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and associated internal stresses in polycrystals
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Résumé :
Un modèle de plasticité cristalline a été développé et adapté à l’UO2. Des simulations d’essais cycliques
sur agrégats polycristallins périodiques ont été réalisées avec différentes conditions aux limites. Les ré-
sultats montrent que l’anisotropie plastique de ce matériau peut expliquer en partie l’effet d’écrouissage
cinématique observé expérimentalement.

Abstract :
A crystal plasticity constitutive model was developed and adjusted to UO2. Simulations of cyclic tests
were made on periodic polycrystalline aggregates with different boundary conditions. The results show
that plastic anisotropy can partly explain the kinematic hardening effect which was experimentally
observed.

Mots clefs : UO2, kinematic hardening, crystal plasticity

1 Introduction
Uranium dioxide is the standard nuclear fuel for pressurized water reactors in France. This ceramic
is manufactured by sintering. The standard shape for use in nuclear reactor is a small cylinder, also
called “pellet”, which measures about 8mm in diameter and 12mm in height. These pellets are then
stacked into a zirconium alloy cladding, forming a rod. The fuel rods are then assembled together
and these assemblies are put in the nuclear core. The mechanical behavior of the nuclear fuel during
operation depends on the mechanical state of the rod (pellet and cladding), which can be related to
other phenomena taking place during irradiation. A first step in the modeling approach is to study the
mechanical behavior of non irradiated uranium oxide. For a temperature higher than about 1000°C and
for a strain rate higher than about 1.10−6s−1, this material can be plastically deformed by a dislocation
glide mechanism. For lower strain rate, the deformation mechanism is a diffusional process (see[6] for a
complete map of the different deformations mechanisms in UO2). In this paper, we study the effect of the
plastic anisotropy on the kinematic hardening of UO2. Our work is based on a microscopic approach
and our results suggest that the kinematic hardening effect can be explained by the intergranular
interaction between neighbor grains. An evaluation of this behavior was made using a crystal plasticity
constitutive model and a polycrystalline aggregate.

2 Kinematic hardening of UO2 : experimental results
2.1 Evidence of kinematic hardening
UO2 mechanical behavior is generally studied with a bending or a compression test. Both tests can be
performed at imposed strain rate or at imposed force. In the case of bending test, the specimen is a small
beam which is cut into a pellet. An evidence of kinematic hardening was observed during bending tests
which were ended by a relaxing period under very small imposed force ([2, 4]). In this tests, a plastic
recovery was observed, corresponding to a creep of the material in the reverse direction compared to
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Fig. 1: Plastic recovery during bending test on a UO2, from [4]

the one previously observed during the first stage of testing (see fig. 1). As structural effects due to
the bending configuration can not explain this phenomenon, it was assumed that there existed a back
stress resulting from the initial creep test. This back stress, also called kinematic hardening, was then
treated through a macroscopic constitutive relation and successfully reproduced the observed behavior
([4]).

2.2 Origin of kinematic hardening of UO2

The measured strain rate during plastic recovery is about 5.10−8s−1 ([4]), which does not correspond to
a dislocation glide mechanism ([6]). Instead, this strain rate is consistent with a diffusion mechanism,
which is activated in UO2 at high temperature and low strain rates. This mechanism may be activated
by an inner stress which persists after relaxation. According to [3], this strain rate would be obtained
for a compressive test with a stress of about 10 MPa. Kinematic hardening of UO2 can not be explained
by formation of dislocations cells or other dislocations structures, because they are formed for rather
high strains (at least 3% according to[5]) and kinematic hardening is observed even for low strains
(1%). A possible source of residual stress may be the incompatibility of deformation directions at grain
boundaries. Indeed, as they are not oriented in the same direction, neighbor grains do not deform in
the same direction by dislocation glide mechanism.

3 Constitutive model
3.1 A crystal plasticity model for UO2

A crystal plasticity constitutive model was developed to evaluate the incompatibility of deformation
during dislocation glide deformation. Glide systems and associated critical resolved shear stresses are
known for UO2 ([8, 1]). The two main families are {100} < 011 >(6 systems) and {110} < 11̄0 >(6
systems). The second family is harder to activate, which means that critical resolved shear stress for
this family is higher than for the first one. The behavior of UO2 is strongly dependent on stoichiometry,
and our model and results are only valid for stoichiometric UO2. A crystal plasticity model was used
and parameters were adjusted to correctly represent UO2 (crystallography and mechanical behavior).
Constitutive relations are summarized with the set of equations eq. 1, and we used parameters described
in tab. 1. The value of α was chosen to cancel forest hardening effect (α = 0), because a high forest
hardening would counterbalance kinematic hardening and change the relative difference of critical
resolved shear stress of the two different glide families. The elastic moduli for UO2 at room temperature
were chosen according to [9] : C11 = 3.96 � 1011Pa, C12 = 1.21 � 1011Pa,C44 = 0.64 � 1011Pa. No effect
of temperature was considered for the elastic moduli. These constitutive relations were implemented
in Cast3M (a finite element software, website : http ://www-cast3m.cea.fr) with Mfront (a tool that
allows to quickly and efficiently implement constitutive relations). For a given crystal orientation and
given strain rate and temperature, the flow rate of a monocrystal can be evaluated by a finite element
simulation. As expected, the UO2’s crystallography and the difference of critical resolved shear stress
between families involve an important plastic anisotropy : the maximum flow stress is about twice the
minimum (fig. 2).
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notation parameter adjusted value / variable unit
ε

tot
total strain variable -

ε
el

elastic strain variable -
ε

vp
viscoplastic strain variable -

s glide system index 12 systems (2 families) -
γs viscoplastic strain on system s variable -
ms Schmid matrices Family 1 : {100} < 011 > (6

systems)
Family 2 : {110} < 11̄0 > (6
systems)

-
ns normal vector to plane of

system s

-

bs normalized Burgers’ vector of
system s

-

γ̇0 Reference strain rate 3.87 � 107 s−1

Ev Activation energy for
dislocation glide

2.88 eV

T Temperature variable K

τs Resolved shear stress on system
s

variable Pa

τs
0 Reference critical resolved

shear stress for system s

110 � 106 for {100} < 011 > ;
220 � 106 for {110} < 11̄0 >

Pa

τs
f Forest hardening stress for

system s

variable Pa

k Exponent 5.5 -
σ Stress variable Pa

α Forest hardening coefficient 0 for reasons explained before -
µ Shear modulus 0.64 � 1011 Pa

b Burgers’ vector norm 3.87 � 10−10 m

A Forest hardening matrix Chosen according to [7] -
ρs Dislocation density variable, initially 1011 m−2

a Interaction matrix equal to A -
K Free path coefficient 10 -
yc Annihilation coefficient 15× b m

Tab. 1: Parameters and adjusted values for crystal plasticity model of UO2
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= ε̇
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=
∑
s γ̇

sms
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γ̇s = γ̇0 exp
(
− Ev
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)(
τs

τs
0+τs

f

)k
τs = ms : σ
τsf = αµb

√∑
r Arsρs

ρ̇s = 1
b

(√P
r arsρr

K − 2ycρs
)
|γ̇s|

(1)

3.2 Polycrystalline aggregate
A periodic polycrystalline aggregate was generated using a Voronoi diagram based on randomly gene-
rated points. This points were chosen so as to produce grains with a given average size. Orientations
were randomly chosen for each grain. The final volume consisted either of a set grains which were
joined together or of a simple cubic shape (see fig 3), depending of which type of boundary conditions
was used. The aggregate which was used in this study contained 90 grains and the associated meshes
was made of about 80000 elements in the two cases (grains joined together or simple cubic shape).
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Fig. 2: Simulated flow stress represented in an inverse pole figure for UO2, at 1350°C, imposed strain
rate of 1 � 10−4s−1

(a) (b)

Fig. 3: Periodic polycrystalline aggregate, with a final cubic shape (a) or with whole grains joined
together (b). Both geometries were generated using the same Voronoi diagram.

3.3 Boundary conditions
Two different types of boundary conditions were used. The first one is periodic boundary conditions.
The second one is called “average” boundary conditions. In the case of periodic boundary conditions,
the volume consists of a periodic set of grains which are joined together, so that grains are not cut
by the faces of a cube. For an imposed strain, the average gradient of displacement is fully imposed :
1
V

´
V ∇u dV = ∇U = E+W where u is the displacement, V the aggregate’s volume, E the symmetric

part of ∇U (the average deformation), and W its antisymmetric part (average rotation). This relation
is fulfilled through imposed relative displacements of opposite points. For two opposite points P1 and
P2 on the volume boundary : u(P2)−u(P1) = E. (X(P2)−X(P1)), where X(Pi) is the spatial position
of point Pi. This way of imposing the average deformation ensures that the solution displacement field
is periodic. Another approach of the periodic problem can be made in the case of imposed stress. In
the case of “average” boundary conditions, the volume consists of a periodic polycrystalline aggregate
which is cut by a cube, because the use of a simple shape makes the implementation of the method
easier. For this type of conditions, the same applies than for the periodic ones : for imposed strain,
the average gradient of displacement is fully imposed : 1

V

´
V ∇u dV = ∇U = E + W where u is the

displacement, V the aggregate’s volume, E the symmetric part of ∇U (the average deformation), and
W its antisymmetric part (average rotation). The difference with the periodic boundary conditions is
that there is no periodic hypothesis. Indeed, for a volume whose boundaries are composed ofN faces
which are indexed k, Green’s theorem involves :

Eij =
1
V

ˆ
V

εij(u) dV =
1

2V

ˆ
∂V

(uiej + ujei).n dS =
1

2V

∑
k

ˆ
S k

(uiej + ujei) .nkdS (2)

nk is the normal vector to face k. For a cubic shape oriented along the 3 axes x, y and z, the 6 surfaces
can be named Sx0 for the surface where x is minimum, Sx1 for the surface where x is maximum, and
the same notation for y and z. The side length is L. Then we have for example :
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(a) (b)

Fig. 4: Illustration of inhomogenity of stress in an aggregate : cross-section view of the Von Mises
stress in the case of the average boundary conditions (a) and periodic boundary conditions (b) for the
same loading history and same periodic aggregate

Exx =
1
L

(
1
L2

ˆ
Sx1

uxdS −
1
L2

ˆ
Sx0

uxdS

)
=

1
L

(< ux >Sx1 − < ux >Sx0) (3)

Exy =
1
L

(< ux >Sy1 − < ux >Sy0 + < uy >Sx1 − < uy >Sx0) (4)

< . >S denotes the average value on the surface S. The same relations are true for other components
of E and W . These relations can be considered as kinematic linear relations between displacement of
nodes. Indeed, for a discretized geometry, we have for example :

< ux >S=
1
L2

ˆ
S

uxdS =
1
L2

∑
points p onS

αpUpx (5)

where αp is the weight of point p, and Up
x is the displacement of point p along direction x. In a FE

formulation, this weight corresponds to the total integration on the surface S of the shape functions
associated to node p. All these kinematic linear relations can be directly imposed in our finite element
software Cast3M. We observed numerically that this problem has a unique solution. This shows that
the minimal condition to solve a mechanical problem is to know the average value of the displacement’s
gradient. This method could be generalized to any problem usually treated using periodic boundary
conditions or other types of boundary conditions.

4 Simulation results
Several cyclic tests were simulated. The first stage of the test is a compression test. Then, after 1%
of total ZZ strain, the loading is reversed and a tensile test is simulated, until the total ZZ strain
reaches zero. All these tests were simulated with an imposed strain rate of 10−4s−1 and a temperature
of 1350°C. We made the same simulations (same mesh, same loading) using either linear elements or
quadratic elements, so that the effect of elements’ type was determined in our case. There seems to
be no significant difference between the results obtained either with average boundary conditions or
periodic boundary conditions, as illustrated by fig. 5. During the elastic deformation stage, the two
responses even seem to be actually equal. A more precise study will have to be be made to compare
these two methods and conclude on the differences between the two methods. The value of the stress
at the very beginning of plastic deformation (i.e. the yield stress) was defined as the value of the stress
for a plastic deformation equal to 2 � 10−5 = 0.002%. In the case of a cyclic loading, we measured this
value at the first loading stage, and then we measured it another time during the reverse loading stage.
Hence, the difference between these two values is the value of the observed kinematic hardening (see
fig. 5). Our numerical evaluation of kinematic hardening gave a value between 8 MPa (for quadratic
elements) and 12.5 MPa (for linear elements) (fig. 5). This means that even at zero imposed stress,
UO2 deforms just as it was under a tensile stress of about 10 MPa. This value is consistent with the
value given in paragraph 2.2.
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Fig. 5: Simulation of a cyclic test : the ZZ component of the stress as a function of ZZ imposed total
strain for average and periodic boundary conditions, in the case of linear elements, for our aggregate
(strain rate = 10−4s−1, T = 1350°C).

5 Conclusions
The behavior of crystalline UO2 was modeled through a crystal plasticity constitutive model and the
mechanical behavior of an aggregate was simulated with a finite elements method. Different boundary
conditions and different types of elements were used. Our simulations have shown that the plastic ani-
sotropy of crystalline UO2 generates incompatibilities between neighbor grains during a macroscopic
compressive test. These incompatibilities result into a localization of stress, which can be macroscopi-
cally reduced to a kinematic hardening. The value of the calculated kinematic hardening is consistent
with the experimental results. The diffusion process which occurs during plastic recovery (see fig. 1)
has not been modeled, because it needs a specific diffusion constitutive model. The effect of the ag-
gregate geometry still needs to be studied to ensure that our geometry was representative of any UO2

microstructure. The influence of material parameters (relative difference of critical stresses between
the two glide families) and of strain rate need to be also studied.
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