the interval 0–600. The same task takes about 500 h when
using the direct-adjoint optimization. Thus, it is possible to conclude that the global
model yields an acceptable estimate of the time at which the energy peaks; from this
point on it is better to adopt the direct-adjoint procedure to evaluate accurately the
maximum gain by performing the optimization in a small window around the optimal
time obtained by the global model.
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