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Abstract. We aim to simulate the interactions at the material interface of two compressible media. These interac-
tions are modeled by a single fully Eulerian system of conservation laws. The materials differ by their constitutive
laws, that can reproduce the mechanical characteristics of fluids or elastic solid. We illustrate the model with
simulations of shock waves impinging on undulated interfaces, generating instabilities such as Richtmyer-Meshkov
instabilities.
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1 INTRODUCTION

Physical phenomena that involve several materials are ubiquitous in nature and applications: multiphase flows, fluid-
structure interaction, impacts, to cite just a few examples. In recent literature several strategies were proposed to
attack these problems: Lagrangian models [11], Arbitrary-Lagrangian-Eulerian (ALE) models [7], Eulerian models
[12, 5]. In this context, immersed boundary methods [10] are an option to discretize boundary conditions at the
interface, trading off accuracy for mesh generation simplicity.

In this study, we are interested in the numerical simulation of phenomena such as the scattering of shock waves at
material interfaces between different fluids or a fluid and an elastic material. These phenomena can be modeled by
a fully Eulerian system of conservation laws that applies to every material; only the constitutive law may change,
reproducing the mechanical characteristics of the medium under consideration.

The systematic derivation of such models starting from continuum mechanics principles, their thermodynamic con-
sistency and the corresponding wave-propagation patterns were initially studied in [8]. Their numerical simulation
is delicate because standard Godunov schemes lead to spurious pressure oscillations at the material contact disconti-
nuity already in the case of multifluids. In [1] the pressure perturbation mechanism at the origin of this phenomenon
was explained and a first fix was proposed. An effective remedy to this problem was presented in [6] with the ghost-
fluid method (sharp interface between the materials). For multifluids, improvements of this approach requiring less
storage were proposed in [2] (diffuse interface) and [4] (sharp interface).

For elastic compressible materials existing methods either rely on the definition of ghost materials [12] or on mixture
models and diffuse interfaces [5]. In this presentation we employ a simple, stable and non-oscillatory scheme for
multimaterials that avoids the definition of a ghost hyperelastic medium. The equilibrium boundary conditions at
the material interface are imposed like in immersed boundary methods, in the same spirit of what is done in [9] for
rigid bodies.
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2 OVERVIEW OF THE METHOD
2.1 Governing equations in Eulerian frame

Let Ω0 ⊂ R3 be the reference or initial configuration of a continuous medium and Ωt ⊂ R3 the deformed config-
uration at time t. In order to describe the evolution of this medium in the Lagrangian frame we define the forward
characteristics X(ξ, t) as the image at time t in the deformed configuration of a material point ξ belonging to the
initial configuration, i.e., X : Ω0 × [0, T ] −→ Ωt, (ξ, t) 7→ X(ξ, t). The corresponding velocity field u is defined
as u : Ωt × [0, T ] −→ R3, (x, t) 7→ u(x, t) where Xt(ξ, t) = u(X(ξ, t), t).
To describe the continuous medium in the Eulerian frame, we introduce the backward characteristics Y (x, t) (see
[3]) that for a time t and a point x in the deformed configuration, gives the corresponding initial point ξ in the initial
configuration, i.e., Y : Ωt × [0, T ] −→ Ω0, (x, t) 7→ Y (x, t). Since Y (X(ξ, t), t) = ξ, differentiating with respect
to time and space in turn we have

Yt + u · ∇xY = 0 (1)

The conservation of mass, momentum and energy in the deformed configuration Ωt is:
ρt + divx(ρu) = 0

(ρu)t + divx(ρu⊗ u− σ) = 0

(∇xY )t +∇x(u · ∇xY ) = 0

(ρe)t + divx(ρeu− σTu) = 0

(2)

The unknowns are the density ρ(x, t), the velocity u(x, t), the backward characteristics of the problem Y (x, t) and
the total energy per unit mass e(x, t). Here σ(x, t) is the Cauchy stress tensor in the physical domain. Together with
equations of mass, momentum and energy conservation, the additional equation (1) is required in order to record the
deformation in the Eulerian frame. However, since σ will directly depend on ∇xY we take the gradient of (1) as a
governing equation and obtain a system in conservative form.
The initial density ρ(x, 0), the initial velocity u(x, 0), the initial total energy e(x, 0) and ∇xY (x, 0) = I are given
together with appropriate boundary conditions.

2.2 Constitutive law

The internal energy per unit mass ε(x, t) is defined as

ε = e− 1

2
|u|2 =

κ(s)

γ − 1

(
1

ρ
− b
)1−γ

− aρ+
p∞
ρ

+
χ

ρ0
(Tr(B)− 2) (3)

where κ(s) = exp

(
s

cv

)
and cv , γ, p∞, a, b, χ ∈ R+ are constants that characterize a given material. The

constant χ is the shear elastic modulus and the other constants have the usual meaning. Other energy functions
can be envisaged to mitigate or accentuate certain aspects of the resulting non-linear relation between stress and

deformation. Note that B =
B

det(B)
1
2

where B is the left Cauchy-Green tensor in a two-dimensional problem, so

that det(B) = 1. Classical models are obtained by particular choices of the coefficients. For example, the stiffened
gas model is obtained by taking a = 0, b = 0 and χ = 0 in (3). The Van Der Waals gas model is obtained taking
p∞ = 0 and χ = 0.

2.3 Multimaterial solver

The numerical scheme in two or three space dimensions is based on the solution of one-dimensional problems in
the direction orthogonal to the cell sides of a uniform Cartesian mesh. In this framework, to simplify notation, we
consider the discrete problem in the direction of one axis of the canonical basis in space. Also, we initially focus on
a first order explicit scheme in space and time. Second order is obtained by classical MUSCL reconstructions.
We assume that the conservative variables at the n-th time step are known. Let ϕnk be the signed distance of the cell
center k from the material interface, i.e., ϕnk > 0 corresponds to one material, ϕnk < 0 corresponds to the other. Let
Ψn
k be a piece-wise constant function representing the conservative variables at time step n and at the cell k.

Whenever ϕnk ϕ
n
k+1 > 0 and ϕnk ϕ

n
k−1 > 0 (same material), the space and time discretization is as follows
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Ψn+1
k −Ψn

k

∆t
= −
Fnk+1/2(Ψn

k ,Ψ
n
k+1)−Fnk−1/2(Ψn

k−1,Ψ
n
k )

∆x
(4)

where ∆t is the time step, ∆x the uniform grid size, Fnk−1/2 and Fnk+1/2 are the numerical fluxes evaluated at the
cell interfaces respectively located to the left and to the right of the cell center k. The numerical flux function F is
defined thanks to a special form of the HLLC approximation of the Riemann problem.
Let us focus on Fnk+1/2(Ψn

k ,Ψ
n
k+1). The HLLC solver defines two intermediate states (Ψ−)n and (Ψ+)n as a

function of Ψn
k and Ψn

k+1. The material velocity, (u?1)n, is continuous across the states (Ψ−)n and (Ψ+)n. Let us
assume that (Ψ−)n is the state to the left of the contact discontinuity and (Ψ+)n to the right.
The main idea of the multimaterial solver is that whenever ϕnk ϕ

n
k+1 < 0 (material interface to the right of cell k)

instead of (4) we have

Ψn+1
k −Ψn

k

∆t
= −
Fn−((Ψ−)n)−Fnk−1/2(Ψn

k−1,Ψ
n
k )

∆x (5)

or if ϕnk ϕ
n
k−1 < 0 (material interface to the left of cell k), instead of (4) we have

Ψn+1
k −Ψn

k

∆t
= −
Fnk+1/2(Ψn

k ,Ψ
n
k+1)−Fn+((Ψ+)n)

∆x
(6)

where Fn±((Ψ±)n) = F ((Ψ±)n). As for ghost-fluid methods, the scheme is locally non conservative since Fn+ 6=
Fn−, but it is consistent since Fn± are regular enough functions of the states to the left and to the right of the interface,
and Fn+ = Fn− when those states are identical. As shown in the numerical test section the error in conservation is
negligible: the shock speeds and positions are correctly predicted. Indeed, the number of cell interfaces for which a
non-conservative numerical flux is employed is always negligible compared to the total number of mesh cells.
The interface position is advected using the material velocity field. For numerical stability, the integration step is
limited by the fastest characteristics over the grid points. Hence, the interface position will belong to the same
interval between two grid points for more than one time step. When the physical interface overcomes a grid point,
the corresponding conservative variables, say Ψn+1

k , do not correspond anymore to the material present at that grid
point before the integration step. When the physical interface moves to the right, then we take Ψn+1

k = (Ψ−)n,
whereas if it moves to the left Ψn+1

k = (Ψ+)n.
Compared to the ghost-fluid method and its improvements and variants [6, 2, 4], this scheme is simpler as it does
not require the storage of any additional variables or equation of state relative to a ghost fluid to treat the material
interface, nor the solution of additional Riemann problems, each relative to a different material at the interface. Our
scheme only relies on the intermediate states (Ψ−)n and (Ψ+)n that are anyway computed at every cell interface.

3 RESULTS
We show here an example of simulations involving an undulated interface separating two different compressible
materials over which a shock wave is impinging. In fluid mechanics these phenomena are known as Richtmeyer-
Meshkov instabilities. See Fig. 1.

Figure 1: A shock wave traveling from air to helium at M=2.1 impinges on an initially undulated interface. Interface
at later times.

These instabilities can affect also the interface between a compressible fluid and a compressible elastic material
[13]. The simulations in Fig. 2 are, as far as we know, among the first accurate computational examples of such
instabilities.
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Figure 2: Upper picture: a shock wave traveling from the elastic material to air impinges on an initially undulated
interface. The shear modulus of the material is 102 times smaller than that of copper, the compression rigidity
the same. Bottom: as before, but the shear modulus of the material is now 104 times smaller than that of copper.
Interfaces at later times.

4 CONCLUSIONS
We presented a simple method to model interactions of compressible multimaterials. As shown by the illustrations,
the model captures well the scattering of shock waves and is able to recover the Richtmyer-Meshkov instabilities
at the interface between two fluids. Instabilities in the case of elastic media and properties of plasticity are under
current investigations.
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