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Abstract 
 
The aim of our study is to investigate numerically the interaction between a dispersed phase composed of microbubbles and a 
turbulent Taylor-Couette flow (flow within the gap between two cylinders). We use the Euler-Lagrange approach based on 
Direct Numerical Simulation of the continuous phase flow equations and a Lagrangian tracking for the dispersed phase. Each 
bubble trajectory is calculated by integrating the force balance equation accounting for buoyancy, drag, added-mass, pressure 
gradient, and the lift forces. The numerical method has been adapted in order to take into account the feed-back effect of the 
dispersed bubbles on the carrying flow. Our approach is based on local volume average of the two-phase Navier-Stokes 
equations. Local and temporal variations of the bubble concentration and momentum source terms are accounted for in mass 
and momentum balance equations. A number of reference cases have been tested to validate the modelling approach and its 
numerical implementation. Then, our previous study of bubble dispersion has been extended to two-way coupling simulations 
of turbulent Taylor-Couette flows (only inner cylinder is rotating). Modulation of the drag will be discussed for different 
geometries, Reynolds numbers and bubble sizes. The results show that near-wall turbulent structures are modified by the 
presence of bubbles. 
 

Introduction 
 
Studying the interaction between a dispersed phase and a 
continuous one has a wide variety of application, from 
industrial process engineering to environmental phenomena. 
Bubble columns, two-phase heat exchangers and bubble 
entrapment due to breaking waves are such examples. The 
aim of our study is to focus on the interaction of a dispersed 
phase composed of microbubbles and a turbulent flow. For 
that purpose we consider the configuration of the 
Taylor-Couette device (flow within the gap between two 
concentric cylinders). This flow configuration has already 
been investigated experimentally by Wendt (1933), Smith 
and Townsend (1982), Lathrop et al. (1992), and more 
recently at high Reynolds numbers by Van Gils et al. 
(2011a-c, 2012) and Huisman et al. (2012). Direct 
Numerical Simulations have been carried out for 

 by Dong (2007) and Bilson and Bremhorst 
(2007), and for Reynolds number up to 30000 by 
Brauckmann and Eckhardt (2013). Bubbly Taylor-Couette 
flows have also been experimentally explored by Djeridi et 
al. (1999) and Djeridi et al. (2004) who focused on the 
accumulation pattern of the dispersed phase. Dispersion 
mechanisms have been modelled and numerically 
investigated by Climent et al. (2007) who proposed a 
theoretical analysis to predict the migration behaviour of 
bubbles and a variety of flow regimes. The feed-back 
modifications induced by the presence of bubbles have been 
characterized by Mehel et al. (2007) for moderate Reynolds 
numbers. Modifications of the flow structures due to bubble 
injection were discussed. In addition to flow structures 
modification, drag modulation is a key issue for many 
application related naval transport. For moderate Reynolds 
numbers, Murai et al. (2008) and Sugiyama et al. (2008) 
investigated experimentally and numerically the drag 

modification due to bubbles. This analysis has been 
extended to higher turbulent regimes by Van den Berg et al. 
(2005) and Van Gils et al. (2011a-b).  
The aim of our study is to investigate numerically the 
dispersion of bubbles in turbulent Taylor-Couette flows 
(Reynolds number ranging from 1000 to 8000) and the 
possible effects on drag modulation. We are using the finite 
volume code Jadim with an Euler-Lagrange approach.  
Our paper is organized as follows: the first section is 
devoted to a brief description of the numerical method. We 
will be focusing on the model accounting for the feed-back 
effect of the bubbles on the carrying phase. We will also 
detail some test cases which have been considered to 
validate each physical contribution to the equations and its 
correct implementation in the code. The second objective of 
the paper is related to bubble dispersion and flow 
modifications. Finally, the discussion section summarizes 
our results in light of studies on bubbly Taylor-Couette flow, 
but also on bubble drag reduction observed in other 
geometric configurations (turbulent channel flows, turbulent 
boundary layers, …) 
 
 

I - Numerical method 
 
The numerical approach is based on Euler-Lagrange 
representation: the continuous phase flow is predicted 
through direct solution of the Navier-Stokes equations while 
Lagrangian bubble trajectories are computed by numerical 
integration of momentum balance equation. Modelling the 
presence of bubbles is based on volume-averaging of the 
momentum and continuity equations including momentum 
source terms together with spatial and temporal void 
fraction variations. 
 



   
 

 2

 
1. Equations for single phase flow 

Assuming constant physical properties (viscosity and 
density), the Navier-Stokes equations (1.1- 1.2) for a 
Newtonian incompressible fluid are discretized on staggered 
nonuniform grid with a finite volume approach. 
 

 (1.1) 

 
(1.2) 

 
Spatial derivatives are calculated with second order 
accuracy and we use semi-implicit Crank-Nicolson scheme 
for the viscous term and three steps Runge-Kutta scheme for 
time integration. The code has already been widely used and 
validated for laminar and turbulent configurations in 
single-phase configurations (Climent et al. (2007), Calmet 
& Magnaudet (2003)). 
 

2. Lagrangian tracking of bubbles 
Trajectories are computed through temporal integration of 
the force balance acting on each bubble (Climent & 
Magnaudet (1999), and Legendre et al. (1999)). 
 This balance takes into account buoyancy, drag, 
added-mass, pressure gradient, and the lift forces (eq 1.3).  

v
x =

dt

d  

 

(1.3)

(1.3) 
Bubbles are assumed to be spherical while the Weber 
number is O(10-2). Drag coefficient is then estimated 
through the correlation of Mei et al. (1994), which gives the 
evolution of  with the Reynolds number of each bubble 

 
(1.4)  

The added-mass coefficient is . And we used the 
correlation of Legendre and Magnaudet (1998) for 
estimating the lift coefficient variation with the bubble 
Reynolds number and the local shear rate. 
Direct bubble/bubble interactions are neglected and 
bubble/wall overlap is prevented by assuming an elastic 
bouncing. 
The computation of these forces requires the interpolation of 
the fluid velocity and its time and space derivatives at each 
bubble location. We used 2nd order accuracy linear 
interpolation scheme. A second-order Runge-Kutta scheme 
is used for integrating the force balance in time with a 
typical time step equal to one fifth of the viscous relaxation 
time of the bubbles. Loop nesting is used when time steps of 
both phases are widely separated. When the Eulerian time 
step (based on numerical stability criteria) is smaller than 
the Lagrangian characterisitic time then solutions of both 
sets of equations are synchronized. For large ratio of these 
time steps , Lagrangian inner loops are 
integrated in a frozen flow field and the global computing 
time is dominated by the Lagrangian solver for O(105 to 
106) bubbles. Typically, we have . 
 

 

3. The Two-Way Coupling model 
To account for the action of the dispersed phase on the 
carrying fluid, we average the Navier-Stokes equations in a 
control volume of fluid populated by bubbles. The basic 
principles for this operation can be found in the papers by 
Ferrante and Elghobashi (2004), or Anderson and Jackson 
(1967) and Drew (1984). The averaging procedure is based 
on the function characterizing the presence of the 
continuous phase  locally defined as 
 

 
(1.5)  

 
So, the presence of the dispersed phase can be defined as 

. 
We also introduce the Dirac function that enables to 
locate the interface within the volume  such as  

 

(1.6)  

 

 
 

Figure 1 : Schematic representation of a fluid control volume 
 populated with bubbles,  corresponds to the 

interface between both phases 
 
We introduce then the local volume fraction of the 
continuous phase  (equation 1.7). 

 

(1.7)  

We can also define the corresponding void fraction  

 

(1.8)  

 
For any given field  we introduce its local 
phase-averaged  (equation 1.9). 

 

(1.9)  

The spatial and temporal derivatives of these local-averaged 
function has then the following properties 

 
(1.10) 

 

 
(1.11) 

 
We introduce the local-averaged velocity field of the 
continuous phase  
The volume averaging process leads to new continuity 
(1.12) and (1.13) momentum equations. The influence of the 
dispersed bubbles on the continuous phase is related to the 
local evolution of the void fraction, and to the influence of 
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momentum source term . 

 
 

(1.12)

 
                                                      

(1.13)

 
(1.14)

In those equations, we have neglected momentum transport 
by small scale fluctuations  (scales smaller than the 
control volume).We obtained these equations by neglecting 
this tensor. This contribution would be similar to the 
Reynolds stress tensor and may have two physical origins: 
turbulent subgrid scales (unresolved turbulent fluctuations), 
or bubble induced fluctuations due to finite size effects and 
direct hydrodynamic interactions. The former can be easily 
neglected while we intend to perform direct numerical 
simulations. The latter will be investigated in further studies. 
 

4. Validations 
We present now the different configuration tests to validate 
the implementation of the two-way coupling in our code. 
First the momentum forcing term itself has been tested 
without void fraction effects (case 1) , and then the 
modification of continuity and momentum balance 
equations due to non uniform  (cases 2 to 6). 
 

a) Case 1: Bubble-induced pressure drop 
In this first test-case we consider a 3D-channel with stress 
free boundary conditions on the four boundaries parallel to 
the mean flow (symmetry conditions) and inflow-outflow 
conditions in the axial direction. In this case bubbles remain 
fixed at random positions in the central part of the simulation 
domain  (fig. 2). The dimensions of the 

channel are  and . The mesh is 
regular in x and z directions and non-uniform in y direction 
with ,  We impose a constant 
inlet velocity  with . 
Simulations were unsteady. Pressure is obtained by an 
iterative solver for the Poisson equation with a convergence 
criterion of . Fluid characteristics are chosen to lead to 
negligible viscous dissipation. 

 

 
Figure 2 :  Sketch of the configuration used for the validation in 

the case 1 whith 40,000 uniform bubbles of radius 
 

 
In this case we do not consider the effect of the void fraction 
in the balance equations, yielding:  

 
(1.15) 

 
(1.16) 

 

(1.17) 

 
We consider that drag experienced by each bubble is similar 
which gives: 

 

 (1.18) 

By integrating in the volume of the channel the force 
balance written in the  direction we obtain an analytic 
expression between the pressure difference, the channel 
section  and the sum of the forcing terms  (equation 
1.19).  

 

 (1.19) 

 
The pressure has a linear evolution across the bubble cloud. 
While drag force is uniform, the pressure gradient 

 must be proportional to the global void 
fraction as described by Riboux (2007). This is exactly what 
we obtained on pressure profiles (figure 3 and table 1). The 
agreement is very good and validates the implementation of 
the momentum source term. 
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Figure 3 :  Evolution in the  direction of the pressure 

averaged in the channel section, for 3 different void 
fractions (a) and scaled by the global void fraction (b) 
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Table 1 : Pressure gradient and relative errors obtained for the 

different cases considered for the validation of the 
implementation of the momentum forcing term 

 
b) Cases 2 to 6: modifications of the Navier-Stokes 

equations by a non-uniform void fraction 
In order to validate the modification of the Navier-Stokes 
due to the presence of  in the balance equations, we have 
chosen to progressively increase the complexity of tests 
(summarized in Table 2). For all cases, we proceed as 

following: we consider the configuration of case 1 (same 
mesh, as well) and impose simple variations of , in time 
or in space. So, velocity and pressure evolutions can be 
easily predicted by theory and compared to simulations. In 
cases 2 and 3 we tested the modification of the continuity 
equation. The aim of case 4 was to validate the modification 
of the pressure gradient, the modification of the advective 
term for case 5 and the modification of the viscous 
contribution to the momentum equation for case 6. For all 
cases we have .   

     

Case Governing equations 
Volume fraction 

(imposed) 
Theoretical Velocity 

Evolution 
Theroretical Pressure 

Evolution 

2 

 

    

 

3 

 

  

 

 
 

 

 

4 

 

   

 
 

 

5 

 

  
 

  

 

6 

 

  
 

 

 

 

Table 2 : Characteristics of the validation tests for non-uniform void fraction distribution. 
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For cases 2 to 5, we neglected the viscous contribution while 
for case 6 it has been accounted for with . Figure 
4 gives the evolutions of the volume fraction of the fluid, the 
velocity and the pressure. Table 3 summarizes the errors of 
the computed fields compared to analytic solutions. The 
error is always below 10-10 for the velocity and O(10-4) for 
the pressure which validates the numerical implementation. 
 

Case 
Max relative 
error for U 

Max relative 
error for P 

Max error 
for V 

Max error 
for W 

2     
3     
4     
5     
6     

Table 3 : Error obtained for the different test validation 
 

5. Conclusion on the numerical method 
The effect of fixed bubbles has been successfully tested. It is 
important to recall that the void fraction is calculated by 
local summation of the bubble present in a particular 
Eulerian mesh volume. Void fraction is transported by the 
Lagrangian motion of the bubbles. 
Finally, the code has been parallelized with distinct 
strategies for the Navier-Stokes solver and for the 
Lagrangian tracking. Domain decomposition is used for the 
Navier-Stokes solver thanks to Hallez (2007). Bubble 
population is equally distributed among all processors 
involved in the simulation. As it will be presented in the 
following section, bubbly Taylor-Couette flows are 
characterized by local accumulation of bubbles. Distributing 
bubbles based on their position would lead to unbalanced 
processor load. Therefore, they are distributed based on their 
index number ranging from 1 to106. 
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Figure 4 :  Summary of the fluid concentration (1), pressure (2) and velocity (3) for the different cases over in the x direction. For case 3 it 

corresponds to time . 

 
II - The Taylor-Couette flow configuration 
 
We focus now on the simulation of turbulent Taylor-Couette 
flow seeded with microbubbles. We consider that only the 
inner cylinder is rotating and the outer one is kept fixed. The 
geometry (fig. 5) is characterized by the radius ratio 

, and the aspect ratio Γ=Lax/(R2-R1) where L is 
the length of the domain, R1 and R2 are the radii of the 
inner and outer cylinders respectively. We use periodic 
boundary conditions in the axial and azimuthal directions 
and Dirichlet boundary conditions on cylinder walls. We 
will consider three radius ratios , 
and aspect ratios equal to  for the two smallest 
values of η, and  for the thin gap.  

 
(2.1) 

The Reynolds number (eq. 2.1) is defined with the gap 
width and the velocity of the inner cylinder . 
This dimensionless quantity which controls the dynamics of 
the flow for a given geometry is ranging from 1000 to 8000 
in our study. For the different radius ratios and Reynolds 
numbers velocities are normalized by the velocity of the 
inner cylinder, and lengths by the radius of the outer 
cylinder. 

 
Figure 5 :  Sketch of the Taylor-Couette configuration.  

For low Reynolds numbers the flow is purely azimuthal. 
When increasing  we have the TVF regime (Taylor 
Vortex flow) characterized by the development of large 
scale toroidal counter-rotating vortices. For larger Reynolds 
number the Wavy Vortex Flow (WVF) regime occurs 
followed by Modulated Wavy Vortex Flow (MWVF). At 
larger Reynolds numbers, the flow becomes turbulent 
(Turbulent Taylor Vortex Flow, (TTVF), which is 
characterized by the persistence of the large scale Taylor 
Vortices and the presence of turbulent fluctuations (fig. 6). 
For even higher Reynolds number, the Taylor Vortices 
disappear. We will be considering the TTVF regime.  
 
This section is organized as follows: first we describe some 
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reference results on the single phase flow. Then, we move 
on the description of “passive” bubble dispersion to 
highlight accumulation mechanisms possibly leading to drag 
modulation when two-way coupling is enabled. 
 
 

1. Single phase TTV flow 
The simulations have been validated by comparing 
statistical quantities to previous studies. The torques acting 
on cylinders were compared to experimental correlations 
proposed by Wendt (1933). It is defined by equations 
(2.1-2.2) 
 

 (2.2) 

 (2.3) 
 
Our results of the torque are in good agreement with Wendt 
(1933). More precisely, we simulated the configuration 
investigated by Dong (2007), corresponding to . 
Radial evolution of the mean azimuthal velocity  
and of the azimuthal velocity fluctuations  
were also in good agreement with Dong results. Averages 
are performed over the axial and azimuthal directions and 
also over time. The fluctuation is defined by 

. We observed that the mean velocity 
profiles were not very sensitive to the spatial discretisation 
while the fluctuation intensity was used to achieve mesh 
convergence. The results of our simulations are presented in 
fig. 7. We observe that a coarse grid leads to an overestimate 
of the maximum of RMS values. We also compared our 
results with experimental investigations of Mehel (2006) for 
the case . Based on those results we selected 
appropriate meshes for each case 

 for the larger gap, 
 for the intermediate gap 

and  for the smaller one. 

Figure 6 :  Isosurfaces of the velocity field for , 
 (Left: Instantaneous flow field, right: Mean 

velocity field ) 
 
In order to characterize the Taylor-Couette flow it is also 
useful to introduce another average procedure yielding 

 which is only averaged in the azimuthal direction and 
in time, as proposed by Bilson and Bremhorst (2007). This 
allows separating the presence of large scale structures 
(reminiscent of Taylor vortices) and small scale turbulent 
fluctuations (fig. 6). The decomposition 

shows the specific contribution of 
Taylor-Vortices to RMS fluctuation  (fig. 
7). The presence of these Taylor Vortices induces jet zones: 
the Inflow and Outflow directed towards and outwards the 
inner cylinder. Taylor vortices and small scale fluctuations 
have the same intensity (between  to ) for η=0.5. 
For thinner gaps, the ratio of the Taylor vortices contribution 
to the small scales contribution is obviously increased .  
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Figure 7 : Statistics on the azimuthal component on single-phase 

flow for  and for different radius ratios: (1) 
mean field, (2) RMS fluctuations , (3) 
RMS fluctuations (((u”θ)

2)θt)
1/2. 

 
Looking more closely at near-wall turbulent structures, we 
can see the presence of herringbone-like streaks. They are 
more intense in the outflow jet zone. These streaks have 
been numerically studied by Dong (2008), and their 
structure imposes the local distribution of wall shear stresses 
(fig. 8). Moreover, an increase of the shear stress is clearly 
visible in the region of jet impact (either on the inner or 
outer cylinder). 
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Figure 8 : Wall shear stresses for  and . (1) 

Inner cylinder, (2) Outer cylinder 
 
We also computed the total shear stress and tested the 
conservation of the kinetic momentum as: ~  as 

described by Eckhardt et al. (2007).  
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(2.4) 

Two main contributions are present: turbulent friction which 
dominates in the core region and viscous friction which 
dominates in the near wall region (fig. 9).  
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Figure 9 :  Different contributions of the global shear for 

 and for different Reynolds numbers: (1) turbulent 
shear, (2) viscous shear 

 
The pdf of the local friction (fig. 10) is not symmetric 
(similarly to turbulent channel flows). (1) 
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Figure 10 : Normalized pdf of the wall shear stress for 

 and for different Reynolds numbers: (1) for 
the inner cylinder, (2) for the outer cylinder 

 
 

2. Bubble dispersion 
Bubbly Taylor Couette flow has been numerically 
investigated by Climent et al. (2007) for passive dispersion. 

They observed accumulation in the Taylor Vortices, which is 
similar to the experimental evidences of Djeridi et al. (1999). 
Two dimensionless parameters were defined to characterize 
the respective contributions of the different migration 
mechanisms (eq. 2.5 and 2.6). 
 

 (2.5)  

 
(2.6)  

 
The first parameter (eq. 2.5) depends on the characteristic 
velocity of the Taylor Vortices  and on the terminal 
rising velocity of the bubbles. This is a measure of force 
balance in the axial direction: small C values imply that 
bubbles are not sensitive to the Taylor Vortices and then rise 
in the domain. On the contrary high C values imply that 
buoyancy effects are small and bubbles trajectories are 
strongly affected by the Taylor Vortices (favourable 
condition for bubble entrapment). H gives an estimate of the 
relative influence of attraction in the Taylor Vortices in the 
radial direction (with high H) and centripetal attraction 
towards the inner cylinder due to added mass effects 
(typically small H). It is important to recall that H depends 
only on the flow parameters , while C also depends 
on bubbles characteristics. 
In the literature for higher Reynolds numbers, it has been 
observed that millimetric bubbles are trapped in the vortices 
while submillimetric bubbles are trapped near the inner 
cylinder, in the outflow region (Mehel (2007)). Murai et al. 
(2008) observed different accumulation patterns: either the 
formation of collars, or the formation of spirals due to 
buoyancy effects. 
In our simulations the dispersed phase is composed of 106 
spherical bubbles, and we considered two bubble radii 

, two Reynolds numbers 
 and focused on the larger gap 

. Bubble positions are randomly seeded in a 
cylindrical slab located close to the inner cylinder (between 

 and ). Bubble 
velocities are initialized at the local fluid velocity. We 
obtained bubble accumulation only for the larger bubbles. 
Bubbles attracted towards the inner cylinder accumulate in 
the herringbonelike streaks (fig. 11) when buoyancy has a 
minor effect. 
With small bubbles we did not observe any accumulation 
patterns. Small bubbles are actually much more influenced 
by small scale turbulent fluctuations and accumulate neither 
in the Taylor Vortices nor in the outflow region. For large 
bubbles, accumulation is clear on the mean void fraction 
profiles (fig. 12) which is peaking near the inner cylinder. 
Bubble concentration maxima near the inner cylinder have 
also been experimentally observed by Mehel et al. (2007) 
and Murai et al. (2008) and numerically by Sugiyama et al. 
(2008). Such bubble concentration profiles point out the 
limit of our modelling approach overestimating peak values 
compared to Mehel et al. (2007) and Murai et al. (2008). 
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Figure 11 : Bubble positions near the inner cylinder for 
the case , , H=0.0637 and 

 Top: without buoyancy, bottom: with 
buoyancy ( ). 

 
Indeed direct bubble interactions (such as collision) may 
prevent strong accumulation and helps dispersing the bubble 
by turbulence. As a preliminary conclusion, we can say that 
bubbles are sensitive to the three major contributions of the 
Turbulent Taylor Vortex Flow: the primary azimuthal flow 
induce an important attraction towards the inner cylinder, 
the Taylor vortices force accumulation (either in vortices or 
outflow regions), and the small scale turbulent fluctuations 
enhance local mixing of the dispersed phase. Small bubbles 
are far more sensitive to these small scale turbulent 
fluctuations, which leads to an overall uniform distribution 
of the void fraction. 
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Figure 12 : Mean void fraction profiles at different 

times for case , , H=0.0637, C=∞: (1) 
for  (2)  

 
It is finally important to notice that bubbly Taylor Couette 
flow also presents accumulation in the radial direction for 
high Reynolds number cases (Van Gils et al. (2011b)), but it 
is difficult to compare our simulations with the high 
turbulent regime since the structure of the carrier flow is 

different than in our simulations. 
 

3. Two-way coupling simulations 
We account for the feedback effect of the dispersed phase 
on the carrying fluid. These aspects have been 
experimentally investigated by Murai et al. (2008) for 
Reynolds numbers ranging from 600 to 4500. They obtained 
noticeable drag reduction due to the presence of bubbles for 
moderate Reynolds numbers.  Sugiyama et al. (2008) 
numerically investigated the bubbly drag reduction for 
Reynolds numbers ranging from 600 to 2500. They 
observed drag reduction when coherent structures of the 
flow were disorganized by the bubbles. Modifications of the 
Taylor vortices by the dispersed phase (increase of the axial 
wavelength of the Taylor cells) have also been 
experimentally observed by Mehel et al. (2007). Moreover, 
bubble drag reduction has been experimentally investigated 
at high Reynolds numbers by Van den Berg et al. (2005) and 
more recently in the T3C device by Van Gils et al. (2011). 
For such high Reynolds numbers, deformability of bubbles 
can play a significant role. Drag reduction has also been 
investigated in other geometrical configuration, such as 
Ferrante and Elghobashi (2004) for a spatially developing 
turbulent boundary layer. Using a modelling approach very 
much similar to ours, they emphasized role of effective 
compressibility: bubble migration near the wall induce a 
non-zero divergence of the flow field which moves the 
turbulent structures away from the wall, leading to a global 
friction reduction. 
 
In our study, Weber numbers have been evaluated with the 
data of the passive bubble dispersion and are typically equal 
to 10-2. Spherical shape of the bubbles can be safely 
assumed. 
To study two-way coupling, we chose to consider the case 
with the smallest bubbles. Actually, simulations with large 
bubbles produced strong numerical instabilities due to 
strong local accumulation of bubbles in near-wall 
turbulence structures (a model to prevent bubble 
overlapping is required for such conditions). Table 4 
summarizes the parameters we used. We focus on cases 
without gravity. Wall units are based on the friction velocity 
for each wall  , the associated viscous length 
scale  and turbulent Reynolds number 

. 
 

η 0.5 

Re 5000 

/   
( - )/  1250 

 0.23 

C ∞ 

H 0.0637 

 300 

 150 

Table 4 : Parameters of the two-way coupling simulations. 
 
The dispersed phase is composed of 106 bubbles, leading to 
an average void fraction . Simulations 
with these characteristics did not cause any modification of 
the carrier flow. By multiplying the forcing terms by a 



   
 

 9

factor we can reach an average void fraction 
. Each bubble represents a cluster of 

1000 bubbles. This can be acceptable if the number of 
simulated bubbles is sufficient to statistically describe the 
dynamics of the dispersed phase. 
With this configuration, we obtain some modifications of 
the structure of the flow (fig. 13) that are similar to 
observations of Sugiyama et al. (2008) : enhancement of 
small scale structures and reduce strength of the Taylor 
vortices.  

  
Figure 13 : Isovalue of the velocity field ( ) 

after three rotations of the inner cylinder (colors corresponds 
to the axial velocity, and highlights the presence of the Taylor 
Vortices). Left: one-way coupling, right: two-way coupling. 

 
We did not observe significant modification of the mean 
velocity profiles. We observe two different transient trends 
(fig. 14): drag increase on the inner cylinder and drag 
reduction on the outer one. Such modulation is related to the 
evolution of the turbulent shear stress (fig. 15) which 
presents a decrease in the cross-correlation of the fluctuating 
velocity of the coherent motion as described by Sugiyama et 
al. (2008). 
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Figure 14 : Temporal evolution of the torques acting 

on the inner cylinder (1) and outer cylinder (2). Time is 
scaled with the one revolution time of the inner cylinder 
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Figure 15 : Comparison of the radial evolution of the 

mean turbulent shear stress for single and two-phase cases 
(normalized with the velocity of the inner cylinder).  

 
Simulations must be continued to get a definite answer on 
whether bubbles are reducing or increasing drag in this 
range of parameters. Nevertheless, similar results to the 
study of Sugiyama et al. (2008) confirm that the major role 
of bubble modulation is located in the core of the flow. 
A possible interaction scenario would be an interaction 
between bubbles and the inflow-outflow jets. This is still 
hypothetical at this stage of the work. The study of the 
single-phase case highlighted that high friction zones 
correspond to impacting jets. The rotation of the inner 
cylinder induces an important centripetal attraction towards 
the inner cylinder. Bubble migration may increase the 
impact of the inflow jet and decrease the intensity of the 
outflow, leading to an increase of the inner torque and 
reduction of the outer torque. Our simulations for 
single-phase flows showed that the relative influence of the 
jets tends to decrease with the Reynolds number. Murai et al. 
(2008) observed crossover between drag reduction and drag 
increase for Reynolds numbers near from . It 
would be then interesting to consider other Reynolds 
numbers, in order to investigate more systematically those 
interactions. 
 
 
III - Conclusions and future prospects 
 
We have implemented a numerical approach which enables 
to compute bubble dispersion with two-way coupling based 
on Euler-Lagrange approach. The formulation of the 
influence of the dispersed phase on the continuous one is 
based on local averaging that modifies the Navier-Stokes 
equations. The main modifications are the presence of a 
forcing term in the momentum balance equation and 
effective compressibility effects.  
Our study consists in four contributions: the first one 
concerns the validation of the feed-back effect on simple 
configurations. We obtained a very good agreement between 
computed and analytic solutions. The second part of our 
study is related to the Taylor-Couette single phase flow. 
Turbulent Taylor-Couette flow, in the range of considered 
Reynolds numbers, is composed of three major 
contributions: a primary azimuthal flow induced by the 
rotation of the inner cylinder, large scale Taylor Vortices 
inducing two jet zones, and small scale turbulent 
fluctuations. The third part of our study deals with the 
analysis of passive bubble dispersion. We observed that 
bubble migration is controlled by the three contributions of 
the flow. The azimuthal flow induces a sustained migration 
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towards the inner cylinder, the Taylor Vortices may generate 
accumulation in the axial direction and turbulence damps 
local accumulation. The last part of our study concerns 
turbulence modulation induced by bubbles. We noticed a 
global decrease of turbulent fluctuations located in the core 
of the flow, a rearrangement of the flow in the near wall 
region while the mean flow profile remains unchanged. 
Concerning the drag modulation, we observed different 
trends for the inner and outer cylinders. In order to conclude 
more precisely on reduction or increase of drag, it will be 
necessary to consider other configurations, mainly by 
changing the global void fraction and the Reynolds number 
of the flow. Moreover, statistics on two-way coupling 
simulations need to be further converged. 
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