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Abstract
In this paper the feasibility of a speed estimator for a piezoelectric actuator used in a forging process is
studied. It is based on a simplified linear model and its robustness is tested using a more complex model
that include the hysteresis effects. The preliminary results proves that the concept is feasible despite the
non-linearities, provided that some parameters of the actuator are known.

Introduction

Vibration in forging processes
The application of vibrations during forming processes have raised interest since the late 50’s. In a
pioneering paper, Blaha and Langenecker [1] demonstrated that the load applied to a sample dropped
when sinusoidal vibrations were superimposed during tensile tests. This phenomenon is fully recognized
in the case of extrusion and drawing by several authors [2, 3, 4, 5]. The case of forging was less studied,
but some simulation results and reduced scale experiment showed the same trends [6, 7] in the case of
the setup presented on Fig. 1 (a). More recently it was theoretically and experimentally demonstrated
that in the plastic domain the dominant parameter is the relative speeds of upper die moving at constant
speed and the lower die which is animated by the vibration [8]. Such an effect is illustrated on Fig. 1
(b). The upper curve is the forging load without vibrations, then in decreasing order the filtered load
curves for sine and triangular waveforms appear. Substantial reduction of the force is obtained with the
last waveform. The specifications for the vibrations are :

• high forces (up to 6.103 kN)

• small displacement (40µm)

• speed up to 5 mm.s-1
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Figure 1: Vibrations assisted forging : (a) schematic of the process (b) Effects on the forging load

• nearly sawtooth like displacement waveform

therefore piezoelectric actuators seem well suited for this application, however some issues need to be
adressed.

Scope of the study
The benefit of the vibrations is theoretically maximized in the case of sawtooth displacement waveform
applied to the vibrating die. Obviously, this can only be approximated, and in practice, it isrealized by
imposing piecewise constant speed profile which alternatively take high and low values with a controlled
duty ratio. However, two problems appear :

• the piezoelectric actuator present hysteresis and creep nonlinearities

• the forging loads are non linear and vary during the process

Hence closed loop control must be implemented in order to follow the specified speed waveform. On
the other hand, in order to meet the load capability requirement, several piezoelectric actuators must be
used but the cost of speed sensors for each actuator is totally unacceptable. One possibility which is
currently investigated is to estimate the speed using measurement of the currents and voltages applied to
the actuators.

Outline of the paper
In this paper we will address the feasibility of such an estimator. Consideringthe cost involved, it is
necessary at this stage to validate the concept using simulations. Therefore, models with different de-
grees of accuracy have to be developed and implemented. First, a linear model of the actuator will be
considered. On this basis, using a macroscopic energetic representation and thanks to the simplicity of
the model, it is inversed and the estimator is derived. Second, in order to discriminate and adjust the
relevant parameter of the estimator, and test it against the non-linearities of the actual actuator, a more
complex model, able to capture the non-linearities is developed based on the Preisach model for voltage
and displacement as function of the electrical charges. The model was identified on a actuator using a
simple procedure which is one of the interesting feature of the proposed model. Finally the estimator is
tested and it will be shown that speed is correctly estimated. The limitation will also be explained in the
light of the model.



Linear model of the actuator

Linear constitutive equation of piezoelectricity
The piezoelectric actuator (PEA) convert electrical energy into mechanical energy. This process can be
modelled by using linear constitutive equations, as those proposed in [9]. In fact, two equations can be
introduced in 1, in order to describe the mechanical and the electrical behaviour of a piezo material.

{S}= [sE ]{T}+[d]{E} {D}= [d]{T}+[εT ]Ek (1)

where [d] is the Piezoelectric constant matrix, [sE ] is the elastic compliance constant, [εT ] is the Permit-
tivity component, {T}= {T11 T22 T33 T12 T13 T23} is the stress vector, {S}= {S11 S22 S33 S12 S13 S23} is the
strain vector, {E}= {E1 E2 E3} is the electric field, and {D}= {D1 D2 D3} is the electric displacement.

System modelling
The system (Fig. 2) considered in this section consists in the piezoelectric actuator (PEA), which polling
direction is aligned with axis z, attached to the mechanical load modeled by a mass M (representing the
weight of the die) and the forging load Fr. The force applied by the mass to PEA upper end (x = L where
L is actuator’s length) is F while the lower end is fixed. Two electrodes are bonded at x = 0 and x = L.
The cross section of the PEA is noted A. According to this system’s description, z is then a symmetry

Figure 2: The Piezoelectric actuator and the load M

axis. We will then note {E} = 0,0,E3, leading to E3 = V
L , and we have F = −T33A. So, equations 1

reduce to :

S33 = sE
33T33 +d33E3 D3 = d33T33 + ε33E3 (2)

Finally, the total expansion W of the PEA can be derived from the expression of S33 of equation 2 by
W =

∫
S33dz, leading to:

W = (sE
33T33 +d33E3)L =−

sE
33L
A

F +d33V (3)

The force F produced by the PEA can now be deduced from the voltage V accross the electrodes, and
the actual displacement of the actuator by:

F = KFV −KsW (4)

with Ks =
A

LsE
33

and KF = A
LsE

33
d33. Moreover, the total amount of charge on an electrode is calculated from

2 and Q =
∫ ∫

D33dxdy:

Q = d33T33A+ ε33E3A =−d33F + ε
A
L

V (5)

Taking into account 4, 5 is revised into 6 in order to remove F and introduce KF again:

Q =CbV +KFW (6)

where Cb = (ε A
L −d2

33) is the blocked capacitance of the PEA.



Figure 3: Energetic Macroscopic Representation of the system

These equations have to be re-organized to produce a causal modelling of the system in order to deduce
by inversion the equations of a force estimator. To achieve that, we only consider integral causality,
avoiding the use of derivative in our equations. From equation 6, we can then write that the voltage
across the PEA is obtained from the flowing current into the device i by:

V =
1

Cb

∫
(i− im)dt (7)

with im = KFẆ , also called the motionnal current of the PEA. We also define two internal variables Fp,
such as Fp = KFV and Fe, such as F = Fp−Fe. It is then obvious from equation 4 that:

Fe = KsW = Ks

∫
Ẇdt (8)

Finally, the load dynamic is given by equation 9:

Ẇ =
1
M

∫
(F−Fr)dt (9)

This modelling is then represented using the Energetic Macroscopic Representation (EMR). EMR high-
lights energy storage in the system using crossed out rectangles, in the case at hand :

• kinetic energy in the load M,

• electric energy in the piezomaterial and the blocked capacitance Cb,

• elastic energy in the piezomaterial due to Ks.

It also highlights the electrical to mecanical energy conversion process, symbolized by a disk. We found
that the voltage V is transformed into an internal force Fp, and in turn, the velocity of the load Ẇ produces
a motional current im which is an electrical reaction to the mechanical action.
Based on this causal modelling, a velocity estimator is described in the following section.

Velocity estimator
The velocity estimator is found by inverting the reaction chain (corresponding to the lower path) of the
EMR depicted in figure 3. By this way, it appears that estimation of Ẇ is more or less an estimation of
im; thus equation 7 have to be inverted. But direct inversion of a causal equation leads to a derivative
relationship between the estimated motional current ĩm and voltage V and current i: ĩm = i−Cb

dV
dt . This

derivative may brings measurements problems, because high frequency measurement noise of V is then
amplified. To reduce this problem, we used an other approached. This approached, described in [10],
consists in controlling a virtual capacitance Cb by the estimated current ĩm. This is presented in figure 4.
The velocity estimator consists in:
A virtual capacitance:

Vest =
1

Cb

∫
(i− ĩm)dt (10)



Figure 4: Energetic Macroscopic Representation of the velocity estimator; estimator’s path is highlighted in yellow

A voltage regulator made up with a PI controler with compensation of i:

ĩm = (Kvp +
Kvi

s
)(Vest −V )+ i (11)

An electrical to a mechanical conversion:

Ẇest =
1

KF
ĩm (12)

This estimator has been implemented into a Matlab Simulink model. Properties of the piezomaterial, as
well as the Parameters of the PI control are given in table I.

Blocked Cap. Rigidity Force factor Weight
Cb = 180nF Ks = 300N/µm KF = 5.6N/V M = 10g

Table I: Main specifications of the piezostack actuator ( Piezomechanik Pst 500/10-5/15 )

A sinusoidal voltage reference of 150V and 5Hz has been applied on the PEA and is presented in figure 5.
The voltage controler was designed in order to provide a closed loop bandwith of approximately 100Hz
which is enough for our application.

Figure 5: Voltage across the PEA V compared to voltage Vs given by equation 10

The curves depicted in figure 6 and 7 show the velocity of the Piezoelectric actuator compared to the
estimated one, where at t = 0, Fr increases from 0 to 500N in 0.1 s. Estimated value is consistent with
the output of the linear modelling, despite the response time of the motional current estimator. Moreover,
this estimator is robust regarding variation of the force F produced by the piezo actuator. The velocity
estimator automatically adapts to this loading conditions, after a transient response time.
This velocity estimator relies on a linear modelling of the actuator. However, actual actuator suffer from
non linearities in their electrical to mecanical energy conversion process. In order to check the feasability
of a speed estimator based on figure 4, we will use a non linear behavioral modelling on which we will
apply the estimator. Before this simulation test to check the capability of our estimator, we also that a
force estimator can be deduced from the macroscopic energetic representation.



Figure 6: Comparison between speed of displace-
ment and the estimated one Figure 7: Zoom of figure 5 while F increases

Force estimator
The force estimator is also deduced from the inversion of figure 4, and proposed in figure 8. The es-
timated force is calculated from the estimated value of Fp which is deduced from V and Fp = KFV .
However, Fe must also be estimated. This force corresponding to elastic strain is an internal force and
therefore it cannot be directly measured. However, we can estimate Fe from the estimated value of Ẇest
and equation 8.

Figure 8: Energetic Macroscopic Representation of the force estimator

Behavioral model

Preisach Model
As mentionned earlier, there is a need for a model which can describe the main non-linear behavior
of the piezoactuator. As the frequencies will be low, creep is not to be modeled. On the other hand,
the hysteretic nature of the actuator need to be taken into account because it will directly affect the
waveforms. To do so, several approaches have been proposed (see [11] for examples of Krasnoselskiǐ-
Pokrovskiǐ operator and [12, 13] for Preisach operator based models). Roughly put, these models all
relies on the same ingredients, namely :

• a class of hysterons ;
• a weighting function.

Hysterons are operators defined on the input domain which switch between piecewise continuous map-
ping of the input according to threshold conditions. The most widely used hysterons are :



• the Preisach operator defined by :

Γ(α,β)(�,γ−1) : u ∈ [umin,umax] 7→ {−1,1} Γ(α,β)(u,γ−1) =


+1 if u > α

−1 if u < β

γ−1 if β≤ u≤ α

where γ−1 is the previous state of the hysteron.
• the Krasnoselskiǐ-Pokrovskiǐ operator :

Γ(α,β)(�,γ−1) : u ∈ R 7→ R

Γ(α,β)(u,γ−1) =

{
max{γ−1,r(u)−β} if du > 0
min{γ−1,r(u)−α)} if du < 0

(13)

where the function r is continuous and monotonously increasing, and γ−1 is the previous output of
the hysteron.

In both case it is assumed that the threshold values verify α ≥ β, thus the set of admissible hysterons
belongs to the half plane P := {(α,β) ∈ R2 : α≥ β}. For practical reasons, the input usually belongs to
an intervalD = [umin,umax], therefore the triangular plane is considered : P := {(α,β)∈D2 : α≥ β}. The
ouput of the hysteresis is the sum over P of each hysterons output weighted by the weighting function
µ(α,β) :

Pµ(u,γ−1) =
∫∫

P
Γ(α,β)(u,γ−1)µ(α,β)dαdβ (14)

If µ(α,β)≥ 0 ∀(α,β) ∈ P then the hysteresis is order preserving i.e. given an ordered sequence of in-
puts u(t1)< u(t2)< · · ·< u(tn) will results in an output sequence verifying the inequalities P(u(t1),γ0)<
P(u(t1),γ0)< · · ·< P(u(tn),γ0).

In this work, a Preisach model was used, and it will now be briefly explained. Only the main properties
will be recalled as it is extensively described in literature in the domain of ferromagnetic materials,
and it has also been recognized to be useful for piezoelectric actuators [12]. The main interest of this
approach is that, along with a very intuitive interpretation, it is easy to implement for a particular set of
experimental datas [14]. Indeed, the state of the hysteresis can be understood using a simple geometric
interpretation using the Preisach plane (see Fig. a and b). An increasing input will cause all the hysterons
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Figure 9: Example of evolutions of the preisach model in the preisach plane : (a) for an increasing input u, (b)
for a decreasing output. In both cases wiping-out of vertices occur. The filled triangle is of particular interest for
identification as it represents the variation of the output (first order decreasing output)

having threshold α < u to switch to 1 resulting in an horizontal frontier moving upward leaving all
hysterons beneath it in the upper state (Fig.9-a). Decreasing the input results in a vertical frontier moving
leaving every hysterons at its right in the lower state (Fig.9-b). Note that in the process, vertex can be
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Figure 10: Schematic of the experimental setup

”erased” (wiping-out property) as represented on both example in Fig.9 . Thus, the state of the hysteresis
is ”recorded” in the Preisach plane by a a staircase-like frontier dividing it into two regions (P+ and
P+) wherein all hysterons have the same state. Each of its vertex represents a pair of local extrema of
the input. Let A = α0,α1, . . . ,αn be the set of local minima (verifying αi > αi+1 i ∈ 0..n−1), and
B = β0,β1, . . . ,βn be the set of local minima, using the linearity of the integral operator, and recognizing
that αn = βn = u(t), Eq. 14 can be rewritten as :

{
Pµ(u(t),γ−1) = P−+∑

n−1
k=0(Tαk+1,βk −T (αk +1,βk+1))+Tu(t),βn−1 if du > 0

Pµ(u(t),γ−1) = P−+∑
n−1
k=0(Tαk+1,βk −T (αk+1,βk+1)) if du < 0

(15)

with :

Ta,b =
∫

β=b

β=a

∫
α=β

α=a
µ(α,β)dαdβ (16)

and P− is the lowest output value, which implicitly suppose that the initial state γ−1 is taken at be u= umin.
From these equations, one can see that in order to calculate the output of the hysteresis, the knowledge
of Ta,b is enough. A natural way to proceed is to establish a look-up table on a regular grid of the
Preisach plane. Values of Ta,b in the expressions given by Eq. 15 can then be interpolated according to
the variation of the input u . In order to identify, it is usual practice to measure variation of the output
of the hysteresis using an input increasing then decreasing (the so-called first order reversal curves). The
set of sample values over the Preisach plane is then calculated by :

Tαi,βk = Pµ(αi,umin)−Pµ(αi,βk)

Experimental setup
The identification protocol of the PST 150/10-5/15 actuator from Piezomechanik consists in the simul-
taneous measuring of the charge and the displacement for a selected sequence of voltage. The charge
is measured using a Sawyer-Tower circuit. The speed is measured thank to a laser interferometer, the
position can then be calculated by integrating the speed signal. The voltage applied follows a progres-
sively increasing triangle waveform such that the slope remains (piecewise) constant during increasing
and decreasing phase (such as the one presented in Fig 11-a). This pattern will be useful to measure the
first order decreasing curves and ensures that the speed remains fairly in the same range during the test.
This is necessary since the piezoelectric hysteresis is known to be rate dependent. It should be noted that
in the case at hand, frequency remain below 50 Hz, so this rate dependency is not to be captured by the
model.

Model validation
Fig. 11 (c) and (d) illustrate a typical simulation where the voltage applied (Fig. 11 (a)) induces outer
and inner loop for the charge and the displacement. The wiping out property and the closing of the loops
is verified. In the case of displacement, the integration induces some errors that slightly affect the lower
parts of the hysteresis. However, the error is well below the precision required, and it can be seen that the
model naturally capture the linearity between charge and displacement as shown in Fig. 11(b). To test
further, the model, an arbitrary voltage waveform consisting in linearly increasing and decreasing parts
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Figure 11: (a) voltage waveform (measured), (b), (c) and (d) show typical simulation results for displacement vs
charge, charge vs voltage and displacement vs voltage respectively

was applied to the actuator and the resulting charge and displacement were measured. As Fig. 12 (a)
demonstrates, the model is in very good agreement with the measured displacement. On the other hand,
Fig. 12 (b) shows taht the hysteresis between voltage and electrical charge is less accurate. Actually in
the experimental setup, the voltage is imposed by the voltage supply. This garantees a regular spacing
of the voltage measurements, however this is not the case of the voltage of the measurement capacitor.
Therefore a resampling of an interpolation of the actual measurements had to be applied introducing
errors in the process.

Discussion and future work
The velocity estimator has been applied on the behavioral modelling in order to check wether non lin-
earities such as the one seen Fig. 11 alter the performances of the estimator. In this tests, a sinusoidal
current i is applied. After integration, the charge is deduced. These signals are the inputs of the two
models. The outputs are compared in Fig. 13
It can be seen that despite non-linerarities of the modelling, the real speed is compared to the estimated
one. The spikes, appearing on the estimation are due to discontinuities of the variations of the voltage
output. These discontinuities can be attributed both to the defaults of the hysteresis modelling and the
way it is implemented in simulink.
Future works will aim at experimentally validate the estimator. On the simulation side, the current model
of the hysteresis introduce algebraic loops in the simulation. Therefore, a differential model is currently
under development.
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