Science Arts & Métiers (SAM) is an open access repository that collects the work of Arts et Métiers Institute of Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: http://hdl.handle.net/10985/8298

To cite this version:

Any correspondence concerning this service should be sent to the repository Administrator: archiveouverte@ensam.eu
(51) Classification internationale des brevets:
B29C 33/30 (2006.01) B29C 70/48 (2006.01) B29C 70/44 (2006.01)

(21) Numéro de la demande internationale:
PCT/FR2010/000039

(22) Date de dépôt international:
18 janvier 2010 (18.01.2010)

(25) Langue de dépôt:
français

(26) Langue de publication:
français

(30) Données relatives à la priorité:
09/00300 23 janvier 2009 (23.01.2009) FR

(71) Déposants (pour tous les États désignés sauf US):

(75) Inventeurs/Déposeurs (pour US seulement):

(74) Mandataire:
Cabinet GERMAIN & MAUREAU; 8, avenue du Président Wilson, F-75016 Paris (FR).

(81) États désignés (sauf indication contraire, pour tout titre de protection nationale disponible):

(84) États désignés (sauf indication contraire, pour tout titre de protection régionale disponible):

Publiée:
— avec rapport de recherche internationale (Art. 21(3))

[Suite sur la page suivante]
— avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont reçues (règle 48.2.h)
Dispositif de fabrication d'une pièce en matériau composite par moulage par transfert de résine

L'invention se rapporte à un dispositif de fabrication de pièces en matériau composite par moulage par transfert de résine et d'autre part, à un procédé de mise en œuvre de ce dispositif.

Plusieurs procédés de moulage connus par imprégnation de fibres avec de la résine peuvent être utilisés pour réaliser les pièces en matériau composite et, notamment, les procédés de moulage employant des moules fermés.

En premier lieu, on peut citer le procédé de moulage par transfert de résine ou RTM, pour "Resin Transfert Molding".

Dans ce procédé RTM, un ensemble d'éléments fibreux est positionné de manière particulière autour d'un support et l'ensemble est placé à l'intérieur d'un moule fermé dont la forme générale correspond à celle de la pièce à réaliser.

Dans le procédé RTM traditionnel, ce moule est constitué d'un moule femelle ou matrice et d'une partie contre-moule ou poinçon.

On injecte alors une résine dans le moule puis on la polymérise en lui apportant de l'énergie. Les molécules de cette résine commencent alors à se lier entre elles et à former un réseau solide. On obtient ainsi une pièce rigide en matériau composite formé de fibres et de résine polymérisée.

On peut, également, citer le procédé de moulage par infusion de résine.

De façon générale, un tel procédé met en œuvre plusieurs étapes parmi lesquelles figure la mise en place d'éléments de renfort fibreux sur la forme d'un moule.

Le moule est ensuite refermé par l'intermédiaire d'un couvercle souple permettant le passage contrôlé d'une résine qui va infuser à l'intérieur des éléments de renfort fibreux puis polymériser, afin de donner une pièce rigide.
La propagation de la résine se fait par une force motrice créée par une dépression en certains points du couvercle, vers lesquels la résine introduite dans le moule se déplace.

Dans le procédé d'infusion traditionnel, l'outillage de moulage est ainsi formé d'un moule matrice et d'un couvercle étanche tel qu'une bâche comme partie contre moule.

Ces procédés, qu'ils soient RTM standard ou moulage par infusion de résine, sont des technologies dans lesquelles l'outillage de moulage est lourd et conçu pour une forme de pièce spécifique destinée à être réalisée. Ceci engendre des coûts élevés d'outillage pour pouvoir produire des pièces très variées.

De plus, cet outillage peut avoir une longévité très limitée. En effet, on comprend que, dans un outillage RTM standard, la détérioration du moule matrice ou du contre-moule ou des deux implique la détérioration de l'outillage ainsi constitué dans son ensemble.

Enfin, de part la mise au point complexe d'un outillage de moulage adapté à un type spécifique de pièce en matériau composite, ces technologies sont limitées aux formes de pièces en matériau composite peu ou moyennement complexes, dont les caractéristiques sont peu élaborées.

La présente invention vise à résoudre les inconvénients précités.

Ainsi, un but de la présente invention est de proposer un dispositif de fabrication de pièces en matériau composite par moulage par injection de résine dont la complexité est réduite et l'outillage de moulage simplifié par rapport à l'outillage des procédés à moule fermé précités.

Un autre but de la présente invention est de proposer un dispositif de fabrication de pièces en matériau composite par moulage par injection de résine dont l'outillage de moulage est flexible, adaptable à la forme des pièces à concevoir tout en étant facilement remplaçable.

Il est également désirable d'offrir un dispositif de fabrication de pièces en matériau composite par moulage par injection de résine permettant de supprimer les inconvénients du procédé RTM et du procédé de moulage par infusion de résine tout en profitant de leurs avantages respectifs.
Ainsi, un autre but de la présente invention est de proposer un dispositif de fabrication de pièces en matériau composite par moulage par injection de résine permettant de réduire les coûts et les temps de réalisation et de préparation des pièces en matériau composite.

A cet effet, l'invention concerne un dispositif de fabrication d'une pièce en matériau composite par moulage par injection de résine comprenant un moule de fabrication dans lequel est destiné à être disposée une préforme de la pièce susceptible d'être imprégnée de résine, remarquable en ce que le moule de fabrication est subdivisé en une matrice et un ou plusieurs éléments structurels mobiles destinés à être indexés sur la matrice, l'ensemble formant, après assemblage, une empreinte correspondant à la forme de la pièce à fabriquer.

Il convient de préciser que bien évidemment la matrice peut être de forme quelconque.

Le dispositif selon l'invention pourra comprendre l'une des caractéristiques suivantes prises seules ou en combinaison :

- la matrice présente une forme plane ;

- les éléments structurels démontables sont des blocs géométriques tridimensionnels indépendants dont la forme et les dimensions sont adaptées à la forme et aux dimensions de la pièce à fabriquer

- les éléments structurels démontables pourront inclure des noyaux souples ou rigides de tout type dont la forme et les dimensions sont adaptées aux structures creuses ;

- les éléments structurels sont aptes à répartir la résine de façon homogène ;

- les éléments structurels du moule sont aptes à assurer un rôle d'évent ;

- le dispositif comprend, en outre des moyens d'injection adaptés pour réaliser une imprégnation mixte de la préforme avec la résine injectée ;

- les moyens d'injection sont répartis sur la surface du moule de sorte que elle favorise la diffusion de la résine de façon transverse et/ou laminaire.
le dispositif comprend, en outre, un système d’étanchéité des éléments structurels vis-à-vis de la résine injectée dans le moule de fabrication.

L’invention a, en outre, pour objet un procédé de mise en oeuvre du dispositif défini ci-dessus, ce procédé comprenant au moins une étape dans laquelle on indexe un ou plusieurs éléments structurels mobiles du moule sur la matrice du moule de sorte que l’ensemble forme, après assemblage, une empreinte correspondant à la forme de la pièce à fabriquer.

Le procédé selon l’invention pourra également comprendre la caractéristique suivante :

Le procédé comprend, en outre une étape dans laquelle on réalise une imprégnation transverse par rapport à un plan de la préforme et une imprégnation laminaire par rapport à ce plan de la préforme simultanément.

L’invention sera mieux comprise et d’autres avantages et caractéristiques apparaîtront à la lecture de la description qui va suivre, donnée à titre d’exemple non limitatif, et grâce aux dessins annexés parmi lesquels :

- la figure 1 est une vue en coupe d’un mode de réalisation d’un dispositif de fabrication d’une pièce en matériau composite par moulage par injection de résine selon l’invention ;

- la figure 2 est une vue en perspective du dispositif de la figure 1;

- la figure 3 est une vue en perspective agrandie d’un système d’étanchéité du dispositif de la figure 2.

La fabrication d’une pièce en matériau composite consiste essentiellement à mouler grâce à un dispositif de fabrication adapté un élément composite par injection d’une résine liquide dans une armature de fibres de renfort essentiellement sèches préalablement préformées sensiblement suivant la forme du profil de la pièce et prédisposées dans un moule fermé.

On observe sur les figures 1 et 2 un dispositif 10 de fabrication d’une pièce en matériau composite par moulage par injection de résine.

Ce dispositif de fabrication 10 comprend une cavité de moulage (non illustrée) destinée à recevoir un moule de fabrication 20 dans lequel est
destinée à être disposée une préforme 1 susceptible d’être imprégnée de résine pour réaliser la pièce en matériau composite.

Selon l’invention, le moule 20 est subdivisé en une matrice 21 de moulage sur laquelle vont venir reposer et être indexés un ou plusieurs éléments structurels 22 de moulage indépendants et mobiles de sorte que l’ensemble forme, après assemblage, une empreinte correspondant à la forme du profil de la pièce à concevoir.

La matrice 21 de moulage est, en l’espèce et à titre d’exemple seulement, plane.

Les éléments structurels 22, quant à eux, sont aptes à être déplacés sur la matrice de moulage 21 en fonction de la forme des pièces à réaliser. Ce sont des blocs géométriques 23 tridimensionnels dont la forme, les dimensions, l’épaisseur et le positionnement sur la matrice 21 est adapté suivant la forme du profil de la pièce à réaliser. Ils respectent, ainsi, les contraintes géométriques, dimensionnelles et d’épaisseur de la pièce.

On comprendra aisément qu’un tel moule offre l’avantage d’être simple à mettre en œuvre, flexible, adaptable à la forme des pièces à concevoir.

Un seul moule permet, en effet, de concevoir différents types de pièces en matériau composite réduisant ainsi les coûts liés à l’outillage.

Par ailleurs, avec un tel moule, les différents éléments constitutifs sont facilement remplaçables sans que soit nécessaire de remplacer l’ensemble du moule. La longévité des moules est ainsi améliorée.

Avec un tel outillage, on réalise, d’une part, la préforme 1 des fibres de renfort et, d’autre part, la pièce finale en matériau composite.

Dans l’exemple non limitatif illustré sur les figures 1 et 2, deux séries de deux éléments structurels 22 identiques sont agencées parallèlement sur la matrice 21 de moulage de façon à former une préforme 1 présentant une base plane 2 munie de protrusions 3.

Dans une variante de réalisation, un tel outillage de moulage peut être utilisé pour la réalisation de pièces en matériau composite bidimensionnelles.
De plus, il est également adapté pour être utilisé lors de la fabrication de pièces de structure monolithique, sandwich ou intégrant des noyaux creux.

Par ailleurs, comme illustré sur les figures 1 et 2, le dispositif 11 de fabrication comprend également des moyens de recouvrement 30 de la préforme 1 réalisée tels que des couvercles répartis sur la surface de la préforme 1 non recouverte d'éléments structurels 22 de moulage. On peut ainsi observer sur la figure 1, dans un exemple non limitatif de la présente invention, deux couvercles disposés, chacun, sur la barre du T des protrusions 3 de la préforme 1 formée. Ces couvercles permettent d'assurer la bonne conformation géométrique de la partie supérieure des protrusions 3.

Pour imprégner la préforme 1 avec de la résine, le moule 20 est relié à un conteneur de résine (non représenté) lui-même placé à l'intérieur de moyens de chauffage (non représentés) tels qu'un four ou tout autre moyen de chauffage approprié. Le conteneur est relié au moule 20 par des moyens d'injection 40 de résine.

Ces moyens d'injection de résine 40 comprennent plusieurs injecteurs de résine 41 associés, chacun, de façon connue à un distributeur 42, l'ensemble étant disposé sur une grille de distribution 43 reposant sur une partie des moyens de recouvrement 30.

Ces moyens d'injection 40 sont répartis sur toute la surface du moule 20 de sorte de réaliser une imprégnation mixte c'est-à-dire une imprégnation transverse et/ou une imprégnation laminaire de manière simultanée ou séquentielle de la préforme 1 avec la résine injectée. Le mode d'imprégnation transverse est lié à la présence de la grille de distribution 43. Le mode d'imprégnation laminaire est lié à l'absence de grille de distribution 43.

De plus, les éléments structurels 22 de moulage du moule sont aptes à garantir le compactage de la préforme 3 et le dimensionnel des zones concernées par les éléments structurels 22 de façon homogène dans le moule.
Par ailleurs, tel qu'ilustré sur la figure 1, le moule 20 est associé à une bâche 50 destinée à refermer le moule 20 et assurer le rôle de contre moule.

Cette bâche 50 est une membrane imperméable aux gaz qui recouvre l'ensemble de la matrice de moulage 21, de la préforme 1 et des éléments structurels 22 de moulage. Elle peut être réalisée à partir de matériau plastique, de résine ou de tout autre moyen connu.

Par ailleurs, elle présente des passages traversants ménagés pour recevoir les injecteurs 41 des moyens d'injection de résine 40 et les évents décrits plus loin.

Le moule 20 est également équipé de joints périphériques d'étanchéité 70 assurant l'étanchéité entre la bâche 50 et le moule 20, l'ensemble constituant ainsi un volume étanche matérialisant le volume de la pièce à réaliser.

Dans une variante de réalisation du dispositif 10 de la présente invention, une seconde bâche peut être utilisée pour garantir l'étanchéité et assurer un compactage homogène et continu de la préforme 1 durant la phase de polymérisation de la résine injectée dans la préforme 1.

L'injection de résine est réalisée sous vide. Par l'intermédiaire de la bâche 50 et des joints d'étanchéité 70, on peut ainsi réaliser un différentiel de pression entre l'extérieur et le volume étanche, ce différentiel exerçant une force compressive lors de l'injection de la résine sur la préforme 1 située à l'intérieur du volume étanche.

Pour cela, le dispositif 10 comprend des moyens 60 de réalisation du vide. Ces moyens comprennent une pompe à vide (non représentée) associée à des événets 61 c'est-à-dire à des conduits de dégazage permettant l'évacuation de l'air et des gaz dégagés lors de l'injection de résine dans le moule 20.

Dans l'exemple non limitatif illustré sur la figure 1, un événent 61 est placé au sommet de chacune des deux séries d'éléments structurels 22 de moulage du moule 20 par l'intermédiaire d'un frein d'écoulement 62.
Avantageusement, les éléments structurels 22 de moulage du moule 20 associés aux éléments de recouvrement 30 sont aptes à assurer la fonction d'évents 61.

Par ailleurs, dans un mode de réalisation de la présente invention, le moule 20 peut être disposé à l'intérieur d'un dispositif chauffant (non représenté). On peut citer, comme exemples non limitatifs de dispositif chauffant, une étuve, un autoclave ou un moule autochauffant. L'installation de ce dispositif dans un autoclave offre la possibilité d'augmenter les forces de compactage exercées sur la bâche 50 et d'augmenter la force motrice de transfert de la résine dans la préforme 1.

Tel qu'illustré sur les figures 2 et 3, le dispositif 10 peut également comprendre un système d'étanchéité 80 destiné à éviter la pénétration de la résine injectée dans le moule 20 dans les éléments structurels 22 de ce dernier. Cette protection est réalisée par un joint torique 80.

Un procédé de mise en œuvre du dispositif 10 décrit précédemment est le suivant.

En premier lieu, on place une armature de renforts fibreux secs qui vont concevoir la pièce en matériau composite sur la matrice 21 de moulage du moule 20 du dispositif 10.

Ensuite, on plaque un ou plusieurs éléments structurels 22 de moulage prédéterminés sur tout ou partie de la préforme dans une configuration fonction du profil de la pièce en matériau composite à réaliser. L'ensemble des protrusions 3 est ainsi pris en sandwich entre la matrice 21 et les éléments structurels 22 de moulage assurant ainsi la réalisation de la préforme 1.

A l'étape suivante, on coiffe l'ensemble par la bâche 50 pour refermer le moule 20, bâche 50 sous laquelle auront été préalablement disposés les moyens d'injection 40 et les évents 61.

Préalablement et si nécessaire, on peut réaliser une étape de dégazage dans laquelle on dégage la résine dans le conteneur afin d'éviter que trop de bulles soient injectées dans le moule par l'intermédiaire des conduits des injecteurs.
Si nécessaire, on chauffe la résine afin d'obtenir une viscosité adaptée au transfert de résine dans la préforme 1. La résine utilisée peut être une résine thermodorcissable ou thermoplastique.

A l'étape suivante, on procède à l'injection de la résine par les injecteurs 41 ménagés à cet effet dans le dispositif 10.

De préférence, l'infusion de résine est ensuite réalisée sous maintien du vide.

La résine se répand dans la préforme 1 en remplissant les zones de vide qui séparent les renforts fibreux et les imprègne.

Selon l'invention, l'imprégnation de résine de la préforme 1 est réalisée de manière simultanée ou séquencée.

Ceci offre l'avantage d'offrir à la pièce à concevoir des tolérances dimensionnelles sur les zones sensibles de la pièce (protrusions 3), contrairement à des zones courantes pour lesquelles la tolérance dimensionnelle peut être moins contraignante.

De plus, de part la possibilité de disposer des répartiteurs de résines de façon multiple sur la surface du moule, le temps de cycle de réalisation d'une pièce est réduit car le temps d'injection est lui-même réduit.

Le vide créé grâce à la pompe à vide associée aux évènts 61 génère, comme décrit précédemment, un différentiel de pression entre le volume étanche délimité par la bâche 50 et le moule 20 du dispositif 10 et l'extérieur.

De cette manière, l'air extérieur crée une force de compression agissant sur la bâche 50 qui se presse sur les éléments structurels 22 de moulage et la préforme 1 facilitant l'infusion de la résine dans la préforme 1.

A l'étape suivante, on procède à la polymérisation de la résine, soit à température ambiante soit par chauffage. Les molécules de cette résine se lient entre elles et forment un réseau solide. On obtient ainsi une pièce en matériau composite rigide formé de fibres et de résine polymérisée.

La pièce en matériau composite est ensuite démoulée lorsque la bâche 50 est retirée. Cette pièce présente la forme définie par l'association de
la matrice 21 de moulage et des éléments structurels 22 mobiles du moule 20 du dispositif 10.

L'homme de l'art appréciera par rapport aux dispositifs de fabrication de pièces en matériau composite connus, un dispositif offrant un outillage simplifié qui n'est pas limité à la réalisation d'une seule forme de pièce spécifique.

Bien évidemment, l'invention ne se limite pas aux seules formes de réalisation du dispositif décrites ci-dessus à titre d'exemples mais elle embrasse au contraire toutes les variantes possibles.
REVENDICATIONS

1. Dispositif (10) de fabrication d’une pièce en matériau composite par moulage par injection de résine comprenant un moule (20) de fabrication dans lequel est destiné à être disposé une préforme (1) de la pièce susceptible d’être imprégnée de résine caractérisé en ce que le moule (20) de fabrication est subdivisé en une matrice (21) et un ou plusieurs éléments structurels (22) mobiles destinés à être indexés sur la matrice (21), l’ensemble formant, après assemblage, une empreinte correspondant à la forme de la pièce à fabriquer.

2. Dispositif selon la revendication précédente caractérisé en ce que la matrice (21) présente une forme plane.

3. Dispositif selon l’une des revendications précédentes caractérisé en ce que les éléments structurels (22) démontables sont des blocs géométriques tridimensionnels indépendants dont la forme et les dimensions sont adaptées à la forme et aux dimensions de la pièce à fabriquer.

4. Dispositif selon l’une des revendications précédentes caractérisé en ce que les éléments structurels démontables pourront inclure des noyaux souples ou rigides de tout type dont la forme et les dimensions sont adaptées aux structures creuses.

5. Dispositif selon l’une des revendications précédentes caractérisé en ce que les éléments structurels (22) sont aptes à assurer un rôle d’évent (61).

6. Dispositif selon l’une des revendications précédentes caractérisé en ce qu’il comprend, en outre des moyens d’injection (40) adaptés pour réaliser une imprégnation de manière simultanée ou séquentielle de la préforme (1) avec la résine injectée.
7. Dispositif selon la revendication 5 caractérisé en ce que les moyens d'injection (40) sont répartis sur la surface du moule (20) de sorte qu'elle favorise la diffusion de la résine de façon transverse et/ou laminaire.

8. Dispositif selon l'une des revendications précédentes caractérisé en ce qu'il comprend, en outre, un système d'étanchéité (80) des éléments structurels (22) vis-à-vis de la résine injectée dans le moule (20) de fabrication.

9. Procédé de mise en œuvre d'un dispositif (10) de fabrication d'une pièce en matériau composite par moulage par injection de résine selon l'une des revendications précédentes caractérisé en ce qu'il comprend au moins une étape dans laquelle on indexe un ou plusieurs éléments structurels (22) mobiles du moule sur la matrice (21) du moule de sorte que l'ensemble forme, après assemblage, une empreinte correspondant à la forme de la pièce à fabriquer.

10. Procédé selon la revendication précédente caractérisé en ce qu'il comprend, en outre une étape dans laquelle on réalise une imprégnation transverse par rapport à un plan de la préforme (1) et/ou une imprégnation laminaire par rapport à ce plan de la préforme (1).
A. CLASSIFICATION OF SUBJECT MATTER

INVT. B29C33/30 B29C70/44 B29C70/48

According to international Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

B29C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>abstract</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figure 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 2, line 19 - line 22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 3, line 44 - column 4, line 56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>abstract</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figures 1,4-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraph [0012]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraph [0029]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraph [0032] - paragraph [0034]</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance.
 - "E" earlier document but published on or after the international filing date.
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means.
 - "P" document published prior to the international filing date but later than the priority date claimed.
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention.
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone.
 - "Y" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more such documents, such combination being obvious to a person skilled in the art.
 - "&" document member of the same patent family.

Date of the actual completion of the international search: 3 June 2010

Date of mailing of the international search report: 11/06/2010

Authorized officer: Lozza, Monica

European Patent Office, P.B. 5818 Patentlaan 2
NL – 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 6557201 B1</td>
<td>06-05-2003</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2590118 A1</td>
<td>26-11-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101077628 A</td>
<td>28-11-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 602006000870 T2</td>
<td>14-05-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 1859920 T3</td>
<td>21-07-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2301115 T3</td>
<td>16-06-2008</td>
</tr>
</tbody>
</table>
A. CLASSEMENT DE L'OBJET DE LA DEMANDE

INV. B29C33/30 B29C70/44 B29C70/48
ADD.

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB.

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)

B29C

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche.

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si cela est réalisable, termes de recherche utilisés)

EPO-Internal

C. DOCUMENTS CONSIDERES COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie*</th>
<th>Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents</th>
<th>no. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>abrégé</td>
<td>5-7, 10</td>
</tr>
<tr>
<td></td>
<td>figure 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>colonne 2, ligne 19 – ligne 22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>colonne 3, ligne 44 – colonne 4, ligne 56</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>EP 1 859 920 A (SIEMENS AG [DE])</td>
<td>5-7, 10</td>
</tr>
<tr>
<td></td>
<td>abrégé</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figures 1, 4-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>alinéa [0012]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>alinéa [0029]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>alinéa [0032] – alinéa [0034]</td>
<td></td>
</tr>
</tbody>
</table>

* Catégories spéciales de documents cités:

- *A* document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- *E* document antérieur, mais publié à la date de dépôt international ou après cette date
- *L* document pouvant jeter un doute sur une revendication de priorité ou cils pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- *O* document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- *P* document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée
- *T* document ultérieur publié après la date de dépôt international ou la date de priorité et n'apportant pas à l'état de la technique pertinent, mais créé pour comprendre le principe ou la théorie constituant la base de l'invention
- *X* document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément
- *Y* document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier
- *S* document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée: 3 juin 2010

Date d'expédition du présent rapport de recherche internationale: 11/06/2010

Nom et adresse postale de l'administration chargée de la recherche internationale:

Office Européen des Brevets, P.B. 5816 Patentlaan 2
NL – 2280 HV Rivwijk
Tel. (+31-70) 340-2040,
Fax (+31-70) 340-3016

Nom et fonction de l'administrateur de l'office chargé de la recherche internationale:

Lozza, Monica
<table>
<thead>
<tr>
<th>Document brevet cité</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 6557201 B1</td>
<td>06-05-2003</td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2590118 A1</td>
<td>26-11-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101077628 A</td>
<td>28-11-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 602006000870 T2</td>
<td>14-05-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 1859920 T3</td>
<td>21-07-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2301115 T3</td>
<td>16-06-2008</td>
</tr>
</tbody>
</table>