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ABSTRACT 

This paper describes an experiment that was carried out in the Twisted Flow Wind Tunnel at 

The University of Auckland to measure a detailed set of pressure distributions on a rigid 

1/15
th

 scale model of a modern asymmetric spinnaker. It was observed that the pressures 

varied considerably up the height of the spinnaker. The fine resolution of pressure taps 

allowed the extent of leading edge separation bubble, pressure recovery region, and effect of 

sail curvature to be observed quite clearly. It was found that the shape of the pressure 

distributions could be understood in terms of conventional aerodynamic theory. The sail 

performed best at an apparent wind angle of about 55°, which is its design angle, and the 

effect of heel was more pronounced near the head than the foot. Analysis of pressure time 

histories allows the large scale vortex shedding to be detected in the separation region, with 

a Strouhal number in the range 0.1 – 0.3, based on local sail chord length. 

 

Keywords: Sails Aerodynamics – Downwind Sail – Pressure Measurements – Leading-edge 

Separation– Laminar Separation Bubble - Trailing-edge Separation  
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NOMENCLATURE 

AWA Apparent Wind Angle  

c  Sail section chord (m) 

cav  Average sail chord (m) 

 Pressure coefficient (-) 

f  Frequency (Hz) 

h   Yacht model height (m) 

  Sail surface pressure (Pa) 

  Reference static pressure (Pa) 

    Reference dynamic pressure (Pa) 

Re  Reynolds number (-) 

   Strouhal number (-) 

   Reference velocity  

x  Chord-wise coordinate (m) 

  Fluid kinematic viscosity  

 

 

1 INTRODUCTION  

 

Modern yacht sails are aerodynamically very efficient but the flow field around sails is largely 

unknown. Knowledge of the flow features that make sails aerodynamically efficient will allow the 

performance of sails and also the aerodynamic efficiency of sail-like airfoils for other applications to 

be enhanced further.  
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The aerodynamics of sails has mainly been investigated with force measurements [Richards et al. 

2001; Le Pelley et al. 2002; Fossati et al. 2006a, 2006b; Hansen et al. 2006] in wind tunnels [Flay 

and Jackson 1992; Flay 1996; Le Pelley et al. 2001], while only a few authors have recently 

measured sail pressure distributions [Richard and Lasher 2008; Viola and Flay 2009, 2011]. The 

flow field around sails has been examined primarily through numerical simulations and, therefore, it 

is very important to validate such simulations with accurate measurements of local quantities such as 

surface pressure distributions, instead of only comparing them to global quantities such as forces. 

 

Sail pressure distributions can be measured in model-scale from wind tunnel tests and in full scale 

[Viola and Flay 2011]. The state-of-the-art experimental technique is based on flexible sails – 

including semi-flexible single-skin fibreglass sails used by Richards and Lasher [Richard and Lasher 

2008], and common spinnaker sailcloth used by Viola & Flay [Viola and Flay 2009, 2010] - where 

pressure taps are attached to one side of the sail and pressures are measured on the other side of the 

sail through holes in the sailcloth. This technique allows realistic sail trims in different sailing 

conditions to be modelled, but is limited by (i) the unknown blockage effect due to the tubes and 

pressure taps, (ii) the alteration of both the static sail shape and the dynamic behaviour of the sails 

by the mass and stiffness of the tubes and pressure taps, (iii) the low accuracy in the reconstruction 

of the sail flying shape. 

 

The observed differences between the pressure distributions measured with this technique in the 

wind tunnel, and those measured in full-scale or computed numerically are expected to be partially 

due to the presence of tubes and pressure taps.  
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A novel technique is presented in this paper, where the effect of the pressure taps is eliminated and 

the effect of the tubes on the flow field is minimised. Also, the sail is rigid allowing the flying shape 

to be detected with high-accuracy.  

 

This paper describes pressure distributions measured on the rigid asymmetric spinnaker in a wind 

tunnel, which are discussed and compared to pressures measured on soft flexible sails, and also to 

numerical simulation results. The pressure profiles along the sail chord on the leeward side enable 

interesting flow characteristics that were found in previous works [Collie 2006; Viola and Flay 

2011; Viola et al. 2013b, 2014] to be determined, such as leading edge separation bubble (sharp 

suction peak), sail curvature suction, and trailing edge flow separation (pressure plateau). Helpful 

insights into sail aerodynamics are obtained from this investigation, which are explained using 

conventional aerodynamic and aeronautical knowledge of the aerodynamics of thin wings [e.g. 

Glauert 1926; Abbott and Doenhoff 1959; Hoerner and Borst 1975]. Further details are given in the 

subsequent sections. 

 

2 EXPERIMENTAL ARRANGEMENT 

 

A rigid 1/15
th

 scale model of an AC33-class spinnaker has been tested at the University of Auckland 

Yacht Research Unit (YRU) Twisted Flow Wind Tunnel which has an open jet with a test section 

7m wide and 3.5m high. The tests were performed in uniform flow (without twisting vanes) with a  

turbulence intensity of maximum 3%. The reference wind speed was approximately  

giving a Reynolds number based on the average spinnaker chord cav equal to . The 

solid spinnaker and mainsail were mounted on a yacht model (rig and hull), which was mounted on 

a turntable to adjust the apparent wind angle (AWA). The model was mounted on fore and aft 

bearings to enable the heel angle to be varied. Figure 1 shows two photographs of the model during 
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the tests. In particular, Figure 1(b) shows the tubes carrying the pressures from the sail leech to the 

transducers in the cockpit; note also that to reduce deflection, the rig was reinforced by a deck 

spreader to windward due to the heavy spinnaker model, and the actuator used to adjust heel angle 

can be seen on the left hand side. 

 

The solid model spinnaker was built as part of a master’s research project at the YRU by Brett [Brett 

2012], with the flying shape recorded from a sailcloth model spinnaker previously studied at the 

YRU [Viola and Flay 2009]. The selected shape was recorded for a trim giving the maximum 

driving force with a non-flapping sail at an AWA of 55° and 10° of heel. The geometric parameters 

of the sail shape are given in Table 1. Unfortunately the shapes of the rigid asymmetric spinnaker 

and the soft sail were not perfectly identical, and this has implications on the pressure comparisons 

discussed in Section 4. 

 

The solid sail is a 5mm thick epoxy fibreglass sandwich where the core is a corrugated plastic 

material featuring a high density of individual pressure-tight flutes, which provide the pneumatic 

tubes to carry the pressure signal from the measurement locations to the sail leech. Thin plastic tubes 

are connected to each flute on the sail leech to carry the pressures to the pressure transducers in the 

model cockpit. One-millimetre holes were drilled through the sail and tape was used to close one 

side in order to measure the pressures on the other side. A sketch of a pressure tap in a section of the 

solid spinnaker model is shown in Figure 2. The sail model is as thin as possible with a 45° chamfer 

on the leading edge to mimic the very low thickness of a real sail. The rigid sail had a mass of about 

10kg, and it was observed that its shape could distort due to self-weight. The implications of this are 

addressed later in the paper when the results are discussed. 
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Figure 1: Photographs of the rigid spinnaker setup in the wind tunnel; (a) general view from 

downstream; (b) close-up view from behind the yacht model (colours available in the on-line version 

of the manuscript). 

 

 

 

Figure 2: Sketch of a pressure tap in a section of the solid spinnaker model, and definition of 

aerodynamic profile parameters 

 

 

Measurement system and experimental procedure 

 

All transducers were pneumatically connected to a reference static pressure measured with a Pitot-

static probe located 9.1m upstream of the model, 0.5m below the wind tunnel roof. A total of 175 

pressure taps were arranged along five horizontal sections located at fractions 1/8, 1/4, 1/2, 3/4 and 

a b 
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7/8 of the mitre height, which is the line equidistant from the leading and trailing edges of the sail. 

The distance between consecutive pressure taps ranges from around 10mm near the leading edge up 

to around 100mm in the middle of the chord where the pressure gradient is expected to be lower. 

There are from 31 to 38 taps per section. 

 

The reference dynamic pressure  was measured by the same sensor as described in the preceding 

paragraph. Two other Pitot-static probes were positioned 0.8m above the wind tunnel floor 

(corresponding to a full scale height of 12m) to check the air speed at these locations too. 

 

The piezoresistive pressure sensors used are Honeywell XSCL04DC transducers, and a calibration 

was made before each experimental run with a precision (+/-0.125 Pa) Druck-DPI 615LP pressure 

calibrator. The accuracy of the pressure measurements is of order 0.5 Pa. 

 

Pressures were measured on the 175 pressure taps on each side of the sail, for different AWA and 

heel angles. For the mean pressure distribution, pressures were recorded over 100s at a sampling 

frequency of 100Hz. Only the pressure distribution on the sail’s suction side is shown for clarity. On 

the pressure side, the pressure was observed to be nearly constant with a pressure coefficient Cp 

ranging between 0.5 and 0.8 depending on the AWA, similar to previously published results [e.g. 

Richards and Lasher 2008; Viola and Flay 2009, 2010, 2011]. Note that this is different from what is 

observed on a flat plate at incidence [e.g. Crompton and Barret 2000], because on the curved 

section, the upstream flow is almost aligned with the section tangent at the leading edge. Pressures 

near the leading edge would be very sensitive to the detailed leading edge shape, but this effect 

could not be assessed. The leading edge was made as sharp as possible with a chamfer on the 

windward side to mimic what would happen on the leeward side of a sail with very low thickness. 
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This makes a significant difference compared to more common aerofoil sections with a rounded 

nose, as detailed e.g. in Abbott and von Doenhoff (1959). 

 

 

Table 1: Parameters of the aerodynamic profile on each section (see definition in Fig. 2) 

Section 1/8 1/4 1/2 3/4 7/8 

Curve [mm] 1490 1510 1380 892 525 

Chord [mm] 1260 1276 1203 820 488 

Twist [°] 23 27 34 37 40 

Camber [mm] 350 346 277 140 73 

Camber [%] 28 27 23 17 15 

Draft [%] 55 56 52 50 49 

Entry Angle [°] 63 63 56 48 50 

Exit Angle [°] 39 40 50 47 45 

 

 

3 MEAN PRESSURE DISTRIBUTIONS 

 

Figure 3 shows the mean pressure distributions recorded on the five sections of the spinnaker for an 

AWA of 55° and 10° heel. The three lower sections show similar behaviour with the following 

characteristics, which can be related to the separated and attached flow areas found in CFD 

investigations on sails [Collie 2006, Viola and Flay 2011, Viola et al. 2013b, 2014] (see also Section 

6). A high suction peak at the leading edge is followed by a sharp pressure recovery with a 

minimum suction located around 2% of the chord length. The flow separates at the leading edge 

forming a leading edge separation bubble, where the pressure recovery is associated with re-

attachment. On upwind sails [Viola et al. 2013a] the maximum pressure recovery occurs just 



To appear in Ocean Engineering special issue Yacht Engineering, 2014, 

DOI:10.1016/j.oceaneng.2014.07.024 

9 

 

downstream of the point of reattachment. Downstream of this point, the pressure decreases again 

due to the sail curvature and thus the associated flow curvature, with a maximum suction at around 

20%-30% of the chord length. After the pressure recovery in the region where the sail shape 

becomes less curved, the pressure is nearly constant in the trailing edge separated area. The high 

spatial resolution achieved due to the numerous pressure taps enables the very sharp gradients 

occurring near the leading edge to be resolved, which has not usually been possible in previously 

published work on sail pressure distributions. Notice that due to different chord lengths for the 

different sections, suction maxima at the same reduced coordinate x/c are not superimposed in 

reality. 

 

 

Figure 3: Cp on the 5 sections of the spinnaker for 55° AWA and 10° heel (colours available in the 

on-line version of the manuscript). 

 

 

On the highest section, there is a very high suction (Cp = -3) at the leading edge and then a rapid 

pressure recovery with the minimum suction located at 10% of the chord followed by a relatively 
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uniform pressure over the remaining chord.  This pressure distribution suggests that there is a tight 

leading edge separation bubble at this location. Note that since this section is near the head of the 

sail, the flow will be very three-dimensional.  There is a very flat maximum suction visible around 

x/c=0.3-0.4. On section 3/4, downstream of the high suction at the leading edge, the pressure 

recovery is smooth and essentially monotonic.  

 

The pressure distributions on the five sections are shown in Figure 4 for AWAs from 51° to 59° at 

10° heel. It should be noted that the rigid spinnaker shape corresponds (approximately) to the flying 

shape of the equivalent soft sail recorded at 55° AWA. This frozen shape is expected to perform 

well over a fairly narrow range of AWAs. Again, the three lower sections show similar behaviour to 

that described above. When the AWA is increased, the pressure recovery at the re-attachment 

location is reduced a little and the trailing edge separation point moves upstream. The pressure 

distribution on the lowest section is the least sensitive to AWA, whereas conversely, the pressure 

distribution on the highest section is the most sensitive to AWA. It may also be noticed that the 

pressure plateau in the trailing edge separated area for section 1/8 is more pronounced and with a 

higher suction (Cp around -0.8) for the highest AWA. The higher sections are mostly separated and 

totally stalled for the highest AWA. From pressures on the whole sail, the aerodynamic force looks 

higher at 53° AWA than 55° which was the optimal AWA for the soft sail.  
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Figure 4: Cp for AWA=51, 53, 55, 57 and 59° on the 5 sail sections, for 10° heel. Note that the Cp 

scale is larger for sections 3/4 and 7/8 (colours available in the on-line version of the manuscript). 
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Figure 5: Cp for heel=5, 10 and 14° on the 5 sail sections, for AWA=55°. Note that the Cp scale is 

larger for sections 3/4 and 7/8 (colours available in the on-line version of the manuscript). 

 

Figure 5 shows the pressure distributions on the five sections for heel angles of 5°, 10° and 14°, for 

an AWA of 55°. On the three lower sections, the pressure is affected only slightly by heel angle, 

with the trailing edge separation slightly earlier for the highest heel angle. On the top two sections, 

where the flow is mainly separated, the effect of heel is stronger and the higher the heel angle, the 
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more stalled the profile. In Figure 6, it is noticeable that the pressures on the top two sections at 5° 

heel for 55° AWA are nearly identical to the pressures at 10° heel for 53°AWA, and that the 

pressures at 10° heel for 57° AWA are nearly identical to pressures at 14° heel for 55° AWA, so that 

aerodynamically, additional heeling corresponds to increasing the angle of attack, for the highest 

sections of the spinnaker. In particular, the trailing edge separation point seems to move upstream 

when the heel angle increases.  

 

  

Figure 6 : Cp on sections 7/8 and 3/4 for AWA=55° and heel angles of 5, 10 and 14°, and for heel 

angle = 10° and AWAs of 53, 55 and 57° (colours available in the on-line version of the 

manuscript). 

 

 

4 COMPARISON WITH OTHER PUBLICATIONS 

 

Figure 7 shows the present results and those achieved with recent numerical simulations made on 

the same geometry at 55° AWA and 10° heel using Detached Eddy Simulation [Viola et al. 2013b, 

2014], and those achieved experimentally on the equivalent soft sail [Viola and Flay 2010]. Viola et 

al. (2013b, 2014) modelled the model-scale wind tunnel experiment with a hybrid computational 

approach where unsteady Reynolds-averaged Navier-Stokes with a Spalart-Allmaras turbulence 
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model was used in the near-wall region, including the leading edge bubble, and Large Eddy 

Simulation was used to model the outer region. A finite volume solver with second order accuracy 

discretisation algorithms was used with a grid of 32 million cells. The leading edge bubble was 

described with approximately 10 cells in both the streamwise direction and in the wall-normal 

direction.  

The wind tunnel tests with the flexible sails were performed in the same wind and sail trim 

conditions as the tests with rigid sails.  

Figure 7 also shows the results of the present study obtained during another experimental run, which 

show the reasonable repeatability of the measurements. On the three lowest sections, the simulated 

and experimental results are similar. The general behaviour is well reproduced and a good 

quantitative agreement is found. Even in the region of the leading edge bubble, the agreement 

between the present results and the DES CFD results is reasonably good, as shown on the 

enlargements on Figure 7. In some cases, the simulation result is closer to the pressure recorded for 

a slightly lower AWA of 53° (see sections 1/8 and 1/4 for x/c<0.2 and section 1/2 for x/c<0.4). The 

pressure plateau associated with the trailing edge separation is found to be a little further 

downstream in the simulation than in the experiment. On the top two sections, the numerical 

pressures are similar to the experimental result for a lower AWA (53°). 
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Figure 7: Cp measured on the solid spinnaker (present study) for 10° heel, AWA=53 and 55° 

(measurements from two distinct experimental runs are shown to assess the repeatability), measured 

on a soft sail [Viola and Flay 2010] and computed with DDES [Viola et al. 2013b, 2014]; bottom-

right: enlargement around the leading edge for sections 1/8, 1/4 and 1/2 (colours available in the on-

line version of the manuscript). 

 

The results obtained on the soft sail in a different experiment show general behaviour that is more or 

less compatible with the present results, but the discrepancies are important. In particular, the peak 

Zoom around the leading edge on the 3 lowest sections 
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suction values and locations are rather different. It can be observed that the lower number of 

pressure taps on the soft sail did not allow the sharp gradients to be resolved. The differences 

between the soft and rigid sail results are also likely to be due to the differences in shape between 

them. In fact they are also slightly different in size. 

 

Another reason for the differences observed between the present results and the simulation results 

may result from an alteration of the shape of the solid sail. As the solid sail is quite heavy (around 

10kg) compared to the aerodynamic force, and not perfectly rigid, it was observed after the tests that 

the model’s weight had altered the general sail shape by dropping the clew which would have 

increased the sail curvature and decreased the sail twist resulting in higher angle of attack on the 

highest sections, which could explain the stall of the top of the sail. In order to understand this point 

better, a subsequent research project is underway to measure both the spinnaker and mainsail 

pressures, with additional support of the solid spinnaker using wires to fix the distances between the 

head, tack and clew to the required values. 

 

5 PRESSURE TIME SERIES 

 

For the particular analysis of pressure time histories, some tests were done with only 58 pressure 

taps located on sections 1/4, 1/2 and 3/4, and with shorter pressure tubes, recorded over 300s at a 

sampling frequency of 200Hz. The signals were then filtered with a moving average of span 20 data 

points. Each tube length was adjusted to the length of each flute inside the sandwich sail in order to 

have an identical total cavity length equal to 2.15m. Such long tubes would have provided 

significant damping to the recorded pressure time histories. However, even though the sensor plus 

tube transfer function is not known with precision, the recorded pressures show quite different 

behaviours depending on their positions, and hence according to the region of the local flow, and 
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some interesting features of the separation were detected. Note that for these tests, the 58 tubes were 

not taped all together on the trailing edge, but only maintained downstream by small bunches in 

order not to move in the flow, as shown on the insert in Fig. 9. Hence, there is no bundle of tubes 

like the one shown in Fig. 1 with 175 tubes, and the trailing edge thickness was that of the solid sail 

model (5mm). 

 

Figure 8 shows the time series of Cp variations (instantaneous Cp – time averaged Cp) on section 

1/2 from four characteristic locations along the chord: near the leading edge just downstream of the 

reattachment (x/c=0.0428), near the maximum of the curvature suction peak (x/c=0.240), in the 

separation region (x/c=0.617) and in the separated area near the trailing edge (x/c=0.889). In the two 

first locations, the fluctuation results from the turbulence of the flow. It is noticeable that the 

pressure amplitudes are much higher in the separated area and that the maximum amplitudes are 

observed where the separation occurs. The separation location is known to be oscillatory in time and 

the back and forth motion of the separation point associated with its high pressure gradient gives rise 

to these high pressure fluctuations. Moreover, as can be seen in the enlargement in Figure 8, the 

pressure fluctuations at x/c=0.617 undergo rather coherent oscillations at a frequency significantly 

lower than the pressure fluctuations at other locations. Similar measurements were repeated for 

different values of the flow velocity, namely  and 4.36 m/s. For the lowest 

velocity , the signal to noise ratio from the pressure taps is too low to enable any 

analysis. For the other values of the velocity, the observed coherent fluctuation frequencies and 

corresponding Strouhal number ranges are given in Table 2. The chord length was chosen as length 

scale for the Strouhal number as the vortex shedding results from the massive separation on the high 

camber high incidence section, and the section depth scales with the chord length. The results show 

that these low frequency coherent oscillations are characterised by a Strouhal number from 0.1 up to 
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0.3. Such a Strouhal number range confirms that these fluctuations are associated with the large 

scale vortex shedding in the flow separation. 

 

 

 

Figure 8: Time series of the Cp variations for a flow velocity of 3.45m/s, on section 1/2, at 

x/c=0.0428, 0.240, 0.617 and 0.889; enlargement: detail for x/c=0.617 and t from 100 to 150s 

(colours available in the on-line version of the manuscript). 

 

Table 2: Observed coherent fluctuation frequency range in the pressure time series for different 

values of the flow velocity and the corresponding Strouhal number range. 

 Frequency (Hz) Strouhal number  

2.41 0.20 – 0.50 0.10 – 0.25 

3.45 0.29 – 0.67 0.10 – 0.23 

4.36 0.40 – 1.00 0.11 – 0.28 
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6 DISCUSSION AND CONCLUSIONS 

 

The paper presents results from novel rigid sails, manufactured in a sandwich structure made of 

pressure-tight flutes, which allows the pressure distributions on model-scale yacht sails to be 

measured. This model was used to measure the pressure distributions on an asymmetric spinnaker at 

different AWA and heel angles, and the results were compared with numerical results and another 

experimental method.  

 

The measurements confirmed the general pressure distributions and trends observed by other authors 

with flexible sails [Viola and Flay 2009, 2010] and numerical simulations [Viola et al. 2013b, 2014]. 

In particular, in the optimum trim condition, the pressure gently decreases from the leading edge to 

the trailing edge on the whole windward side of the sail. On the leeward side (Figure 3), the pressure 

shows a suction peak due to the leading edge separation followed by a partial pressure recovery 

associated with the reattachment. Further downstream the pressure shows a second smoother suction 

peak associated with the sail and flow curvature, and then a pressure plateau extending to the trailing 

edge when separation occurs. On the highest sections, the second suction peak does not occur due to 

the tip vortex at the head of the sail.  

 

When the AWA increases (Figure 4), the leading edge suction peak increases while the trailing edge 

separation point moves upstream leading to a lower curvature-related suction peak. When the AWA 

is increased further, the flow fails to reattach and the pressure gradient decreases until a constant 

pressure is measured on the entire sail section.  
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Figure 9: Photograph of the leeward surface of the sail showing the wool tell-tales to visualise the 

trailing edge separation region; insert: tube arrangement on the trailing edge used for the time series 

tests (colours available in the on-line version of the manuscript). 

 

The interpretation of pressure distributions in terms of leading edge bubble and trailing edge 

separation is supported by various CFD investigations [Collie 2006; Viola and Flay 2011; Viola et 

al. 2013b, 2014] on similar geometries. Proper visualisation of the leading edge bubble was not 

possible in this test set up because the bubble was too small. Near the trailing edge, visualisation 

with tell-tales enables the large separation area to be seen (Fig. 9), and the pressure plateau could be 

seen to be related to the trailing edge separation. Therefore, the pressure distributions on sections 1/2 

and 1/4 on Fig. 4 clearly illustrate the growth of the trailing edge separation region with increasing 

AWA. 
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On the top sections of the spinnaker, increasing the heel angle has a similar effect on pressures to 

increasing the AWA (Fig. 6). This result is in contradiction with the commonly used effective angle 

theory [Kerwin 1978, Jackson 2001] which considers only the effect of the projection of the flow in 

the heeled plane. Even though this simple approach elegantly accounts for the effect of heel on the 

global aerodynamic forces, particularly on upwind sails, it is believed that it is not appropriate for 

describing local flow properties on a highly curved downwind sail, particularly from the curvature in 

the spanwise direction. Moreover, the flow around a spinnaker is highly three-dimensional, 

particularly on the top sections. The specific behaviour observed here is not fully understood and is 

expected to happen only in a limited range of heel angles, such as those measured in the present 

paper. Furthermore, the effect of heel on the aerodynamic force produced by a spinnaker will also 

depend on whether or not it is re-trimmed for every heel angle. Interestingly, Le Pelley et al. [2008] 

already mentioned that downwind sails may allow larger aerodynamic forces to occur when the 

yacht is slightly heeled than when upright, in particular circumstances, possibly due to a different 

flow field in the tip vortex or to more attached flow related to the modification of the sail’s 

horizontal sections. 

 

This novel model sail pressure investigation allowed progress beyond the current state-of-the-art 

method based on flexible sails [Viola and Flay 2009, 20010, 20011] in several areas. In particular: 

 

 Rigid sails allow better control of the sail geometry (particularly camber and draft) than flexible 

sails, though the control on the twist of the sails is still unsatisfactory. For instance, the 

comparison with the pressures computed numerically by Viola et al. [Viola et al. 2013b, 2014] 

suggests that the sail was under-twisted by about  on the highest sections during the 

experiments (Fig. 7). This undesirable sail deflection was probably caused by its own self weight. 
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 On flexible sails the pressure tubes cannot be bundled together at the trailing edge and thus the 

tubes have a greater blockage effect than with rigid sails. For instance, when pressures on the 

leeward side are measured with flexible sails, the tubes on the windward side deflect the 

incoming streamlines, resulting in an increased angle of attack. This can be seen in Fig. 7, where 

higher suction peaks were measured with flexible sails than with rigid sails.  

 On flexible sails, the weight of the pressure taps and tubes affect the sail shape leading to local 

flow accelerations and pressure changes, while rigid sails allow a much smoother surface. For 

instance, on the lowest section in Fig. 7, the pressure around 3/4
th
 of the chord decreases locally 

due to a kink (wrinkle) on the sail.  

 

Rigid sails also allow the pressure transducers to be placed very close to the pressure tap, 

minimising the displacement of the volume of air between the tap and the transducer that affects the 

frequency content of the pressure time series due to the filtering effect of long tubes. The study of 

frequencies and phases of the pressure time series may reveal very interesting information on the 

flow field. For instance, it may allow the detection of the location of laminar to turbulent transition, 

if the positions of separation and reattachment points are stationary, while correlations between 

signals from taps located in different places may allow the convection of coherent flow structures to 

be detected. The paper presents a preliminary attempt to analyse pressure time histories at four 

different locations (Fig. 8). For the first time it is shown that the position of the trailing edge 

separation point is not steady but oscillates with a frequency corresponding to . 

Future work in this area is expected to include the use of shorter pressure tubes, or pressure 

transducers embedded into the sail structure, as is commonly done in experimental aeronautical 

research investigations. 
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In conclusion, the novel experimental methods discussed in the paper are very promising although 

further enhancements are needed to increase their accuracy. Firstly, the flying shape must be 

controlled more precisely and, secondly, it is desirable that the blockage due to the bundle of tubes 

at the trailing edge is decreased further. 
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