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Abstract

This work deals with the problem of the optimum design of a sandwich panel. The

design strategy that we propose is a numerical optimisation procedure that does not

make any simplifying assumption to obtain a true global optimum con�guration of

the system. To face the design of the sandwich structure at both meso and macro

scales, we use a two-level optimisation strategy: at the �rst level we determine the

optimal geometry of the unit cell of the core together with the material and geometric

parameters of the laminated skins, while at the second level we determine the optimal

skins lay-up giving the geometrical and material parameters issued from the �rst level.

The two-level strategy relies both on the use of the polar formalism for the description

of the anisotropic behaviour of the laminates and on the use of a genetic algorithm

as optimisation tool to perform the solution search. To prove its e�ectiveness, we

apply our strategy to the least-weight design of a sandwich plate, satisfying several

constraints: on the �rst buckling load, on the positive-de�niteness of the sti�ness

tensor of the core, on the ratio between skins and core thickness and on the admissible

moduli for the laminated skins.

Keywords:

Sandwich structures; Optimisation; Genetic Algorithms; Buckling; Structural design; Com-

posite Materials.

Notations

BCs Boundary Conditions

GA Genetic Algorithm

FE Finite Element

A Membrane sti�ness tensor

B Membrane/bending coupling sti�ness tensor

D Bending sti�ness tensor

Ec
i E�ective Young's moduli of the honeycomb core

Gc
ij E�ective shear moduli of the honeycomb core

νcij E�ective Poisson's ratios of the honeycomb core

ht, hb Thickness of the top and bottom skin, respectively

hc Height of the honeycomb core

l1 Length of the oblique sides of the hexagonal repetitive unit cell

l2 Length of the horizontal sides of the hexagonal repetitive unit cell
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tc Thickness of the foil used to produce the honeycomb core

ϑ Corrugation angle of the hexagonal unit cell

hply Thickness of the elementary ply

n Number of layers

gp Optimisation constraints functions

xg Vector of the geometrical design variables

{O;x1, x2, x3} Lamina material frame

{O;x, y, z} Sandwich panel global frame

Q Reduced sti�ness tensor of the elementary ply

T0, T1, R0, R1,Φ0,Φ1 Polar parameters of Q

CLPT Classical Laminate Plate Theory

N Second-rank tensor of membrane forces

M Second-rank tensor of bending moments

ε Second-rank tensor of in-plane strains of the laminate middle plane

χ Second-rank tensor of curvatures of the laminate middle plane

δk Fibres orientation angle of the kth ply

h Overall thickness of the generic laminate

A∗,B∗,D∗ Normalised membrane, membrane/bending coupling and bending sti�ness ten-

sors, respectively

C Homogeneity tensor

TA∗
0 , TA∗

1 , RA∗
0 , RA∗

1 ,ΦA∗
0 ,ΦA∗

1 ,KA∗
Polar parameters of A∗

xm Vector of the mechanical design variables

x Vector of all design variables

W Weight of the sandwich panel

λ First buckling load of the sandwich panel

λref First buckling load of the reference sandwich panel
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I(fi) Objective function for the lay-up design problem

fi Partial objective functions

DOFs Degrees Of Freedom

a, b Sandwich panel side lengths along x and y axes, respectively

Nind Number of individuals

Ngen Number of generations

pcross Cross-over probability

pmut Mutation probability

ADP Automatic Dynamic Penalization (method)

E Young's modulus of the aluminium

ν Poisson's ratio of the aluminium

ρ Density of the aluminium

Ei Young's moduli of the carbon-epoxy lamina in the material frame

Gij Shear moduli of the carbon-epoxy lamina in the material frame

νij Poisson's ratios of the carbon-epoxy lamina in the material frame

ρs Density of the carbon-epoxy lamina

1 Introduction

Sandwich panels are increasingly used in aerospace, automotive and naval industries thanks

to their high sti�ness-to-weight and strength-to-weight ratios. In order to have a further

weight reduction when employing this kind of structures, in aerospace applications sand-

wich panels are composed by glass or carbon-�ber composite skins separated by aluminium

or resin honeycombs, or by polymer foams. In addition, material and geometrical properties

can be designed to provide sandwich plates with di�erent sti�ness and density character-

istics.

The optimum design of sandwich structures is much more cumbersome than that of

a classical monolithic structure. The di�culties increase when the sandwich structure is

made of composite skins and a honeycomb core. In this case we have to face, into the same

design process, both the di�culty of designing a laminated plate (concerning the skins)

and the di�culty of designing a complex 3D cellular continuum such as the honeycomb
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core. Therefore, engineers always use some simplifying assumptions or rules to obtain, in

an easier and faster way, a solution. For example, in [3, 10, 30] the optimal design of a

sandwich plate is addressed determining exclusively the optimum thickness of both the

core and the skins, keeping constant the rest of geometric and material parameters of the

system.

Trianta�llou and Gibson [25] gave the analytical relations to determine the skins and

core thickness and the core density which minimise the weight of a foam core sandwich beam

for a given strength. In [32] and [2] the minimum weight design of sandwich panels under

uniaxial compressive loading conditions is solved analytically using the principle of the most

e�cient chain wherein each link fails simultaneously. The optimisation parameters were the

geometry of the unit cell and the thickness of the skins. In this way, also the density of the

core is introduced among the design variables. Another analytical study for the minimum

weight design of foam-core sandwich panels under sti�ness and strength requirements is

presented in [24]. Here the three design variables were the thickness of the core and that of

the skins (assumed to be identical) along with the core density. A semi-analytical method

to minimise the density of truss core structures under prescribed constraints on strength

and sti�ness is addressed in [8]. However, as it is classical in purely analytical-based

approaches, the relations giving rise to the optimal values of the geometric variables are

obtained thanks to the imposition of particular load cases (for example uniaxial) and/or

boundary conditions (BCs) such as simply supported or clamped plate. On the other hand,

in the case of more complex BCs it is not possible to obtain an analytical solution, therefore

a numerical strategy is needed.

A step further in the optimum design of sandwich panels with corrugated cores was

done in [5]. The authors deal with the problem of the least-weight design of a sandwich

plate considering as design variables the thickness of the cell walls as well as that of the

skins together with the total height of the panel. They used an analytical model to eval-

uate both the buckling load of the core and the faces yielding which were considered as

optimisation constraints. The optimisation problem was solved using a Genetic Algorithm

(GA). Wennhange conducted an interesting work on the weight minimisation of sandwich

structures under acoustic constraints. He �rstly developed a semi-analytical model in [33],

a subsequent experimental veri�cation in [34] and an application to a real-world engineer-

ing problem concerning the design of a railway car body in [35]. Other studies on numerical

strategies for the optimal design of sandwich structures can be found in [21] for the max-

imisation of blast load mitigation, in [6] for the optimisation of the head impact mitigation,

in [22] where the transverse shear sti�ness of the panel is maximised and in [11] for the

minimisation of both mass and costs of composite sandwich structures for rail vehicle �oor

panels.

The objective of the present work is twofold: on one hand, we want to formulate and
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solve the problem of designing a sandwich panel as an optimisation problem on di�erent

scales and, on the other hand, we want to include within the same design process the

full set of geometrical and material parameters de�ning the behaviour of the structure

(at each scale) as optimisation variables. In this regard, we propose a very general design

strategy that consists in a numerical optimisation procedure without simplifying hypothesis

to obtain a true optimal con�guration of the system. The design process that we propose

is not submitted to restrictions, indeed any parameter characterising our structure is an

optimisation variable: the geometry of the unit cell of the core along with the number as

well as the orientation angle of the plies for each skin.

In order to deal with the design problem of the sandwich plate at both meso and

macro scales, we used a two-level optimisation strategy. At the �rst level we determine

the optimum geometry of the unit cell (core meso-scale) together with the material and

geometric parameters of the laminated skins (at this level the laminate representing each

skin is modelled as an equivalent homogeneous anisotropic plate whose behaviour at the

macro-scale is described in terms of laminate polar parameters, see [27]). At the second

level of the strategy, we determine the optimal skins lay-up (the skin meso-scale) meeting

the optimal combination of their material and geometrical parameters resulting from the

�rst level of the strategy. The whole procedure is based on one hand the use of the polar

formalism [31] and on the other hand on the new version of the GA BIANCA [13, 18, 19].

Since the �rst level of the strategy involves two di�erent scales (the macro-scale of the

sandwich panel as well as the meso-scale of the honeycomb core) we conceived an appro-

priate model of the repetitive unit cell of the core able to properly evaluate its e�ective

elastic properties used at the macro-scale. This model has been discussed in Part I of the

present work. In the �rs paper we presented the numerical homogenisation technique as

well as the related 3D �nite element model of the unit cell used within the �rst level of the

optimisation strategy to determine the e�ective material properties of the honeycomb core

which is modelled, at the macro-scale, as an equivalent homogeneous orthotropic contin-

uum. In this second paper we will focus on the description of the two-level optimisation

strategy along with some numerical examples in order to prove its e�ectiveness.

The paper is organised as follows: the design problem as well as the two-level strategy

are discussed in Section 2. The mathematical formulation of the �rst-level problem is

detailed in Section 3, while the problem of determining a suitable laminate is formulated

in Section 4. A concise description of the Finite Element (FE) models of the sandwich

structure at both meso and macro scales are given in Section 5 while in Section 6 we show

the numerical results of the optimisation procedure. Finally, Section 7 ends the paper with

some concluding remarks.
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2 Optimal design of sandwich panels with honeycomb core

2.1 Description of the problem

The optimisation strategy presented in this work is applied to a sandwich plate composed

by two laminated skins and a metal honeycomb core with hexagonal cells as depicted

in Fig. 1. The skins are made of carbon-epoxy unidirectional orthotropic laminae while

the honeycomb core is obtained from aluminium alloy foils, see Table 1 for the material

properties derived from [9, 26].

Concerning the honeycomb core, the basic classical assumptions used to evaluate its

elastic response and, hence, to determine its e�ective material properties (at the macro-

scale) are:

• linear, elastic behaviour for the material of the cell walls;

• perfect bonding for the wall-to-wall contact;

• the buckling of the cell walls is disregarded.

Concerning the mechanical behaviour (at the macro-scale) of the two laminated skins

they are modelled, for obvious mechanical reasons, as quasi-homogeneous fully orthotropic

laminates, see Section 3.2.

In addition, no simplifying hypotheses are made on the geometric and mechanical

parameters of both skins and core. Only avoiding the use of a priori assumptions that

extremely shrink the solution space (e.g. the use of symmetric balanced stacks for the skins

laminates to attain membrane/bending uncoupling and membrane orthotropy, respectively,

or the use of regular hexagonal cells to reduce the number of optimisation variables for the

core and to deal, at the macro-scale, with a transverse isotropic cellular solid) one can hope

to obtain the true global optimum for a given problem: this is a key-point in our approach.

2.2 Description of the multi-scale two-level optimisation strategy

The goal of our design strategy is the minimisation of the weight of the sandwich plate

subject to constraints of di�erent nature, i.e. mechanical, geometrical as well as feasibility

constraints. The proposed optimisation procedure is articulated into two distinct (but

linked) problems as described here below.

First-level problem. The aim of this phase is the determination of the optimal geometry

of the unit cell together with the material and geometric parameters of the laminated

skins in order to minimise the weight of the structure and to satisfy, simultaneously, the

full set of optimisation constraints. At this level the laminate representing each skin is

modelled as an equivalent homogeneous anisotropic plate whose behaviour at the macro-

scale is described in terms of laminate polar parameters, see [17, 18, 27], by means of
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the classical sti�ness tensors A, B and D (membrane, membrane/bending coupling and

bending sti�ness, respectively). Concerning the model of the honeycomb core, the �rst-level

problem involves two di�erent scales: the meso-scale of the repetitive unit cell characterised

by its geometric variables, as well as the macro-scale where the core itself is modelled as an

homogeneous orthotropic solid. Therefore, the link between these two scales is represented

by the homogenisation phase of the honeycomb core (see Part I) that allows us to represent

it, at the macro-scale level, as a homogeneous orthotropic continuum characterised by its

equivalent material properties (which depend upon the geometric parameters of the unit

cell).

Second-level problem. At the second level of the strategy, we have to determine the

optimal lay-up for both skins (the skin meso-scale) meeting the optimal combination of

their material and geometrical parameters provided by the �rst level of the strategy. The

goal of this phase is, hence, to �nd at least one stacking sequence, for each skin, which

has to be quasi-homogeneous, fully orthotropic and that has to satisfy the optimal polar

parameters resulting from the �rst step. At this level of the strategy, the design variables

are the layer orientations.

3 Mathematical formulation of the �rst-level problem

The overall characteristics of the optimal structure have to be designed during this phase.

The weight minimisation of the sandwich plate will be done satisfying, on one side, the

constraint on the �rst buckling load and, on the other side, the geometric constraints on

the ratio between skins and core thickness along with some mechanical constraints on the

elastic moduli of both core and skins. These aspects are described in detail in the following

subsections.

3.1 Geometrical design variables

Before specifying the mathematical formulation of the �rst-level problem, we introduce

the design variables which are of two types: geometrical and mechanical. Concerning the

geometrical design variables, they are:

• the thickness of both top and bottom skins, ht and hb respectively;

• the thickness of the core hc;

• the geometrical parameters of the unit cell of the honeycomb core l1, l2, tc and ϑ, see

Fig. 2.

The geometrical and material design variables along with their nature and bounds for the

�rst-level problem are detailed in Table 2. At this level of the optimisation procedure,
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the thickness of the laminated skins is considered as a discrete optimisation variable, the

discretisation step being equal to the thickness of the elementary layer used for the fabri-

cation of the laminate, i.e. ∆ht = ∆hb = hply (see Table 1). This assumption responds to

a technological constraint, and, in addition, the optimal value of these parameters will give

us also the optimal number of layers n to be used during the second-level design procedure.

Moreover, in order to obtain a �true� sandwich panel, i.e. a plate characterised by a

thick core and thin skins, we introduced a geometrical constraint on the ratio between the

thickness of each skin and that of the core. Such constraints can be written as follows:

g1(xg) =
ht
hc

− 1

20
≤ 0 ,

g2(xg) =
hb
hc

− 1

20
≤ 0 .

(1)

where xg = {ϑ, tc, l2, l1, hc, ht, hb} is the vector of the geometrical design variables of the

problem. Together with the previous ones, we have to add further constraints to ensure the

positive de�niteness of the sti�ness matrix of the honeycomb core whose e�ective elastic

properties depend on the geometric parameters of the unit cell. These constraints can be

written as follows (see [12] for more details):

g3(xg) = −Ec
1 < 0 ,

g4(xg) = −Ec
2 < 0 ,

g5(xg) = −Ec
3 < 0 ,

g6(xg) = −Gc
12 < 0 ,

g7(xg) = −Gc
13 < 0 ,

g8(xg) = −Gc
23 < 0 ,

g9(xg) = |νc12| −
√

Ec
1

Ec
2

< 0 ,

g10(xg) = |νc13| −
√

Ec
1

Ec
3

< 0 ,

g11(xg) = |νc23| −
√

Ec
2

Ec
3

< 0 ,

g12(xg) = 2νc12ν
c
13ν

c
23

Ec
3

Ec
1

+ (νc12)
2 E

c
2

Ec
1

+ (νc23)
2 E

c
3

Ec
2

+ (νc13)
2 E

c
3

Ec
1

< 0 .

(2)

The terms Ec
1, E

c
2, E

c
3, G

c
12, G

c
13, G

c
23, ν

c
12, ν

c
13 and νc23 are the e�ective material proper-

ties (engineering moduli) of the homogeneous orthotropic honeycomb core and they are

determined via the numerical homogenisation phase detailed in Part I of the present work.

Therefore, Eqs. (2) represent a set of optimisation constraints indirectly applied on the

geometrical variables of the repetitive unit of the honeycomb core.
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3.2 Mechanical design variables

Concerning the mechanical variables we use the polar formalism which gives a represen-

tation of any planar tensor by means of a complete set of independent invariants, i.e. the

polar parameters. Using the polar formalism, the representation of the reduced sti�ness

tensor Q for an anisotropic layer expressed in the lamina material frame {O;x1, x2, x3}
(using Voigt's notation) is:

Q11 = T0+ 2T1+ R0 cos 4Φ0+ 4R1 cos 2Φ1 ,
Q16 = R0 sin 4Φ0+ 2R1 sin 2Φ1 ,
Q12 = −T0+ 2T1− R0 cos 4Φ0 ,
Q66 = T0− R0 cos 4Φ0 ,
Q26 = − R0 sin 4Φ0+ 2R1 sin 2Φ1 ,
Q22 = T0+ 2T1+ R0 cos 4Φ0− 4R1 cos 2Φ1 ,

(3)

where T0, T1, R0, R1 and (Φ0 − Φ1) are the polar tensor invariants. T0 and T1 are linked

to the isotropic part of the tensor (the isotropic moduli), R0 and R1 are linked to the

anisotropic part of the tensor (the anisotropic moduli), whilst Φ0 and Φ1 are the polar

angles (that give the direction of the main axes of the tensor). The advantages of the polar

formalism are at least three: �rstly, the tensor is expressed (by means of a complex-variable

transformation) through a set of tensor invariants, secondly each invariant is linked to a

precise elastic symmetry (for example the tensor is isotropic when R0 = R1 = 0 or it shows

the so-called square symmetry when R1 = 0, etc.) and, �nally, any rotation of the tensor

can be easily expressed by subtracting the rotation angle from the polar angles Φ0 and Φ1.

For more details on the polar formalism the reader is addressed to [27, 31].

The constitutive law of a laminate in the framework of the Classical Laminate Plate

Theory (CLPT) is:

N = A ε+B χ ,
M = B ε+D χ .

(4)

where N and M are the second-rank tensors representing the membrane forces and the

bending moments, respectively, ε and χ are the second-rank tensors of in-plane strains

and curvatures of the laminate middle plane, whilst A, D and B are the fourth-rank

tensors of membrane, bending and membrane/bending coupling sti�ness, respectively. The

composition laws of tensors A, B and D for a laminate composed by n plies are:

A =
n∑

k=1

Qk (δk) (zk − zk−1) ,

B =
1

2

n∑
k=1

Qk (δk)
(
z2k − z2k−1

)
,

D =
1

3

n∑
k=1

Qk (δk)
(
z3k − z3k−1

)
.

(5)

δk represents the �bres orientation angle of the kth ply with respect to the laminate global

frame, whilst zk and zk−1 represent the z coordinate of the top and bottom surface of the
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kth ply, respectively, see [12]. It is useful to introduce the normalised sti�ness tensors as

follows:

A∗ =
A

h
,B∗ =

2B

h2
,D∗ =

12D

h3
. (6)

where h is the overall thickness of the laminate. The conditions for quasi-homogeneity and

orthotropy are expressed as, see [13, 27]:

B∗ = 0,
C = A∗ −D∗ = 0,

ΦA∗
0 − ΦA∗

1 = KA∗ π

4
,

(7)

where C is the homogeneity tensor whilst KA∗
is the parameter giving the shape of the

orthotropy, that can get the values 0 or 1, see [27]. The quasi-homogeneity condition

ensures that the laminate has identical in-plane and bending behaviours: in this case

the design domain of the elastic moduli is the same for in-plane and bending normalised

sti�ness tensors, and one single set of polar invariants can describe both elastic behaviours.

Quasi-homogeneous laminates are a well-known class of laminates, that are widely used in

the design of membrane as well as �exural properties, see [29]. All the previous tensors

can be express through the polar formalism. For instance, the expression of the polar

parameters of tensor A∗ in terms of those of the constitutive layers, for an orthotropic

laminate composed by identical plies, is:

TA∗
0 = T0 ,

TA∗
1 = T1 ,

(−1)K
A∗
RA∗

0 e4iΦ
A∗
1 =

1

n
(−1)KR0

n∑
j=1

e4iδj ,

RA∗
1 e2iΦ

A∗
1 =

1

n
R1

n∑
j=1

e2iδj .

(8)

Eq. (8) shows that in the case of a laminate composed by identical plies the isotropic moduli

of the in-plane normalised sti�ness tensor A∗ are equal to those of the elementary layer,

thus they do not take part into the optimisation process as design variables, see [7, 13, 27].

Moreover we can introduce the quantity

RA∗
0K = (−1)K

A∗
RA∗

0 , (9)

which is obtained combining the two invariants RA∗
0 and KA∗. Therefore, taking into

account all the previous considerations and thanks to quasi-homogeneity and orthotropy

conditions, see Eq. (7), we can reduce to only three the total number of mechanical design

variables describing the behaviour of each laminated skin: the anisotropic polar param-

eters RA∗
0K and RA∗

1 and the polar angle ΦA∗
1 that represents the orientation of the main

orthotropy axis.
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In addition, in the formulation of the optimisation problem for the �rst level of the

strategy, we have also to impose the geometric and feasibility constraints on the polar

parameters, which arise from the combination of the layer orientations and positions within

the stack. These constraints ensure that the obtained optimal polar parameters correspond

to a feasible laminate that will be designed during the second step of the optimisation

strategy, see [28]. Since the laminate is quasi-homogeneous, such geometric constraints can

be written only for tensor A∗ as follows:
−R0 ≤ RA∗

0K ≤ R0 ,

0 ≤ RA∗
1 ≤ R1 ,

2

(
RA∗

1

R1

)2

− 1−
RA∗

0K

R0
≤ 0 .

(10)

Of course, the previous equations must be written for the mechanical design variables of

both top and bottom skins which are: the three polar parameters of the top skin, namely(
RA∗

0K

)
t
,
(
RA∗

1

)
t
and

(
ΦA∗
1

)
t
and the corresponding ones of the bottom skin, i.e.

(
RA∗

0K

)
b
,(

RA∗
1

)
b
and

(
ΦA∗
1

)
b
. The previous variables can be grouped into the vector of mechanical

design variables as follows: xm =
{(

RA∗
0K

)
t
,
(
RA∗

1

)
t
,
(
ΦA∗
1

)
t
,
(
RA∗

0K

)
b
,
(
RA∗

1

)
b
,
(
ΦA∗
1

)
b

}
.

First and second constraints of Eq. (10) can be taken into account as admissible intervals

for the relevant optimisation variables, i.e. on
(
RA∗

0K

)
t
,
(
RA∗

0K

)
b
,
(
RA∗

1

)
t
and

(
RA∗

1

)
b
. Hence,

the geometrical constraints imposed to the optimisation problem are:

g13(xm) = 2

((
RA∗

1

)
t

R1

)2

− 1−
(
RA∗

0K

)
t

R0
≤ 0 ,

g14(xm) = 2

((
RA∗

1

)
b

R1

)2

− 1−
(
RA∗

0K

)
b

R0
≤ 0 .

(11)

For a wide discussion upon the laminate feasibility and geometrical bounds as well as on

the importance of the quasi-homogeneity assumption the reader is addressed to [28].

3.3 Mathematical statement of the problem

As previously said, the aim of the �rst level optimisation is the weight minimisation of the

sandwich panel satisfying, simultaneously, constraints of di�erent nature. The design vari-

ables (both geometrical and mechanical) of the problem can be grouped into the following

vector:

x =
{
ϑ, tc, l2, l1, hc,

(
RA∗

0K

)
t
,
(
RA∗

1

)
t
,
(
ΦA∗
1

)
t
, ht,

(
RA∗

0K

)
b
,
(
RA∗

1

)
b
,
(
ΦA∗
1

)
b
, hb

}
. (12)
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Therefore the optimisation problem can be formulated as follows:

min
x

W (x)

subject to:

λref − λ (x) ≤ 0 ,

gi(x) ≤ 0 , with i = 1, 2, ..., 14 .

(13)

where W is the weight of the sandwich plate, while λ is the �rst buckling load. λref is the

buckling load determined on a reference structure having the same in-plane dimensions and

boundary conditions than those of the sandwich plate that will be optimised, see Sec. 6.

Constraints g1(x) and g2(x) impose the maximum admissible aspect-ratio between the

thickness of the core and each skin, see Eq. (1), whilst constraints from g3(x) to g12(x) (see

Eq. (2)) are imposed in order to ensure the positive de�niteness of the sti�ness tensor of the

core. Finally, constraints g13(x) and g14(x) are the geometrical and feasibility constraints

imposed on the polar parameters of top and bottom skins, see Eq. (11).

3.4 Numerical strategy

Problem (13) is a non-linear, non-convex problem in terms of both geometrical and me-

chanical variables. Its non-linearity and non-convexity is due on one side on the nature of

the objective function and on the other side on the optimisation constraints, specially the

constraint on the buckling load that is a high non-convex function in terms of both the

orthotropy orientation (bottom and top laminates) and the corrugation angle of the unit

cell of the core. In addition, the complexity of such a problem is also due to the existence

constraints imposed on the technical moduli of the honeycomb core, see. Eq. (2), that are

highly non-convex functions of the geometrical parameter of the unit cell (see Part I). The

total number of design variables is 13 while the total number of optimisation constraints

is 15 (see Eqs. (12) and (13), respectively).

For the resolution of problem (13) we used the new version of the GA BIANCA [13,

20] coupled with both the meso-scale FE model for the numerical homogenisation of the

honeycomb core and the macro-scale FE model of the sandwich panel for the buckling

analysis of the structure, see Fig. 3. The new version of the GA BIANCA was already

successfully applied to solve di�erent kinds of real-world engineering problems, see for

example [7, 14�16, 18, 19].

As shown in Fig. 3, for each individual at each generation, we perform a numerical sim-

ulation for the evaluation of the e�ective material properties of the core and a subsequent

numerical evaluation of the �rst buckling load of the sandwich structure along with its

weight. The meso-scale FE model uses the geometrical parameters of the unit cell, given

by the GA BIANCA, in order to homogenise the honeycomb core and to determine its

e�ective material properties. Afterwards, the macro-scale FE model uses the geometrical
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and mechanical design variables of the skins given by BIANCA together with the e�ective

material properties of the core (issued from the meso-scale FE model of the cell) to evaluate

the �rst buckling load of the structure and its weight. Therefore, for these purposes the GA

BIANCA has been interfaced with the commercial FE code ANSYSr. The GA BIANCA

elaborates the results of the two FE analyses in order to execute the genetic operations.

These operations are repeated until the GA BIANCA meets the user-de�ned convergence

criterion.

The generic individual of the GA BIANCA represents a potential solution for the

problem at hand. The genotype of the individual for problem (13) is characterised by only

one chromosome composed of 13 genes, each one coding a component of the vector of the

design variables, see Eq. (12).

4 Methematical formulation of the second-level problem

The second-level problem concerns the lay-up design of both top and bottom skins. Such

a problem consists in determining at least one stacking sequence satisfying the optimum

values of both geometric and polar parameters resulting from the �rst level of the strategy

and having the elastic symmetries imposed on the laminate within the formulation of

the �rst-level problem, i.e. quasi-homogeneity and orthotropy. In the framework of the

polar formalism, this problem can be stated in the form of an unconstrained minimisation

problem:

min
δ

I (fi (δ)) (14)

with

I (fi (δ)) =
6∑

i=1

fi (δ) . (15)

where δ is the vector of the layer orientations, i.e. the design variables of this phase, while

fi (δ) are quadratic functions in the space of polar parameters, each one representing a

requirement to be satis�ed, such as orthotropy, uncoupling, etc.. For the problem at hand

we have:

f1(δ) =

(
|ΦA∗

0 (δ)− ΦA∗

1 (δ)|
π/4

−KA∗(opt)

)2

, f2(δ) =

(
RA∗

0 (δ)−R
A∗(opt)
0

R0

)2

,

f3(δ) =

(
RA∗

1 (δ)−R
A∗(opt)
1

R1

)2

, f4(δ) =

(
|ΦA∗

1 (δ)− Φ
A∗(opt)
1 |

π/4

)2

, f5(δ) =

(
||C(δ)||
||Q||

)2

,

f6(δ) =

(
||B∗(δ)||
||Q||

)2

,

(16)
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where f1 (δ) represents the elastic requirement on the orthotropy of the laminate having the

prescribed shape (imposed by the value of KA∗
provided by the �rst step of the procedure),

f2 (δ), f3 (δ) and f4 (δ) are the requirements related to the prescribed values of the optimal

polar parameters issued from the �rst-level problem, while f5 (δ) and f6 (δ) are linked to

the quasi-homogeneity condition.

I (fi (δ)) is a positive semi-de�nite convex function in the space of laminate polar

parameters, since it is de�ned as a sum of convex functions, see Eqs. (15)-(16). Nevertheless,

such a function is highly non-convex in the space of plies orientations because the laminate

polar parameters depend upon circular functions of layers orientation angles, see Eq. (8).

Moreover, one of the advantages of such a formulation consists in the fact that the absolute

minima of I (fi (δ)) are known a priori since they are the zeroes of this function. For more

details about the nature of the second-level problem see [13, 17, 19]. We used the GA

BIANCA to �nd a solution also for the second-level problem. In this case, each individual

has a genotype composed of n chromosomes, one for each ply, characterised by a single

gene coding the layer orientation. It must be pointed out that problem (14) must be solved

two times, i.e. for each laminated plate composing the panel (bottom and top faces). We

recall that the optimal thickness of the two laminated skins is a result of the �rst step of

the procedure, where the thickness variables ht and hb are set as discrete variables with

a discretisation step equal to the thickness of the elementary ply, see Table 2. From the

knowledge of ht and hb we can, hence, determine the optimal number of plies composing

each skin.

As conclusive remark of this section, we want to highlight the fact that each ply orien-

tation can get all the values in the range [-89◦, 90◦] with a discretisation step of 1◦. Such

a discretisation step has been chosen in order to prove that laminates with given elastic

properties (such as membrane/bending uncoupling, membrane orthotropy, etc.) can be

obtained by abandoning the well-known conventional rules for tailoring the laminate stack

(e.g. symmetric-balanced stacks) which extremely shrink the search space for the problem

at hand. The true advantages in using �non-conventional� staking sequences consist in the

fact that on one hand with a discretisation step of one degree for the plies orientations we

can explore the overall design space of problem (14) and on the other hand we can �nd

very general stacks (nor symmetric neither balanced) that fully meet the elastic properties

resulting from the �rst step of the procedure with a fewer number of plies (hence lighter)

than the standard stacks, see [13, 19].

5 Finite element models of the sandwich plate

The FE models used at the �rst-level of the strategy are built using the FE commercial

code ANSYSr. The FE analyses are conducted to determine the value of the objective
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and constraint functions for each individual, i.e. for each point in the design space, at the

current generation.

The need to analyse, within the same generation, di�erent geometrical con�gurations

(plates with di�erent geometrical and material properties), each one corresponding to an

individual, requires the creation of an ad-hoc input �le for the FE code that has to be

interfaced with BIANCA. The FE model must be conceived to take into account a variable

geometry, material and mesh. Indeed, for each individual at the current generation the

FE code has to be able to vary in the correct way the number of elements wherein the

structure is discretised, thus a correct parametrisation of the model has to be achieved.

During the optimisation process of the �rst level of the strategy we have to perform,

for each individual, seven FE analyses (see Fig. 3): six static analyses on the FE model of

the unit cell of the honeycomb core (in order to determine the e�ective material properties,

see also Part I) and a linear buckling analysis of the whole sandwich panel.

5.1 Finite element model of the unit cell

In order to accurately determine the e�ective properties of the core we need a numerical

homogenisation phase. In this way the periodic honeycomb structure is replaced, at the

macro-scale, by an equivalent orthotropic homogeneous solid whose material properties

depend on the geometric parameters of the repetitive unit of the honeycomb. In particular,

these properties have been determined using the strain energy homogenisation technique

of periodic media, as described in Part I of the present work. This technique makes use

of the repetitive unit of the periodic structure to approximate its e�ective properties at

the macro-scale level. As illustrated in Fig. 4 of Part I the meso-scale FE model is built

using the 20-node ANSYS solid element SOLID186. For a deeper insight in the matter the

reader is addressed to Part I of this study.

5.2 Finite element model of the sandwich panel

At the macro-scale the structure is modelled with a combination of shell and solid elements.

In particular, the laminated skins are modelled using ANSYS SHELL281 elements with

8-nodes and six degrees of freedom (DOFs) per node, and their mechanical behaviour

is described by de�ning directly the normalised sti�ness tensors A∗, B∗ and D∗. The

equivalent solid representing the core is modelled using ANSYS SOLID186 elements with

20-nodes and 3 DOFs per node having the material properties issued from the six FE static

analyses of the unit cell. Concerning the BCs of the FE model at the macro-scale, they are

depicted in Fig. 4 and listed in Table 3. In particular, such BCs are applied on the sides

of the top and bottom skins and not on the core.

The compatibility of the displacement �eld between skins (modelled with shell ele-

ments) and core (modelled with solid elements) is achieved by using ANSYS CERIG rigid
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constraints (also called rigid links) whose formulation is based upon a classical master-slave

scheme, see [4] for more details. Rigid constraints are imposed on each node belonging to

contiguous solid and shell elements as depicted in Fig. 4. In particular, rigid links are de-

�ned between the nodes of the middle plane of the top (bottom) skin and the corresponding

ones of the top (bottom) surface of the solid core. In this case the master nodes are those

belonging to shell elements (the skins), while slave nodes are those belonging the top and

bottom surfaces of the core.

Finally, before starting the optimisation process we conducted a sensitivity study (not

reported here for the sake of brevity) on the proposed FE model with respect to the mesh

size. We checked that a mesh having 12088 DOFs, i.e. showing two divisions through the

core thickness hc, is su�cient to properly evaluate the �rst buckling load of the structure.

6 Studied cases and results

The optimisation strategy has been applied to the sandwich structure depicted in Fig. 1.

As previously said, the sandwich plate is composed by two laminated skins and a honey-

comb core. We remind that the skins are made of carbon-epoxy unidirectional orthotropic

laminae while the honeycomb core is made of aluminium foils with the material properties

listed in Table 1.

In order to show the e�ectiveness of the proposed approach we studied two di�erent

cases. In the �rst case we perform the optimal design of a sandwich plate having a �xed

core thickness, while in the second case we introduce also the core thickness among the

design variables. Moreover, for each case we considered two sub-cases: the �rst one wherein

we design a sandwich plate with identical skins and the second one, more general, where

the sandwich plate is characterised by di�erent skins. It should be pointed out that the

1st studied case is considered in order to show that our strategy is capable to search for

an optimal solution more e�cient (in terms of weight and �rst buckling load) than the

reference one, even when the design problem expects a design constraint on the overall

dimensions of the structure, for example on the thickness of the core. On the other hand,

with the 2nd studied case our aim is to prove that the optimisation strategy is able to �nd

an optimum con�guration of the sandwich plate with better overall properties than the

reference structure in the most general case, i.e. when the thickness of the core is included

among the design variables.

As said in Section 3 the goal of this optimisation problem is to minimise the weight of

the sandwich panel satisfying simultaneously several constraints, in particular, a constraint

on the �rst buckling load that has to be greater or equal than the �rst buckling load of a

reference structure having the characteristics listed in Table 4. In particular, the reference

structure has identical skins, so it is a symmetric sandwich panel, each one composed
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by 32 plies with the stacking sequence listed in Table 4. We have chosen as reference

solution a non-trivial con�guration with a honeycomb core characterised by a unit cell

having the typical dimensions of commercial honeycombs (a regular hexagonal cell whose

sizes are taken from [1, 23]) and two very sti� skins. In fact, the weight and the sti�ness

properties (in terms of buckling load) of such a reference con�guration are typical of real-

world engineering applications (in other words the reference solution still represents a

�good� compromise between weight and sti�ness requirements).

Concerning the BCs we remind that we considered, for every studied case, a simply

supported panel submitted to bi-axial compressive loads (Nx = Ny) applied along the

edges of top and bottom skins, see Fig. 4 and Table 3.

Regarding the setting of the genetic parameters for the GA BIANCA used to solve

both �rst and second-level problems they are listed in Table 5. Moreover, concerning the

constraint-handling technique for the �rst-level problem the Automatic Dynamic Penal-

ization (ADP) method has been employed, see [20]. For more details on the numerical

techniques developed within the new version of BIANCA and the meaning of the values of

the di�erent parameters tuning the GA the reader is addressed to [13, 19].

6.1 Case 1.a: sandwich plate with �xed core thickness and identical

skins

For this �rst example, since the height of the core is �xed a priori (hc = 80 mm) and the

panel is characterised by identical skins, the number of design variables reduces from 13 to

8. Moreover, the fact that top and bottom skins are assumed to be identical implies the

reduction of optimisation constraints: they pass from 15 to 13 because constraints g1(x)

and g2(x) (Eq. 2) as well as g13(x) and g14(x) (Eq. 11) are coincident.

The optimal values of the geometric as well as mechanical design variables issued from

the �rst-level of the optimisation strategy are listed in Table 6. The global constrained

minimum has been found by BIANCA after 80 generations, as shown in Fig. 5. As it can

be easily seen, the optimum con�guration has a weight of 38.04 Kg (about 7% lower than

that of the reference structure) with a �rst buckling load of 5695.00 N/mm (almost equal

to the reference one).

We want to highlight the following aspects which naturally arises when analysing the

optimum con�guration of the system issued from the �rst step of the procedure:

1. through this �rst case-study, which is the most limited in terms of span of the search

space (�xed thickness of the core and identical skins), we have shown the possibility

of conceiving an optimal solution of sandwich panel lighter than the reference one

but having the same overall dimensions and the same sti�ness. In particular, the

weight reduction is linked only to the variation of the geometry of the unit cell (the

weight contribution of the skins is the same as that of the reference panel) whereas
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the constraint on the buckling load is satis�ed thanks to the optimal combination of

the polar parameters characterising the laminated skins;

2. when looking at the values of Table 6, one can notice that the reference solution is

characterised by an orthotropy shape with KA∗
= 1, whilst the optimum con�gura-

tion has the orthotropy shape with KA∗
= 0. This implies that the nature of the

laminate stack (that we will determine in the second level of the strategy) will be

completely di�erent.

As a consequence of these considerations, we can suppose that a further generalisation of

the optimisation problem, i.e. by considering di�erent skins (as we do in the subsequent

case 1.b), should lead to an optimal solution lighter than that obtained in this �rst case

study.

We have to consider now the second-level problem: the design of the laminate lay-

up. Since in this case the laminate of the skins are identical, the second-level problem

is solved only one time. Table 7 shows the best stacking sequences for all the studied

cases. As in each numerical technique, the quality of solutions found by BIANCA can be

estimated on the basis of a numerical tolerance, that is the residual. For a discussion on

the importance of the numerical residual in problems of this type, the reader is addressed

to [13, 17]. I (fi (δ)) is a non-dimensional function, thus the residual of the solution is

a non-dimensional quantity too. The residual in the last column of Table 7 is the value

of the global objective function I (fi (δ)) for the solution indicated aside (we remind that

exact solutions correspond to the zeroes of the objective function, see [17]). From Table 7

we can see that the optimal stacks (for all cases) are very general stacks which completely

satisfy the elastic requirements of the laminate. In fact, for this �rst case Fig. 6 shows the

�rst component of the homogenised sti�ness tensors of the laminate, i.e. A∗, B∗ and D∗:

the solid line refers to the extension tensor, the dashed one to the bending tensor, while

the dash-dotted one is linked to the coupling sti�ness tensor. We can see that the laminate

is uncoupled as the dash-dotted curve is reduced to a point in the center of the plot (B11

is practically null), homogeneous as the solid and dashed curves are almost coincident and

orthotropic because there are two orthogonal axes of symmetry in the plane. In addition,

the main orthotropy axis for this case is oriented at ΦA∗
1 = 45◦ as indicated in Table 6.

6.2 Case 1.b: sandwich plate with �xed core thickness and di�erent

skins

In this case the height of the core is still �xed a priori (hc = 80 mm) while the panel

is characterised by di�erent skins, hence, with respect to case 1.a the number of design

variables increases from 8 to 12, while the optimisation constraints increase from 13 to 15

and correspond to those of Eq. (13).
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The optimal values of geometric as well as mechanical design variables issued from

the �rst level of the optimisation strategy are listed in Table 6. The global constrained

minimum has been found by BIANCA after 180 generations as depicted in Fig. 7. The

optimum con�guration weighs 36.88 Kg (a reduction of 10% when compared to that of the

reference structure) with a �rst buckling load of 5704.32 N/mm (0.2% greater than the

reference one).

This solution, as expected, is lighter than that of the case 1.a with a di�erence of

1,16 Kg with almost the same buckling load. This di�erence is mainly due to the weight

contribution given by the two skins. In fact, the optimal solution of the present case is

characterised by two di�erent skins with a thickness of 3.5 mm (28 plies), i.e. a reduction

of four layers when compared to the thickness of the skins of case 1.a.

On the other side, the thickness reduction of the skins has led to a thickness increment

of the cell walls of the core and, therefore, to an increase of its weight of about 2.4 kg

compared to the solution 1.a. The variation of the geometry of the unit cell together with

the variation of the polar parameters of the skins occur in order to meet the prescribed

minimal sti�ness of the whole structure through the constraint on the �rst buckling load.

Finally, the rise in the number of variables involved in �rst-level problem has led the

GA to �nd an optimal solution less bulky (thinner than the reference one of about 1 mm)

and lighter of 4.14 kg compared to the reference solution and of 1.16 kg compared to the

optimal solution of case 1.a.

Concerning the second-level problem, since in this case the laminated skins are di�erent,

the laminate design problem must be solved separately for top and bottom skins. Table 7

shows the best stacking sequences for both the skins for the present case, while Fig. 8 shows

the polar diagrams for the �rst component of the corresponding homogenised sti�ness

tensor. Regarding the nature of the optimal stacks, even for this case, we can repeat the

same considerations as those of case 1.a.

6.3 Case 2.a: sandwich plate with variable core thickness and identical

skins

The aim of cases 2.a and 2.b consists in proving that more e�cient con�gurations of the

sandwich panel can be found when considering the most general case, i.e. by including the

core height hc among the design variables of the problem.

In this �rst sub-case we consider a panel with identical skins. As in the case 1.a,

this implies a reduction of the number of design variables that passes from 13 to 9 when

compared to the most general case, whilst the number of optimisation constraints reduces

from 15 to 13.

The optimal values of geometric as well as mechanical design variables resulting from

the �rst-level of the optimisation strategy are listed in Table 6. The global constrained
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minimum has been found by BIANCA after 170 generations as illustrated in Fig. 9. The

optimum con�guration has a weight of 32.24 Kg (about 21.4% lower than that of the refer-

ence structure) with a �rst buckling load of 5700.26 N/mm (almost equal to the reference

one).

As provided in the comments to case 1.a, the generalisation of the optimisation problem

has led to more e�cient solutions, i.e. lighter solutions. In this case, both skins and core

are lighter than those of solution 1.b: the skins are lighter than those of the reference

solution of 3.55 Kg, whilst the core is lighter than its reference counterpart of about 1.09

Kg, see Table 6. In particular the skins, for the present solution, are composed by 24

plies (ht = hb = 3 mm). This weight reduction is translated, in terms of geometrical

characteristics of the structure, in a core thickness incrementation (that passes from 80.00

mm for cases 1.a and 1.b to 121.00 mm for the present case) in order to meet the constraint

on the �rst buckling load and, thus spacing the skins in order to increase the bending

sti�ness of the panel.

Concerning the results of the second-level problem the optimal stack is listed in Table 7

while the related polar diagrams are depicted in Fig. 10. The considerations already done

for the previous cases can be repeated verbatim for the present one.

6.4 Case 2.b: sandwich plate with variable core thickness and di�erent

skins

In this last example we consider the most general case where the thickness of the core is

included among the design variables and the skins are di�erent, thus the vector of design

variables corresponds to that of Eq. (12).

The optimal values of geometric as well as mechanical design variables issued from the

�rst level of the optimisation strategy are listed in the last column of Table 6. The global

constrained minimum has been found by BIANCA after 90 generations as shown in Fig. 11.

The optimum con�guration has a weight of 31.74 Kg (about 22.6% lower than that of the

reference structure) with a �rst buckling load of 5721.29 N/mm (0.5% greater than the

reference one).

The solution given by this last case is the lightest one and also the sti�est one: this

is due to the combined action on one hand of the core height that increases up to 121

mm, thus spacing the skins and increasing the �exural sti�ness of the sandwich panel and

on the other hand of the polar parameters of the skins (that are di�erent) which attain

the optimum con�guration that slightly increases the buckling load. It can be noticed

that, unlike case 1.b, here the skins are di�erent not only in terms of the polar parameters

values but also in terms of the shape of orthotropy, see Table 6: the top skin has a negative

value of the parameter RA∗
0K (orthotropy shape with KA∗

= 1), while the bottom skin is

characterised by an orthotropy shape with KA∗
= 0. For the rest, the overall dimensions
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are identical to those of the solution of case 2.a, whilst at the meso-scale the unit cell

geometry di�ers from that of the solution of case 2.a.

Concerning the results of the second-level problem the optimal stacks for both bottom

and top skins are listed in Table 7, while the related polar diagrams are depicted in Fig. 12.

We want to remark the fundamental di�erence in the orthotropy shape of the laminated

skins: as can be easily seen from Fig. 12 the orhtotropy shape of the top skin, which

has the main orthotropy axis oriented at 0◦, is the so-called �dog bone� orthotropy (due

to the shape of the polar diagram), whilst the orthotropy shape of the bottom skin is a

standard shape with the orthotropy axes oriented at -45◦, see also Table 6. For the rest,

the considerations already done for case 2.a can be repeated here.

7 Conclusions

The design strategy presented in this paper is a numerical optimisation procedure char-

acterised by several features that make it an innovative, e�ective and general method for

the design of complex multi-scale structures. In the present work this strategy has been

employed to deal with the problem of the optimum design of a sandwich panel composed

of two laminated skins and a honeycomb core.

On one hand, the design process is not submitted to restrictions: any parameter char-

acterising our structure is an optimisation variable. This allows us to look for a true global

minimum, hard to be obtained otherwise.

On the other hand, in order to solve the problem in a very general way we split it

into two distinct but linked non-linear minimisation problems which are solved within

the same multi-scale procedure developed on two di�erent levels. The �rst level of the

procedure involves two di�erent scales: the macro-scale of the sandwich panel composed

by two homogeneous anisotropic plates (the skins) along with an homogeneous anisotropic

core and the meso-scale of the honeycomb core modelled through its representative volume

element. Many types of design variables are involved within this �rst level: the geometrical

parameters of the honeycomb unit cell (meso-scale) together with the overall thickness and

the laminate polar parameters of each skin (macro-scale). The second level of the procedure

concerns the meso-scale of the laminated skins: in this phase, we look for the optimal

stacking sequences giving the optimum value of the thickness and of the laminate polar

parameters issued from the �rst step. Concerning the numerical computations, they are

carried out by a genetic algorithm, BIANCA, able to handle both continuous and discrete-

valued variables during the same iterations and to e�ectively handle the constraints of the

problem. For the solution of the �rst-level problem, the code BIANCA is interfaced with

the FE code ANSYS that invokes seven di�erent FE analyses in order to compute the

objective as well as the constraint functions of the problem.
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On the other hand, the mechanical characteristics of the laminated plates are repre-

sented by the polar formalism, that gives several advantages, namely to explicit elastic

symmetries, elastic and geometric bounds, and to eliminate from the procedure redundant

mechanical properties. In addition, the use of polar formalism leads us to easily formu-

late the second-level problem which takes into account all the possible combinations of

requirements on elastic properties.

To our best knowledge, this is the �rst time that the problem of the least-weight

design of a sandwich panel with a honeycomb core is formulated in a very general way, i.e.

abandoning the usual simplifying hypotheses and the standard rules, taking into account

all geometrical and material parameters characterising the structure as design variables

and considering, within the same procedure, two di�erent scales (meso and macro).

Finally, the use of an evolutionary strategy along with the fact that the problem is

stated in the most general case, leads us to �nd some non-conventional con�gurations more

e�cient than the standard ones. In fact, with some examples we show that when standard

rules for tailoring the laminate stacks are abandoned and all the parameters characterising

the structure, at each scale, are included among the design process a signi�cant weight

saving can be obtained: up to 10% when the core height is kept constant and up to 22%

when the core height is included among the variables compared to that of the reference

structure with almost the same buckling load.

However, the proposed solutions cannot be, probably, still employed for industrial pur-

poses as they are not manufacturable with the current technological capabilities. Thanks

to the general nature and the �exibility of the proposed optimisation strategy we can

take into account also manufacturability requirements by introducing further optimisation

constraints and/or modifying the design space of the optimisation problem. These consid-

erations remain still valid if the designer wants to include within the process constraints

of di�erent nature, e.g. on strength, yielding, delamination, etc. or if he wants to improve

the mathematical model to be optimised (i.e. the numerical model simulating the mechan-

ical response of the structure) by introducing the in�uence of geometrical imperfections,

material as well as geometrical non-linearity, etc. All of these aspects can be easily inte-

grated within the optimisation process without altering its overall architecture and they

do not represent a limitation to the proposed strategy, on the contrary they could be an

interesting challenge for future researches on real-life applications.
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Tables

Alluminium Carbon-Epoxy

Material properties

E 70000 MPa E1 181000 MPa
ν 0.33 E2 10300 MPa
ρ 2.7× 10−6 Kg/mm3 G12 7170 MPa

ν12 0.28
ρs 1.58× 10−6 Kg/mm3

hply 0.125 mm

Polar parameters

T0 26880 MPa
T1 24744 MPa
R0 19710 MPa
R1 21433 MPa
Φ0,Φ1 0 deg

Table 1: Material properties of the aluminium foil of the core and of the carbon-epoxy
laminae of the skins.

Design variable Type Lower bound Upper bound Discretisation step

ϑ [deg] discrete 0 90 1
tc [mm] discrete 0.03 0.07 0.001
l2 [mm] discrete 0.3 3.5 0.01
l1 [mm] discrete 0.6 14 0.1
hc [mm] discrete 25 150 1(
RA∗

0K

)
t
[MPa] continuous −19710.0 19710.0 -(

RA∗
1

)
t
[MPa] continuous 0 21433.0 -(

ΦA∗
1

)
t
[deg] discrete −90 90 1

ht [mm] discrete 3 6 0.125(
RA∗

0K

)
b
[MPa] continuous −19710.0 19710.0 -(

RA∗
1

)
b
[MPa] continuous 0 21433.0 -(

ΦA∗
1

)
b
[deg] discrete −90 90 1

hb [mm] discrete 3 6 0.125

Table 2: Design space of the �rst-level problem.

Sides Constraint

AB, A′B′, CD, C′D′ Ux = 0
Uz = 0

BC, B′C′, DA, D′A′ Uy = 0
Uz = 0

Table 3: BCs of the FE model of the sandwich panel.
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a, b [mm] 1500.00
ϑ [deg] 60.00
tc [mm] ×10−2 6.35
l2 [mm] ×10−1 18.33
l1 [mm] ×10−1 36.66
hc [mm] 80(
RA∗

0K

)
t
[MPa] −9855.21(

RA∗
1

)
t
[MPa] 5358.28(

ΦA∗
1

)
t
[deg] 0.0

ht [mm] 4.00(
RA∗

0K

)
b
[MPa] −9855.21(

RA∗
1

)
b
[MPa] 5358.28(

ΦA∗
1

)
b
[deg] 0.0

hb [mm] 4.00
Skins Weight [Kg] 28.44
Core weight [Kg] 12.58
Panel weight [Kg] 41.02
Buckling load [N/mm] 5691.88

Stacking sequence N. of plies

[45/0/45/45/− 45/45/− 45/0/ 32
0/45/− 45/45/− 45/− 45/0/45]s

Table 4: Reference solution for the sandwich panel design problem.

Genetic parameters

1st level problem 2nd level problem

Npop 1 1
Nind 160 500
Ngen 200 500
pcross 0.85 0.85
pmut 1/Nind 1/Nind

Selection roulette-wheel roulette-wheel
Elitism active active

Table 5: Genetic parameters of the GA BIANCA for both �rst and second-level problems.

Solution Solution Solution Solution
case 1.a case 1.b case 2.a case 2.b

ϑ [deg] 48.00 47.00 44.00 49.00
tc [mm] ×10−2 5.40 6.50 6.60 4.40
l2 [mm] ×10−1 6.10 3.00 3.70 5.50
l1 [mm] ×10−1 49.00 49.00 85.00 57.00
hc [mm] 80 80 121.00 121.00(
RA∗

0K

)
t
[MPa] 19324.70 19594.40 13429.00 −18785.20(

RA∗
1

)
t
[MPa] 2053.21 356.17 5677.75 1822.75(

ΦA∗
1

)
t
[deg] 45.00 −45.00 −60.00 0.00

ht [mm] 4.00 3.50 3.00 3.00(
RA∗

0K

)
b
[MPa] 19324.70 19324.70 13429.00 9267.36(

RA∗
1

)
b
[MPa] 2053.21 167.61 5677.75 1948.45(

ΦA∗
1

)
b
[deg] 45.00 45.00 −60.00 −45.00

hb [mm] 4.00 3.5 3.00 3.00
Skins Weight [Kg] 28.44 24.88 21.33 21.33
Core weight [Kg] 9.60 12.00 10.91 10.41
Panel weight [Kg] 38.04 36.88 32.24 31.74
Buckling load [N/mm] 5695.00 5704.32 5700.26 5721.29

Table 6: Numerical results of the �st-level optimisation problem for both 1st and 2nd cases.
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Best stacking sequence N. of plies Residual

Case 1.a [40/− 48/− 46/45/45/− 50/− 50/− 42/41/44/44/44/41/− 57/− 27/44/ 32 3.39× 10−4

−53/44/41/− 50/− 46/41/41/− 51/− 47/50/− 46/− 42/− 51/42/40/45]

Case 1.b
Top skin [−44/46/− 44/46/41/− 44/− 44/46/46/46/− 49/− 44/51/− 44/46/ 28 1.04× 10−4

−49/41/− 44/− 39/41/46/− 44/46/− 44/− 44/46/− 49/46]
Bottom skin [43/43/− 45/− 45/− 45/49/49/− 41/− 53/47/− 44/43/− 45/ 28 5.36× 10−5

−45/39/43/− 46/40/48/− 44/48/48/− 41/− 50/− 45/44/44/− 45]

Case 2.a [−70/− 56/27/44/19/− 65/− 26/− 51/85/− 58/− 60/− 64/− 55/ 24 1.80× 10−4

29/− 64/26/− 46/25/− 74/55/− 76/19/− 49/− 55]

Case 2.b
Top skin [−46/39/− 41/53/42/− 43/53/− 43/− 45/− 44/29/37/33/− 44/ 24 2.06× 10−3

45/54/− 46/− 44/− 44/− 43/40/44/− 43/32]
Bottom skin [20/− 37/− 57/45/89/− 20/− 49/58/− 41/50/− 53/− 50/0/ 24 1.07× 10−3

−50/37/31/33/77/− 22/− 49/63/− 62/− 36/47]

Table 7: Numerical results of the second-level optimisation problem for both 1st and 2nd

cases.
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Figures

Figure 1: Geometry of the sandwich panel.

Figure 2: Geometrical parameters of the unit cell of the honeycomb core.
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Figure 3: Logical �ow of the numerical procedure for the solution search of the �st-level
problem.
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Figure 4: Mesh and rigid constraint equations for the FE model of the sandwich panel.
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Figure 5: Best values of the objective function along generations, case 1.a.
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Figure 6: First component of the homogenised sti�ness tensors of the laminate [MPa], case
1.a.
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Figure 7: Best values of the objective function along generations, case 1.b.
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a)

b)

Figure 8: First component of the homogenised sti�ness tensors of the laminate [MPa], a)
top skin and b) bottom skin, case 1.b.
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Figure 9: Best values of the objective function along generations, case 2.a.
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Figure 10: First component of the homogenised sti�ness tensors of the laminate [MPa],
case 2.a.

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400

450

500

generations

W
m

in
 [

K
g

]

Figure 11: Best values of the objective function along generations, case 2.b.
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a)

b)

Figure 12: First component of the homogenised sti�ness tensors of the laminate [MPa], a)
top skin and b) bottom skin, case 2.b.
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