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Abstract The prediction of microstructure evolution

during passive mixing is of major interest in order to

qualify and quantify mixing devices as well as to predict

the final morphology of the resulting blend. Direct

numerical simulation fails because of the different char-

acteristic lengths of the microstructure and the process

itself. Micro-macro approaches could be a valuable

alternative but the computational cost remains tremen-

dous. For this reason many authors proposed the in-

troduction of some microstructural variables able to

qualify and quantify the mixing process at a mesoscale

level. Some proposals considered only the effects in-

duced by the flow kinematics, other introduced also

the effects of shape relaxation due to the surface ten-

sion and coalescence. The most advanced integrate

also the break-up process. However, the derivation

of the evolution equations governing the evolution of

such microstructural variables needs the introduction

of some closure relations whose impact on the com-

puted solution should be evaluated before applying it

for simulating complex mixing flows. In this work we
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consider the Lee and Park’s model that considers the

flow kinematics, the surface tension, the coalescence

and the break-up mechanisms in the evolution of the

area tensor. The accuracy of both a quadratic closure

and an orthotropic relations will be analyzed in the first

part of this work, and then the resulting closed model

by using a quadratic closure will be used for simulating

complex mixing flows.

Keywords Passive mixing ·Microstructural approach ·

Area tensor · Closure relation

Introduction

When two immiscible fluids are mixed, the induced

properties of the mixture are strongly dependent on

the resulting microstructure, whose length scale is much

smaller than the one associated with the macroscopic

flow. Indeed droplets of various size and shape are

formed and complex phenomena such as deformation,

break-up and coalescence occur. Passive mixing implies

two immiscible fluids having the same viscosity and

density.

In many engineering processes, the determination of

the mixing rate is very important because it is directly

linked to the prediction of the mixing time and that is

why the study of liquid-liquid laminar mixing has been

carried out for many years and many rheological tools

have been developed.

Many engineering processes benefit from good bulk

mixing. In such processes, determination of mixing rate

is of importance in terms of understanding and predic-

tion of mixing time. That understanding allows defining

new flows and the associated processes for improving



the mixing rate, but one could also try to optimize other

parameters related to themicrostructure as for example

the characteristic length, the shape and orientation of

the discrete phase, ...

Mixing rates have often been quantified by a mixing

time, i.e. the time required to reach a certain degree

of homogeneity [11]. Most studies have based on the

concentration evolution at a small number of sample

points [6]. However the sensibility of the results to the

number and locations of the probes is its main limita-

tion. An alternative way of quantifying the mixing rate

can be derived from the consideration of only one of

the basic mechanisms of mixing processes: the increase

of the material interface due to the fluid mechanics in

absence of interfacial tension and molecular diffusion.

The molecular diffusion leads to smooth concentration

gradients across the interface. However this mecha-

nism only becomes significant when the interface has

increased significantly. It is therefore expected that

the overall mixing rate will be closely linked to the

rate of mechanical stretching of the interfacial area.

This mechanism has been widely analyzed [10, 12].

This approach was revisited in Mackley and Neves [8]

using a Lagrangian and concentration based numerical

approach.

The approaches quantifying the mixing from the

increase of the material interface have two important

drawbacks: (i) the first one is related to the difficulty

of introducing other additional physics, as the one re-

lated to the surface tension, and (ii) sometimes the mi-

crostructure description needs other information (mor-

phology, characteristic length, shape and orientation of

the discrete phase -inclusions-, ...) that the interface

evolution cannot provide. The evolution of the mor-

phology can then be modeled by predicting the change

in the local morphological measure due to this velocity

or deformation gradient. We will call such an approach,

which treats some local characteristic morphological

measure as a field variable, a micromixing analysis.

From now on we focus on incompressible fluid flows

and passive mixing.

The micromixing approach has been used exten-

sively for modeling passive mixing, where interfacial

energy is negligible and the two phases have identical

viscosities. In passive mixing the global velocity field

can be found independently of the microstructure and

then used to evolve the mixture structure, described

with some area tensor, very rich from the morpholog-

ical and microstructural points of view. See [13] for

an excellent description of this approach, in which the

genesis of this kind of approaches is retraced precisely.

The main difficulties noticed in that work [13] were

related to the necessity of introducing a closure relation

in order to derive an evolution equation for the second

order area tensor. Different closure relations have been

proposed, being their impact, in general, unpredictable.

A very effective way, widely used, of quantifying the

mixing rate can be derived from the consideration of

only one of the basic mechanisms of mixing processes:

the increase of the material interface due to the flow

kinematics in absence of surface tension and molecular

diffusion. Thus, the higher is the interface per unit of

volume, the more effective is the mixing. Because it is

impossible from a practical point of view the accurate

tracking of fluid interfaces, coarser descriptions have

been successfully proposed.

For this purpose we can introduce the interface dis-

tribution function 9(x, t, n) given, at each point in the

physical domain x ∈ Ä and for any time t, the specific

surface (i.e. interface per unit of volume) oriented in

the direction n [5]. If we assume that the interface

evolution only depends on the flow kinematics, the

evolution of 9(x, t, n) is given by

d9

dt
= −

∂

∂n
· (ṅ9) − (∇v : (n ⊗ n))9 (1)

where d
dt
denotes the material derivative, i.e. d9

dt
=

∂9
∂t

+ v · ∇9, being v the velocity field, ⊗ denotes

the tensor product and : the tensor product twice con-
tracted. The time evolution of the interface orientation

ṅ induced by the flow velocity field v, is given by

ṅ = −(∇v)Tn + (∇v : (n ⊗ n))n (2)

On the other hand the flow kinematics induces also a

variation of the interface area. Thus, a surface element

dS whose orientation is defined by the unit vector n

evolves according to:

Ṡ =
dS

dt
= −(∇v : (n ⊗ n)) dS (3)

The main difficulty related to such an approach mak-

ing use of the interface distribution function 9(x, t, n)

lies in its multidimensional character because the inter-

face distribution function depends on the physical co-

ordinates x, the time, and the conformation coordinates

related to the interface orientation n.

To circumvent the curse of dimensionality related to

such kinetic theory approaches coarser descriptions can

be derived by introducing the so-called area tensor, that

as described below contains very valuable information

on the fluid morphology. Let Ä be the domain in which

the flow problem is defined. Points inÄwill be referred

by x which consists in a vector in 2D or 3D. In the

numerical examples presented in this work only 2D

models are considered because in such case reference

solutions can be computed. In order to quantify the



morphology at any point x ∈ Ä a microscopic repre-

sentative volume V(x) is considered centered at that

point. This volume is small enough with respect to

the macroscopic scale (related to the variation of the

velocity field v in Ä) but large enough with respect to

the characteristic size of themicrostructure. Let SV(x, t)

be the interface within V(x) at time t. The area tensor

A(x, t) is then defined as:

A(x, t) =
1

V(x)

∫

S(x,t)

n ⊗ n dS (4)

The equation governing the evolution of the area

tensor can be obtained by taking time derivative of

Eq. 4 and then using Eqs. 2 and 3. After some manipu-

lations it results:

Ȧ = −(∇v)TA − A∇v + ∇v : A (5)

which involves a fourth order tensor A

A =
1

V(x)

∫

S(x,t)

n ⊗ n ⊗ n ⊗ n dS (6)

and where the dependence of A, A and v on the space

and time coordinates, x and t respectively, is omitted for

the sake of clarity.

The area tensor A just defined is symmetric and has

following appealing properties:

1. The first property concerns its trace (sum of the

diagonal components of A) that we symbolize by

Tr(A) that taking into account the normality of n

results:

Tr (A(x, t)) =
1

V(x)

∫

S(x,t)

(n2

1
+ n2

2
+ n2

3
) dS

=
1

V(x)

∫

S(x,t)

dS =
S(x, t)

V(x)
= SV(x, t)

(7)

Thus, the trace of the area tensor gives the specific

surface whose maximization is currently searched

in mixing processes.

2. If we define the volume fraction of the disperse

phase as φ, assumed uniformly distributed within

Ä, then we can define a characteristic length L(x, t)

of the microstructure at point x from the volume of

the discrete phase Vd(x) = φ · V(x):

L(x, t) =
Vd(x)

S(x, t)
=

φ · V(x)

S(x, t)
=

φ

SV(x, t)
=

φ

Tr(A (x, t))

(8)

3. In passive mixing the strain rate varies linearly

at the scale of V(x), so that an initially spherical

discrete domain will deform into an ellipsoid for

any state of strain. This characteristic ellipsoid pro-

vides a convenient way to interpret the area tensor.

The microstructure shape and orientation can be

easily deduced from the normalized area tensor Ã

defined as

Ã(x, t) =
A(x, t)

Tr(A (x, t))
(9)

and whose eigenvalues allow computing the length

of the ellipsoid axes, being their orientation given

by the associated eigenvectors. See [13] for more

details concerning the relation between that ellip-

soid and the area tensor.

It is easy to verify that the interface distribution

function and the area tensor descriptions can be linked

by taking into account the expression

A(x, t) =
∫

B

(n ⊗ n) 9(x, t, n) dn (10)

where B represents the surface of the unit sphere.

The solution of Eq. 5 requires the introduction of

a closure relation for expressing the fourth order area

tensor A as a function of the second order one A.

Different closure relations have been proposed, being

the simplest ones, the quadratic and the orthotropic

[13].

The quadratic closure, initially proposed by Doi and

Ohta, writes:

A =
1

SV

(A ⊗ A) (11)

The impact of the quadratic closure relation was

deeply analyzed in [3] where the solution computed

by using Eq. 5 with the quadratic closure (Eq. 11)

was compared to the area tensor obtained from the

interface distribution function 9(x, t, n) according to

Eq. 10, where the distribution function 9(x, t, n) was

computed by integrating Eq. 1 without the necessity of

introducing any closure.

The orthotropic relation proposed by [4] postulate a

different dependence of A onA [13].

Until now, the only mechanism affecting the inter-

face evolution is the flow kinematics. However one

could expect that other phenomena could participate

actively in the interface evolution, as for example the

surface tension, the droplets coalescence or the droplets

break-up.

Enriched modeling

One could expect that in absence of flow the mi-

crostructure evolves toward an isotropic state, i.e.



spherical droplets, and that the interface area decreases

because the droplets coalescence. These mechanisms

are expected to be dependent on the matrix viscosity

η and the surface tension Ŵ.

Thus, Doi and Ohta considered the evolution of

the specific surface, i.e. the trace of the area tensor,

given by

ṠV = −r1 · SV (12)

whereas the deviatoric part of the area tensor tends to

vanish in absence of flow

d

dt

(

A − Tr(A)

3
I

SV

)

= −r2 ·
(

A − Tr(A)

3
I

SV

)

(13)

where r1 and r2 represents two relaxation rates.

A dimensional analysis leads to:

r1 = c1

Ŵ · SV

η
(14)

r2 = c2

Ŵ · SV

η
(15)

where c1 and c2 are two positive dimensionless

coefficients.

Lee and Park considered a third mechanism related

to the droplet break-up whose effect on the evolution

of the specific surface was assumed depending on the

deviatoric part of the area tensor according to [7]:

ṠV = −c3

Ŵ

η

((

A −
Tr(A)

3
I

)

:
(

A −
Tr(A)

3
I

))

(16)

Thus the effects of these extra-mechanics write:

d

dt
SV

∣

∣

∣

∣

extra

= −c1

ŴS2

V

η
− c3

Ŵ

η

(

A −
Tr(A)

3
I

)

:
(

A −
Tr(A)

3
I

)

(17)

and

d

dt

(

A − Tr(A)

3
I

SV

)∣

∣

∣

∣

∣

extra

= −c2

ŴSV

η

(

A − Tr(A)

3
I

SV

)

(18)

where c1, c2 and c3 are three positive dimension-

less coefficients which could depend on the volume

fraction φ.

By introducing the new dimensionless coefficients

λ = c1 + c2, µ = c1/(c1 + c2) and ν = c3/(c1 + c2), the

equation governing the evolution of the area tensor

writes:

dA

dt
= − (∇v)TA − A∇v + ∇v : A

− λ
Ŵ

η
SV

(

A −
SV

3
I

)

− λµ
Ŵ

η
SV

2
I

3

− λν
Ŵ

η

(

A : A −
SV

2

3

)

A

SV

(19)

Evaluating the impact of closure relations

Chinesta and Mackley [3] analyzed the impact of the

quadratic closure in the evolution of the area tensor

in absence of droplets break-up. In this section we are

performing a similar analysis when shape relaxation,

coalescence and break-up mechanisms are present.

Inspired from the procedure described in [3], it is

easy to prove that the equation governing the evolution

of the interface distribution function reads:

d9

dt
= −

∂

∂n
(ṅ9) − (∇v : (n ⊗ n))9

−
∂

∂n

(

D(9)
∂9

∂n

)

+ F(9) (20)

where the diffusion coefficient and the source terms are

given by:

D(9) = λ
Ŵ

η

1

6

(

SV +
ν

SV

(

A : A −
SV

2

3

))

(21)

and

F(9) = − λ
Ŵ

η

1

4π

(

µSV
2 + ν

(

A : A −
SV

2

3

))

.

(22)

with

A =
∫

B

(n ⊗ n) 9 dn (23)

The solution of Eqs. 20–23 allows computing the in-

terface distribution function, and then the second order

and the fourth order area tensor,A and A respectively,

without the introduction of any closure relation. The

price to be paid is the solution of a model defined

in a multidimensional space. In general complex flows

the solution of these equations is quite difficult despite

the recent progresses accomplished in numerical strate-

gies able to circumvent or at least alleviate the multi-

dimensionality issue [1, 2, 9].



In the case of simple rheometric flows we can assume

a homogeneous kinematics and then ignore the depen-

dence of all the variables on the physical coordinates. In

this case, the resulting kinetic theory model making use

of the interface distribution function can be solved eas-

ily because it only needs an appropriate discretization

of the surface of the unit sphere.

Numerical results

Area tensor evolution equation: Dimensionless form

The area tensor equation can be rewritten in the dimen-

sionless form by introducing the dimensionless capil-

lary number Ca defined by

Ca =
ηγ̇

ŴSinitV

(24)

where η is the viscosity, SinitV the initial specific surface,

Ŵ the surface tension and γ̇ the equivalent strain rate

defined by γ̇ =
√

∇v : ∇v.

The dimensionless form is obtained by affecting both

the orientation tensor and the specific surface by the

initial specific surface and time by the inverse of the

shear rate. Thus, the dimensionless form of the equa-

tion governing the area tensor evolution reads

dA

dt
= −(∇v)TA − A∇v + ∇v : A

+
(

−λµ
1

Ca
S2

V

)

I

3
− λ

1

Ca
SV

(

A −
SV

3
I

)

−λν
1

Ca

(

A : A −
S2

V

3

)

A

SV

(25)

Evaluating the closure relations in a simple shear flow

In what follows we analyzed the evolution of the

specific surface SV for two different capillary num-

bers Ca = 1 and Ca = 10 in the simple shear and bi-

elongational flows defined respectively by:

∇v =





0 1 0

0 0 0

0 0 0



 (26)

and

∇v =





−1 0 0

0 0.5 0

0 0 0.5



 (27)

Different values of the parameters λ, µ and ν where

considered for analyzing their effect on the time evolu-

tion of the specific area.

Figures 1 and 2 depict the specific surface time evo-

lution in the simple shear flow for Ca = 1 and Ca = 10

respectively, whereas Figs. 3 and 4 show similar results

in the case of the bi-elongational flow. In these figures

we can appreciate the impact of the closure relations.

Despite the fact that the quadratic closure relation

introduces in some cases an appreciable deviation with

respect to the reference solution computed within the

kinetic theory framework, its implementation is the

most efficient from the computational time viewpoint.

In these figures we can also notice the strong sensibility

of the solution to the model parameters Ca, λ, µ and ν.

Simulating complex flows

We consider the mixing device whose geometry is de-

picted in Fig. 5. The area tensor will be represented

by using the ellipse associated to the rotation of π
2
of

tensor A. Such representation is closer to the real mi-

crostructure morphology. The ellipse axes are given by

the eigenvectors of tensorA rotated of π
2
whereas their

lengths are related to the associated eigenvalues. We

are also representing using a color map the value of the

inverse of the specific surface that is a key parameter

for quantifying the mixing. Initially, the droplets should

be represented as spheres, i.e. area tensor is diagonal,

all the components having the same value.

In the simulations that we address in this section we

consider a coupling between the flow kinematics and

the microstructure evolution:

– Flow kinematics

∇ · σ = 0 (28)

∇ · v = 0 (29)

σ = −pI + 2ηD −
Ŵ

η

(

A − SV

I

3

)

– Microstructure evolution

dA

dt
= −(∇v)TA − A∇v + ∇v : A

+
(

−λµ
1

Ca
S2

V

)

I

3
− λ

1

Ca
SV

(

A −
SV

3
I

)

−λν
1

Ca

(

A : A −
S2

V

3

)

A

SV

(30)

where a quadratic closure relation was considered,

because it represents a good compromise between

accuracy and computational efficiency.
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(a) θ = 2π
3

(b) θ = 4π
3

(c) = 2πθ

Fig. 5 Area tensor evolution during a complete turn of the rotor

In the simulations we consider the following choice

of the model parameters: λ = 0.1, µ = 0.1 and ν = 0.15

and Ca = 1. Figure 5 illustrates the microstructure evo-

(a) Streamlines for a isotropic microstructure

(b) Streamlines after a complete turn

Fig. 6 Influence of the microstructure evolution on the flow
streamlines

lution during a complete turn of the rotor as well as the

evolution of the specific surface.

Finally, Fig. 6 compares the streamlines for two

different microstructural morphologies: the initial one

perfectly isotropic and the one induced after a complete

turn. It can be noticed that in the flow here considered

the difference is not too significative.

Conclusion

The use of the area tensor allows describing the mor-

phology evolution during mixing processes at the mi-



croscopic scale and is very convenient in term of mi-

crostructural description (specific interface, shape, ori-

entation, ...).

In this paper we considered a model taking into ac-

count the flow effects, surface tension, droplets coales-

cence and droplets break-up. The equation governing

the evolution of the area tensor in that model involves

a fourth order area tensor that must be written as a

function of the second order orientation tensor by using

an appropriate closure relation that introduces in gen-

eral an unpredictable error. To evaluate the effects of a

quadratic or an orthotropic closure relation in the area

tensor evolution first we derive a kinetic theory model

governing the evolution of the so-called interface dis-

tribution function that does not involve any closure

relation, from which the different area tensors can be

calculated. Then, we compared in a simple shear flow

the reference solution (computed from the interface

distribution function) and the ones obtained by using

both closure relations. Both closure relations seem to

be good, and the quadratic one was retained because

its simplicity. Finally, the model was used for simulating

complex flows in mixing devices.
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