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Modeling and Control of a Marine Current Turbine 

Driven Doubly-Fed Induction Generator 
 

Seif Eddine Ben Elghali, Mohamed El Hachemi Benbouzid, and Jean Frédéric Charpentier 

 

Abstract—This paper deals with the modeling and the control of a variable speed DFIG-based 

marine current turbine with and without tidal current speed sensor. The proposed MPPT control 

strategy relies on the resource and the marine turbine models that were validated by experimental 

data. The sensitivity of the proposed control strategy is analyzed regarding the swell effect as it is 

considered as the most disturbing one for the resource model. Tidal current data from the Raz de 

Sein (Brittany, France) are used to run simulations of a 7.5-kW prototype over various flow 

regimes. Simulation results are presented and fully analyzed. 

 
Index Terms—Marine current turbine, Doubly-Fed Induction Generator, modeling, control, 

Maximum Power Point Tracking. 
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NOMENCLATURE 
 

   = Fluid density; 

A   = Cross-sectional area of the marine turbine; 

Vtide  = Fluid speed; 

Cp   = Power coefficient; 

C   = Tide coefficient; 

Vst (Vnt)  = Spring (neap) tide current speed; 

λ   = Tip speed ratio; 

s, (r)  = Stator (rotor) index (superscripts); 

d, q  = Synchronous reference frame index; 

V (I)  = Voltage (Current); 

P (Q)  = Active (Reactive) power; 

   = Flux; 

Tem (Tm) = Electromagnetic torque (Mechanical torque); 

R   = Resistance; 

L (M)  = Inductance (Mutual inductance); 

   = Total leakage coefficient,  = 1 – M2/LsLr; 

θr   = Rotor position; 

ω (ωs) = Rotor electrical speed (electrical synchronous speed); 

ωr   = Rotor current frequency (ωr = ωs – ω); 

   = DFIG speed ( = ω/p); 

f   = Viscosity coefficient; 

J   = Rotor Inertia; 

p   = Pole pair number. 

 
GLOSSARY 

 
MCT  = Marine Current Turbine; 

DFIG  = Doubly-Fed Induction Generator; 

MPPT = Maximum Power Point Tracking; 

SHOM = French Navy Hydrographic and Oceanographic Service; 

BEM  = Blade Element Momentum. 



I. INTRODUCTION 
 

Only a fraction of the global ocean energy resource is to be found in sites which are economically 

feasible to explore with available technology. However, this fraction could still make a considerable 

contribution to electricity supply. This is the reason why the marine renewable sector is currently the focus 

of much industrial and academic research around the world [1]. Sites with attractive wave climate and 

intense tidal currents are abundant in the vicinity of the European coastline. It has been shown that 48% of 

the European tidal resource is in the UK, 42% in France, and 8% in Ireland. Three examples in France are 

shown in Fig. 1. The Raz Blanchard situated in Cap de la Hague experiences extreme tidal currents 

exceeding 8 knots and leading to a large amount of kinetic energy flux. 

There are basically two ways of generating electricity from marine and tidal currents: by building a 

tidal barrage across an estuary or a bay in high tide areas, or by extracting energy from free flowing water 

(tidal kinetic energy). Within the last few decades, developers have shifted towards technologies that 

capture tidally-driven coastal currents or tidal stream [2]. The astronomic nature of this resource makes it 

predictable, to within 98% accuracy for decades, and independent of prevailing weather conditions. This 

predictability is critical to a successful integration of renewable energy in the electrical grid [3]. 

In this context, it is obvious that there is a need to quantify the potential to generating electricity from 

these various sites [4]. This paper deals then with the modeling and the control of a variable speed DFIG-

based marine current turbine with and without tidal current speed sensor. The proposed MPPT control 

strategy is tested using tidal current data from the Raz de Sein (Brittany, France) for a 7.5-kW prototype 

over various flow regimes. It should be noted that when scanning the literature, one will find very few 

papers in this topic [5]. 

 

II. MARINE CURRENT TURBINE MODELING 
 

The global scheme for a grid-connected marine current turbine is given by Fig. 2. 
 

A. The Resource Model 
 

1) Resource Potential. The total kinetic power in a marine current turbine has a similar dependence to 

that of a wind turbine and is governed by the following equation [6-7]. 
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Fig. 1. Raz Blanchard, Fromveur, and Raz de Sein sites in the French western coast. 
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Fig. 2. Marine current turbine global scheme. 
 

However, a marine energy turbine can only harness a fraction of this power due to losses and (1) is 

modified as follows. 
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p tideP C A V                                (2) 

 
For marine turbines, Cp is estimated to be in the range 0.35–0.5 [8]. 

2) Resource Model. Tidal current data are given by Hydrographic and Oceanographic Services as for 

example the French Navy Hydrographic and Oceanographic Service (SHOM) and is available for various 

locations in chart form. The available charts give, for a specific site, the current velocities for spring and 

neap tides. These values are given at hourly intervals starting at 6 hours before high waters and ending 6 

hours after. Therefore, knowing tides coefficient, it is easy to derive by interpolation a simple and 

practical model for tidal current speeds Vtide. 
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Where C is the tide coefficient which characterize each tidal cycle (95 and 45 are respectively the spring 

and neap tide medium coefficient). This coefficient is determined by astronomic calculation of earth and 

moon positions. Vst and Vnt are respectively the spring and neap tide current velocities for hourly intervals 

starting at 6 hours before high waters and ending 6 hours after. For example, 3 hours after the high tide in 

Brest, Vst = 1.8 knots and Vnt = 0.9 knots. Therefore, for a tide coefficient C = 80, Vtide = 1.53 knots. 

This first-order model is then used to calculate the tidal velocity each hour. The implemented model 

will allow the user to compute tidal velocities in a predefined time range. Figure 3 shows the model output 

for a month (March 2007) and for a year (2007). This adopted resource model has several advantages 

including its modularity not to mention its simplicity. Indeed, the marine turbine site can be changed, the 

useful current velocity can be adapted, and the time range taken into account can also be adapted from one 

month to one year. 

 
B. The Turbine Rotor Model 

 
The harnessing of the energy in a tidal flow requires the conversion of kinetic energy in a moving fluid, 

in this case water, into the motion of a mechanical system, which can then drive a generator. It is not too 

surprising, therefore, that many developers suggest using technology that mirrors that which has been 

successfully utilized to harness the wind, which is also a moving fluid [2]. Moreover, much of the 

technology is based upon the use of horizontal axis turbines. 
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Fig. 3. Tidal velocity in the Raz de Sein for the year 2007 and March 2007. 



Compared to the largest wind turbines operating today, the output power and the size of a classical tidal 

turbine are extremely promising. Indeed, this is due to the sea water huge density and to the current 

velocity. For illustration, Fig. 4 shows a tidal turbine against an offshore wind turbine of the same power 

rating. Therefore, much can be transferred from the modeling and operation of wind turbines [9]. There 

are, however, a number of fundamental differences in the design and operation of marine turbines. 

Particular differences entail changes in force loadings, immersion depth, different stall characteristics, and 

the possible occurrence of cavitation [10-11]. 

Turbine rotor aerodynamics refers to the interaction of the wind turbine rotor with the incoming wind. 

The treatment of rotor aerodynamics in all current design codes is based on Glauert well-known, and well 

established BEM theory [12]. The BEM method has therefore been used for the marine turbine rotor 

modeling. It allows an iterative calculation of drag and lift coefficient for each blade section and the 

calculation of the global performance of a turbine. Indeed, it is widely used in the industry as a 

computational tool to predict aerodynamic loads and power of turbine rotors. Details of the model 

adaptation to marine turbines are given in the authors’ previous work [13]. For a given turbine geometry 

(number of blades, geometry of the blades, pitch, etc.), this model allows to calculate the mechanical 

power and torque for each fluid speed and turbine rotational speed. This model is relatively simple and 

computationally fast meeting the requirements of accuracy and control loop computational speed. 

Examples of the obtained results are given in section IV.A. 

 

 
 

Fig. 4. Tidal turbine against an offshore wind turbine [© MCT]. 
 



C. The Generator Model 
 

The generator chosen for the marine current system was the DFIG [14]. DFIG-based marine turbines, 

as for wind turbines, will offer several advantages including variable speed operation, and four-quadrant 

active and reactive power capabilities. Such system also results in lower converter costs and lower power 

losses compared to a system based on a fully fed synchronous generator with full-rated converter. 

Moreover, the generator is robust and requires little maintenance [5], [15-18]. A schematic diagram of a 

DFIG-based generation system is shown in Fig. 5. 

The control system is usually defined in the synchronous d-q frame fixed to either the stator voltage or 

the stator flux [14]. For the proposed control strategy, the generator dynamic model written in a 

synchronously rotating frame d-q is given by (4). 
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III. CONTROL OF THE DFIG-BASED MARINE CURRENT TURBINE 
 

The DFIG stator-side reactive power is given by 
 

 3

2
s sq sd sd sqQ V I V I                              (5) 

 
For a decoupled control, a d-q reference frame attached to the stator flux was used. Therefore, 

assuming the per phase stator resistance negligible and setting the stator flux vector aligned with the d-

axis, the reactive power can be expressed as [14] 
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Fig. 5. Schematic diagram of a DFIG-based generation system. 
 

 
3

2
s

s s rd

s

V
Q M I

L
                               (6) 

 
Since the DFIG control objective is to generate the maximum power, the speed reference is given by an 

MPPT strategy while setting the reactive power to zero [19]. Therefore, the reference of the rotational 

speed control loop is adjusted so that the turbine will operate around the maximum power for the current 

tidal speed. In order to determine whether this reference must be either increased or decreased, it is 

necessary to estimate the operating point current position regarding the PMCT() curves maximum (Fig. 6). 

As the rotor turbine model is well-known [13], the optimal value of the tip speed ratio λopt, and Pmax = 

P(λopt) can be easily deduced. Therefore, the MCT will operate at the optimal operating point if 

 

( ) optt                                   (7) 

 

which supposes that the shaft rotational speed is closed-loop controlled so as to reach its optimal value 
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Here R is the marine turbine rotor radius. 

 
The above proposed control strategy of the DFIG-based MCT is illustrated by the block diagram in Fig. 

7. 
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Fig. 6. Power curves for different tidal current speed. 
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Fig. 7. The proposed control structure. 
 

IV. VALIDATION RESULTS 
 

A. Validation Data and Parameters 
 

In this work, the Raz de Sein site was chosen above several others listed in the European Commission 

report EUR16683 [20] due to the presence of high speed current coupled with appropriate depths suitable 

for marine turbine. Moreover, the marine current speed distribution for most of the time is greater than the 

minimum, estimated to be 1 m/sec, required for economic deployment of marine current turbine [4]. 

The turbine rotor model was validated through the comparison of the simulation model with 

experimental data from the available literature [13], [21]. Indeed, the simulated marine turbine 



corresponds to the one tested in [21] (Fig. 8). The obtained power coefficient Cp is shown in Fig. 9: For a 

0.8 m model of an MCT, a current velocity Vtide = 1.5 m/sec, and a pitch angle  = 25°; a Cp of about 0.32 

was found in comparison to 0.36 in the tank test. The adopted marine current turbine is of 1.44 m diameter 

and 7.5-kW. 

For the given turbine geometry the power for each rotor speed and a tidal current speed is determined 

by the BEM hydrodynamic model. In this context, the obtained power coefficient Cp and the extractable 

power curves are shown in Fig. 10. 

The 7.5-kW DFIG parameters are given in the appendix. 

 

 
 

Fig. 8. The tested marine current turbine [13]. 
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Fig. 9. (a) Model [13] and (b) experimental Cp curves [21]. 
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      (a) Cp(λ,Vtide) curves.      (b) The extractable power P(,Vtide). 

 
Fig. 10. Performances of the studied marine current turbine. 

 

B. Validation Results for a Filtered Resource 
 

In this first case, the marine current turbine is simulated considering a resource first-order model (3). 

The resource is assumed to be non disturbed by sea-surface effects and by other turbulences (filtered 

resource). 

The DFIG-based MCT control performances are shown in Figs. 11 and 12 respectively illustrating the 

rotor speed tracking performance and the generated active power. The main merit of the DFIG is its 

capability to deliver constant voltage and frequency output for ±30% speed variation around conventional 

synchronous speed for a reduced power rotor AC/AC converter. Therefore, the rotor speed reference 

generated by the MPPT strategy was limited at ±30% of the conventional synchronous speed. 

The obtained results show good tracking performances of the DFIG rotor speed. However, the active 

power exhibits some tracking errors. 

The main difficulty to set the MCT multiphysic model was to include a variety of sub-models with 

different timescale such as the hydrodynamic loads, the turbine, the generator, etc. The built MCT model 

includes all the dynamic effects from very fast effects to very slow hydrodynamic loads. In our case and 

for efficient analysis, the tidal velocity timescale was changed from hours to seconds (a period of 24-h is 

represented by 100-sec). It should be noticed that the DFIG dynamic response is still faster than the 

hydrodynamic loads and the generated power is not affected by this change. 

 



 
 

Fig. 11. The DFIG rotor speed and its reference. 
 

 
 

Fig. 12. The DFIG active power. 
 

C. Validation Results for a Turbulent Resource 
 

To evaluate the resource model and its impact on the generated power, three types of resources taking into 

account external disturbance have been simulated in different cases summarized in Table 1. In the 

considered cases, simulations are carried out during 90 sec. This simulation time has been chosen to 

evaluate the influence of swell and sea surface effect disturbances which have time constants or periods of 

few seconds. In these conditions, the predicted average value of the tidal speed (3) is assumed to be 

constant and equal to 2 m/sec (4 knots). It should be noted that the carried out simulations will also allow 

the evaluation of the predictability degree of the kinetic energy. 



Table 1. The simulated cases. 
 

Cases Simulation Conditions / Tidal speed (m/sec) Power (kW) 

1 Vreal = 2 
Vref = 2 

2.535 

2    2 0.3252 cos 0.4189 0.2749 cos 0.6283realV t t  

   2 0.3252 cos 0.4189 0.2749 cos 0.6283refV t t    
2.694 

3    2 0.3252 cos 0.4189 0.2749 cos 0.6283realV t t    

Vref = 2 
2.612 

4 
     2 0.3252 cos 0.4189 0.2749 cos 0.6283realV t t b t     

Vref = 2 
2.691 

5 
     2 0.3252 cos 0.4189 0.2749 cos 0.6283realV t t b t   

   2 0.3252 cos 0.4189 0.2749 cos 0.6283realV t t    2.821 

 

In the simulated cases, we consider several waveform cases for the tidal speed (Vreal) with and without 

disturbances. The three taken resource values are composed by the kinetic speed, the swell disturbance, 

and a random signal b(t) that represents all the other disturbances. Several tidal speed references (Vref) 

taken as a reference for the control block (MPPT) are considered. In particular, the DFIG-based MCT 

performances are evaluated when a perturbed resource is associated to a constant reference tidal speed 

(cases 1, 3, and 4). These cases allow the use of the tidal predicted average speed as a reference for the 

MPPT calculations and therefore allow the DFIG-based MCT control without a tidal speed sensor. 

To take into account the swell effect, which is considered as the most disturbing one for our resource 

model, a Stokes model have been used. This model is a very classical first order model used to predict the 

swell influence in the sea water column. For given swell amplitude H, a period T, a swell length L and 

ground sea depth d as shown in Fig. 13, the speed potential  can be calculated for each depth z. The 

water speed created by the swell effect can be deduced by spatial derivation of this potential [22]. 
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T : Swell period 
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Fig. 13. Swell characteristics. 
 

This speed disturbance, calculated for typical intense swell specifications, is added to the predicted 

tidal current speed to roughly estimate how the swell can disturb the tidal current values in the turbine disk 

(case 2 to 5). It is also possible to add a white noise b(t) to the tidal current value which allows taking into 

account turbulence phenomena (case 4 and 5). 

Figure 14 shows the DFIG rotor speeds and the corresponding generated active powers for Table 1 

cases. It should be noted that Table 1 also gives the predicted active power for the different cases. The 

obtained results prove that the adopted first order model that predicts the resource tidal speed is quite 

efficient as a reference for the MPPT control block and can provide up to 95% -power ratio between cases 

4 and 5 in Table 1- of the extractable power (in average) even if the resource is heavily disturbed. It can be 

noticed that if the real tidal current speed is used as a reference for the MPPT (cases 2 and 5); it leads to 

high variations of DFIG-based MCT speed and power that will mechanically stress the MCT. However, if 

the predicted average speed is used as a reference (cases 1, 3 and 4) these phenomena are strongly reduced 

without significantly affecting the MCT global extracted power. 

This leads to the conclusion that a control strategy using the predicted tidal current average speed for 

the MPPT will not overload the marine current turbine even with a heavily perturbed resource. 
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(a) Case 1, 2 and 3. 
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(b) Case 1 and 4. 
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(c) Case 1 and 5. 

 

 



 

Time (sec)

T
he

 D
FI

G
 ro

to
r s

pe
ed

 (
ra

d/
se

c)

 

 

 

Time (sec)

T
he

 D
FI

G
 a

ct
iv

e 
po

w
er

 (k
W

)

 

 

(d) Case 4 and 5. 

 

Fig. 14. The DFIG rotor speed and generated active power for a turbulent resource. 

 



V. CONCLUSIONS 

 

This paper dealt with the modeling and the control of a variable speed doubly-fed induction generator 

based marine current turbine. An MPPT-based control strategy was proposed for variable speed control. It 

relies on the resource and the marine turbine models that were validated by experimental data. Tidal 

current data from the Raz de Sein (Brittany, France) have been used to run simulations of a 7.5-kW 

prototype over various flow regimes. Simulation results show that the proposed control strategy is 

effective in terms of speed tracking. However, the active power exhibits some tracking errors of a 

maximum of 10%. These results prove the need for direct active power control. 

Moreover, the sensitivity of the proposed control strategy was analyzed regarding a disturbed resource 

including the swell effect as it is considered as the most disturbing one. 

The obtained results are very encouraging. Indeed, they prove that the adopted first order model that 

predicts the resource tidal speed is quite efficient as a reference for the MPPT control block and can 

provide up to 95% of the extractable power even if the resource is heavily disturbed. Furthermore, 

simulation results also show that a control without a tidal current speed sensor can be used for a marine 

current turbine system thanks to the predictability of the resource. 

 

APPENDIX 
 

PARAMETERS OF THE USED DFIG 
 
 

Rs = 0.455 Ω, Ls = 0.084 H, Rr = 0.62 Ω, Lr = 0.081 H, M = 0.078 H, J = 0.3125 kg.m2, f = 6.73 10-3 Nms-1 
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