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Abstract

The aim of our study is to investigate numeric#lg interaction between a dispersed phase commdsadrobubbles and a
turbulent Taylor-Couette flow (flow within the gdgetween two cylinders). We use the Euler-Lagrangeaach based on
Direct Numerical Simulation of the continuous phfless equations and a Lagrangian tracking for tispersed phase. Each
bubble trajectory is calculated by integrating thice balance equation accounting for buoyancyg,dadded-mass, pressure
gradient, and the lift forces. The numerical methad been adapted in order to take into accourfetretback effect of the
dispersed bubbles on the carrying flow. Our apgroacbased on local volume average of the two-pliNeder-Stokes
equations. Local and temporal variations of thehbeilwoncentration and momentum source terms auated for in mass
and momentum balance equations. A number of refereases have been tested to validate the modeltipgpach and its
numerical implementation. Then, our previous stafipubble dispersion has been extended to two-wapling simulations
of turbulent Taylor-Couette flows (only inner cydier is rotating). Modulation of the drag will besdissed for different
geometries, Reynolds numbers and bubble sizes.r@hdts show that near-wall turbulent structures modified by the
presence of bubbles.

Introduction modification due to bubbles. This analysis has been
extended to higher turbulent regimes by Van derg Beral.
Studying the interaction between a dispersed plhasea (2005) and Van Gils et al. (2011a-b).
continuous one has a wide variety of applicatiommf The aim of our study is to investigate numericalhe
industrial process engineering to environmentahphgena. dispersion of bubbles in turbulent Taylor-Couettewt
Bubble columns, two-phase heat exchangers and éubbl (Reynolds number ranging from 1000 to 8000) and the
entrapment due to breaking waves are such exanipes.  possible effects on drag modulation. We are udiegfinite
aim of our study is to focus on the interactioraafispersed  volume code Jadim with an Euler-Lagrange approach.
phase composed of microbubbles and a turbulent ffamw Our paper is organized as follows: the first sectis
that purpose we consider the configuration of the devoted to a brief description of the numerical hodt We
Taylor-Couette device (flow within the gap betwetvo will be focusing on the model accounting for thedéack
concentric cylinders). This flow configuration habeady effect of the bubbles on the carrying phase. Wé aigo
been investigated experimentally by Wendt (1933jtls detail some test cases which have been considered t
and Townsend (1982), Lathrop et al. (1992), andemor validate each physical contribution to the equatiand its
recently at high Reynolds numbers by Van Gils et al correct implementation in the code. The secondabivge of
(2011la-c, 2012) and Huisman et al. (2012). Direct the paper is related to bubble dispersion and flow
Numerical Simulations have been carried out for modifications. Finally, the discussion section suamaes
Re~0{10%) by Dong (2007) and Bilson and Bremhorst our results in light of studies on bubbly Taylort@tte flow,
(2007), and for Reynolds number up to 30000 by but also on bubble drag reduction observed in other
Brauckmann and Eckhardt (2013). Bubbly Taylor-Cteiet geometric configurations (turbulent channel flowspulent
flows have also been experimentally explored byriDjest boundary layers, ...)
al. (1999) and Djeridi et al. (2004) who focused the
accumulation pattern of the dispersed phase. Digper
mechanisms have been modelled and numericallyl - Numerical method
investigated by Climent et al. (2007) who proposed
theoretical analysis to predict the migration bébaw of The numerical approach is based on Euler-Lagrange
bubbles and a variety of flow regimes. The feedkbac representation: the continuous phase flow is ptedic
modifications induced by the presence of bubble® een through direct solution of the Navier-Stokes ecquagiwhile
characterized by Mehel et al. (2007) for moderatgrivlds Lagrangian bubble trajectories are computed by migale
numbers. Modifications of the flow structures daebtibble integration of momentum balance equation. Modelling
injection were discussed. In addition to flow stwes presence of bubbles is based on volume-averaginipeof
modification, drag modulation is a key issue fornpa momentum and continuity equations including momentu
application related naval transport. For moderatgrields source terms together with spatial and temporald voi
numbers, Murai et al. (2008) and Sugiyama et 8082 fraction variations.
investigated experimentally and numerically the gdra



1. Equations for single phase flow
Assuming constant physical properties (viscosityd an
density), the Navier-Stokes equations (1.1- 1.2) &
Newtonian incompressible fluid are discretized @mygered
nonuniform grid with a finite volume approach.

Veuw=10 (1.12)
du 1 T

Fr (2 = — WP+ V. ivu + Vil +g  (1.2)
Spatial derivatives are calculated with second rrde

accuracy and we use semi-implicit Crank-Nicolsohesae
for the viscous term and three steps Runge-Kutiarae for
time integration. The code has already been widsd and
validated for laminar and turbulent configurations

single-phase configurations (Climent et al. (200ZJmet
& Magnaudet (2003)).

2. Lagrangian tracking of bubbles
Trajectories are computed through temporal intégnaof
the force balance acting on each bubble (Climent &
Magnaudet (1999), and Legendre et al. (1999)).
This balance takes into account buoyancy, drag,
added-mass, pressure gradient, and the lift fqexed.3).
dx

— =V
dt
dv 3
Py = = {"-_"E- - P,r'}ﬁaﬂ' — Py — Colv —ul v —)
dt 8R,
s [D’u dv s Du
TPl | oy — ] TR g

— _Efﬁbf‘:':v — ) X w
(1.3)

3. The Two-Way Coupling model
To account for the action of the dispersed phasehen
carrying fluid, we average the Navier-Stokes equmegtiin a
control volume of fluid populated by bubbles. Thasic
principles for this operation can be found in ttepgrs by
Ferrante and Elghobashi (2004), or Anderson anésdac
(1967) and Drew (1984). The averaging proceduteaged
on the function characterizing the presence of the
continuous phasey. locally defined as
x () = {1 if x is in the fluid at ime ¢ (1.5)

0 otherwise

So, the presence of the dispersed phase can beededs
ralwt) = 1-x.(xt).

We also introduce the Dirac functiofy that enables to
locate the interface within the volum# such as

s, :J;ﬂ 5, d

(1.6)

(Y
(

Figure1l: Schematic representation of a fluid control volume
# populated with bubbless;, corresponds to the
interface between both phases

Bubbles are assumed to be spherical while the Weber

number is O(18). Drag coefficient is then estimated
through the correlation of Mei et al. (1994), whigkies the
evolution of C with the Reynolds number of each bubble

— R,
Rey :—lu ::-LRF (1.4)

The added-mass coefficient &; = 1/2. And we used the
correlation of Legendre and Magnaudet (1998) for
estimating the lift coefficient variation with thbubble
Reynolds number and the local shear rate.

Direct bubble/bubble interactions are neglected and
bubble/wall overlap is prevented by assuming arstiela
bouncing.

The computation of these forces requires the intatjpn of
the fluid velocity and its time and space derivasiat each
bubble location. We used "% order accuracy linear
interpolation scheme. A second-order Runge-Kuttes®e

is used for integrating the force balance in timihwa
typical time step equal to one fifth of the viscoakaxation
time of the bubbles. Loop nesting is used when 8tegs of
both phases are widely separated. When the Eulénan
step (based on numerical stability criteria) is benahan
the Lagrangian characterisitic time then soluti@fisboth
sets of equations are synchronized. For large ditithese
time StepsAtzyiey/ At agvange LAGrangian inner loops are
integrated in a frozen flow field and the globahgmting
time is dominated by the Lagrangian solver @0 to
10°) bubbles. Typically, we havit zy e/ Btz grange ~300

We introduce then the local volume fraction of the
continuous phase.ix.t} (equation 1.7).

2t =5 || eoa
&

We can also define the corresponding void fractigiix. t]

54 (x, ) =:—?ﬂjxd{£ﬂd!$=1 — e lx.t)
&

(1.7)

(1.8)

For any given field A{x,t} we introduce its local

phase-averagedld) (x.t) (equation 1.9).

£ e DA () = }? [I| neos@oaze w9
&

The spatial and temporal derivatives of these lavaraged
function has then the following properties

g i)
(oxcAl = % (e.44))

o (1.10)

(V(x. A, = V(e AA),) (1.11)

We introduce the local-averaged velocity field dfet
continuous phasaz, (x, t) = {(u)_ (.t

The volume averaging process leads to new comyinuit
(1.12) and (1.13) momentum equations. The influericae
dispersed bubbles on the continuous phase is detatéhe
local evolution of the void fraction, and to thdlirence of



momentum source terrf._... au; 0

Be —= (1.15)
5t + V()= 0 o

au; au; apP au; au, €
5 Pr [Et + UF[ El'_r;[. = _IE'J.'[- +u [ﬂ'x;‘. + E'_rl-] + @ (116)
oo (st eV, ) <F, dv DU
XA AT c* c s _;,[ (__l) l:—l— )]
= Vet VLo (Vuy + 7T a)] b 'Sl»‘lT"a-ﬂ‘?F po\gi ——7 )t e )| (L17) ¢
+ P-E.0 + Fd—m
1 dv, Wr?‘ c;)n_sider that drag experienced by each bubldinigar
Facem 23 [ (22 )] which gves: ;
b = dt Ng 1 DU (
In those equations, we have neglected momenturspoan ¢ = .leE’n a [—Fdhx ey + prify E] (1.18)
by small scale fluctuationéu'.u"), (scales smaller than the U v |
control volume).We obtained these equations byewigig By integrating in the volume of the channel thecéor
this tensor. This contribution would be similar the balance written in ther direction we obtain an analytic
Reynolds stress tensor and may have two physidogiher expression between the pressure difference, theneha
turbulent subgrid scales (unresolved turbulenttflations), section 5 and the sum of the forcing termg.,, (equation
or bubble induced fluctuations due to finite sifiees and 1.19).
direct hydrodynamic interactions. The former canebsily Mo
neglected while we intend to perform direct nunedric (F,, — P, )5 = Z —Fa v = Yo (1.19)
simulations. The latter will be investigated inther studies. b=t
4. Validations The pressure has a linear evolution across theléuibiud.
We present now the different configuration testsabdate While drag force is uniform, the pressure gradient
the implementation of the two-way coupling in ouwde. s:p,’uﬁ_pf UZ must be proportional to the global void

First the momentum forcing term itself has beertets  fraction as described by Riboux (2007). This isotlyavhat
without void fraction effects (case 1) , and théw t e gphtained on pressure profiles (figure 3 andetdl The
modification of  continuity and momentum balance agreement is very good and validates the implertientaf

equations due to non uniform. (cases 2 to 6). the momentum source term.
a) Case 1: Bubble-induced pressure drop 20
In this first test-case we consider a 3D-channé¢h wiress o—ble—4
free boundary conditions on the four boundarieslperto 15 a=51e—3
the mean flow (symmetry conditions) and inflow-daud —a=5le-2
conditions in the axial direction. In this case bigls remain —~
fixed at random positions in the central part & simulation ) 1o
domain /4 = xi?'!—:!:_x (fig. 2). The dimensions of the i?“ ol
channel areL, = 5L, and L;=1.175L,. The mesh is B
regular in x and z directions and non-uniform idigection Qb= mimim i LT TR
with N, =30, N, = 60, N, =60. We impose a constant
inlet velocity U = U,e, with U, = 0.1m/s. -5 : : : :
: : : . 0 0.2 0.4 0.6 0.8 1
Simulations were unsteady. Pressure is obtainedaty (@) o/La
iterative solver for the Poisson equation with avergence 200
criterion of 1075, Fluid characteristics are chosen to lead to --a=5le—4
negligible viscous dissipation. 300 a=>5le=3|)
a=0>51e—-2
af 200
& <
th Symmetry =
A < 100
a8
0
_10 i i i i
0 02 04 06 08 1
(b) z/L,

Figure3: Evolution in the x direction of the pressure

] averaged in the channel section, for 3 differenidvo
Figure2: Sketch of the configuration used for the validation fractions (a) and scaled by the global void fratib)

the case 1 whith 40,000 uniform bubbles of radius

RyfL, =20107° VF ) )
’ 4 'HrU-E_.'J;- 2 (SVP — Yroe) fltor
In this case we do not consider the effect of thiel fraction 5.1 10~* —0,193 .44 10°¢
in the balance equations, yielding: 5.1 10-F —1.95 7.33 10-E




[5110°% | -195 | 6.28 10~¢ |
Tablel: Pressure gradient and relative errors obtainedhier
different cases considered for the validation ofe th
implementation of the momentum forcing term

following: we consider the configuration of case(shme
mesh, as well) and impose simple variationszgfin time

or in space. So, velocity and pressure evolutioas be
easily predicted by theory and compared to sintati In
cases 2 and 3 we tested the modification of thdiroaity
equation. The aim of case 4 was to validate theifination

of the pressure gradient, the modification of tiweative
term for case 5 and the modification of the viscous
contribution to the momentum equation for case d. &l
cases we havdi = Ue,,.

Cases 2 to 6: modifications of the Navier-Stokes
equations by a non-uniform void fraction

In order to validate the modification of the Naviipkes
due to the presence @& in the balance equations, we have
chosen to progressively increase the complexitytests
(summarized in Table 2). For all cases, we procasd

b)

Case Governin Lations Volumefraction | Theoretical Velocity Theroretical Pressure
g€d (imposed) Evolution Evolution
BErU[
ﬂx[ B
au; au; _ _Fin _ -1 2
2 [Eﬂ_tl +U, El] _ 20 =77 U =Ua e PG = o [0°G) - 0P (L))
aP a [au; av,
——+u [ +
dx; dapldx, dx;
de, dz.U;
e, el -1 . .
at ' dx; P(x) = —pp (U (x) — UP (L]
. 2
3 [ ]_ f(.r]=s( — | U =Up+——= | __Bim 2 2
fr |eegy +U W =enlt-7) CT oG-ty ¢
8P ] [BUL- 8L,
_ﬂ'I[+'u dx; ﬂx;+ dx;
BErU[ _
dr;
' -1 I
- Plx) = —p; — (1 + ax)
4 5 [E L ]— £ lx) = —— Ulx) =Ux (1 + ax) 27 gy
T 1% ¢ 1+ ax . n
*[(1 +ax)? — (1 +aL,)?]
8z, P ] [BUL- B-Li';l.]
- E'_rl- +,"-'| E'_r;‘- IE"J.';‘-+ E'.h'l'
BErU[
ﬂx[ -
au; au; __Sin . P(x) = —pralf, (x — L)
5 o5 [Er¥+ErURﬂ‘__r;l]: Er{x:] 1+ax U(x) _U-m{l + ax) x (1 4 ax)
8z, P ] [BUL- B-Li';l.]
BRI T I e
de, de U; 0
gt | Bx; o ox—1L,
au; au; e P(x) = —pemUina = (x)
_ 1 e £
6 | oy |ey +eclics ] () = | UG = U +a) e
dueg ————
de P d [BUL- 8L, ' £(x)
B dx; T dxy = ﬂ_r;l.-'_ dx;

Table 2 : Characteristics of the validation tests for non-oimf void fraction distribution.




For cases 2 to 5, we neglected the viscous cotiibwhile
for case 6 it has been accounted for wiia = 0.12. Figure
4 gives the evolutions of the volume fraction of fhuid, the
velocity and the pressure. Table 3 summarizes trerseof
the computed fields compared to analytic solutiofike
error is always below 1Y for the velocity and O(1f) for

5. Conclusion on the numerical method
The effect of fixed bubbles has been successfafited. It is
important to recall that the void fraction is cdited by
local summation of the bubble present in a paicul
Eulerian mesh volume. Void fraction is transportgdthe
Lagrangian motion of the bubbles.

the pressure which validates the numerical impleatam.

Case Max relative| Max relative | Max error |Max error,
error for U | error for P for vV for W
2 401104 4,80 104 10~ 10~
3 3801074 | 3.30 1074 10~ 10~
4 45 10°* 5.7 10~# ip-it ip-i2
5 10107 4.0 107 10~ 10~
6 410104 3.1 1074 ip-t ip-t

Table 3 : Error obtained for the different test validation

Finally, the code has been parallelized with dédtin
strategies for the Navier-Stokes solver and for the
Lagrangian tracking. Domain decompoasition is usadtiie
Navier-Stokes solver thanks to Hallez (2007). Bebbl
population is equally distributed among all prooess
involved in the simulation. As it will be presentéd the
following section, bubbly Taylor-Couette flows are
characterized by local accumulation of bubblestribigting
bubbles based on their position would lead to wnizdd
processor load. Therefore, they are distribute@das their
index number ranging from 1 t0310

(1) () ©)
1 0.08, .35
3 —52’““7 case 2 I —— Ptl?co case 2 _U;heo case 2
. N\ S - SIMU o g
\ mmgSIMU Gace D 0.07h N P case2 | e Uz case 2
\ p . ‘. . Ptheo ..
0.9 \ P case 3 theo
\ —ctheo cage 3 \ sima o] e U case 3
\ e se \, == p case 3 0.3 / z
\ == S cage 3 0.06 \ = Ptheo case 4 / == U™ case 3
0.8 4 e ghe0 age 4 - PS;T”“ case 4 / —Utheo case 4
Ce At \ , / .
- = £STMU Caga 4 0.05 \ Ptheo case 5 0.25 V4 == U3 case 4
0.7 Ce, \ == P case 5 : / Ul;heu 5
. theo \ / R g7
3 case 5 \ theo caco 6 5 / . ©0 case 5
Iy \ Simu R.0.04 \ Psimu('dbe o - Ui”'"”' ase 5
\ ==l case 5 \ == P case 6 z case o
0.6 \ ctheo cace 6 0.03 \ Utheo case 6
c . \ ima .
0 /‘,‘ == g8 case 6 == U™ case 6
.5 \ )
\ 0.02
N \
. \
AN \
0.4 ~ \
N 0.01 \
- 3
“~
0

0
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Figure4: Summary of the fluid concentration (1), pressureaf@d velocity (3) for the different cases ovettie x direction. For case 3 it

corresponds to time = 0.05Ly, /U,

Il - The Taylor-Couette flow configuration

We focus now on the simulation of turbulent TayGuette
flow seeded with microbubbles. We consider thatydhke
inner cylinder is rotating and the outer one istdeqed. The
geometry (fig. 5) is characterized by the radiusiora
n = R, /R,, and the aspect ratio=L,,/(R-R;) where L is
the length of the domain, R1 and R2 are the raflihe
inner and outer cylinders respectively. We use quéci
boundary conditions in the axial and azimuthal aions
and Dirichlet boundary conditions on cylinder walld/e
will consider three radius ratiog = 0.3 — 0,72 — 0,91,
and aspect ratios equal = 2.0 for the two smallest
values of, and I = 3.08 for the thin gap.
re = s ~ R @Y
The Reynolds number (eq. 2.1) is defined with tlap g
width and the velocity of the inner cylindéf, = 12,R,.
This dimensionless quantity which controls the dyits of
the flow for a given geometry is ranging from 1G6B000
in our study. For the different radius ratios aneyRolds
numbers velocities are normalized by the velocitytiee
inner cylinder, and lengths by the radius of theteou
cylinder.

0

Ry R,
e

Lax

Figure5: Sketch of the Taylor-Couette configuration.

For low Reynolds numbers the flow is purely azinalith
When increasingie we have the TVF regime (Taylor
Vortex flow) characterized by the development ofgéa
scale toroidal counter-rotating vortices. For larBeynolds
number the Wavy Vortex Flow (WVF) regime occurs
followed by Modulated Wavy Vortex Flow (MWVF). At
larger Reynolds numbers, the flow becomes turbulent
(Turbulent Taylor Vortex Flow, (TTVF), which is
characterized by the persistence of the large staydor
Vortices and the presence of turbulent fluctuatifits 6).
For even higher Reynolds number, the Taylor Vostice
disappear. We will be considering the TTVF regime.

This section is organized as follows: first we digme some



reference results on the single phase flow. Thenmeve
on the description of “passive” bubble dispersiom t
highlight accumulation mechanisms possibly leadindrag
modulation when two-way coupling is enabled.

1. Single phase TTV flow
The simulations have been validated by comparing
statistical quantities to previous studies. Thejues acting
on cylinders were compared to experimental colialat
proposed by Wendt (1933). It is defined by equation
(2.1-2.2)

T, = {ﬂ'gr}rgr{?‘ = HLJEERELEI
G, =T/ pvile,

2.2)
(2.3)

Our results of the torque are in good agreemerit Wiendt
(1933). More precisely, we simulated the configomat
investigated by Dong (2007), corresponding rte= 0.5.
Radial evolution of the mean azimuthal veloclyg } g (+)

and of the azimuthal velocity fluctuatioffzg)?},g, )/
were also in good agreement with Dong results. #ges
are performed over the axial and azimuthal direstiand
also over time. The fluctuation is defined by
ug = luglye: + uz. We observed that the mean velocity
profiles were not very sensitive to the spatiatditisation
while the fluctuation intensity was used to achiewesh
convergence. The results of our simulations aregmted in
fig. 7. We observe that a coarse grid leads tovenestimate

of the maximum of RMS values. We also compared our
results with experimental investigations of Mel20(6) for
the casen = 0.91. Based on those results we selected
appropriate meshes for each case
(N,= 200N, =100,Ny = 2007 for the larger gap,
(N, = 200,N, = 100, Ny = 400) for the intermediate gap
and (N, = 200, N, = 100, Ng = 6007 for the smaller one.

g

Uix
123347
a1

&
¥

e
= e

; Elu e

For
-0. 130202

Figure6: Isosurfaces of the velocity field fom =0.5,
Re=5000, (Left: Instantaneous flow field, right: Mean
velocity field {u}g,)

In order to characterize the Taylor-Couette flowsitalso
useful to introduce another average procedure ingld
{u)g, which is only averaged in the azimuthal directéom
in time, as proposed by Bilson and Bremhorst (200#)s
allows separating the presence of large scale tateg
(reminiscent of Taylor vortices) and small scalebtlent
fluctuations (fig. 6). The decomposition
ug = luglg; +uy shows the specific contribution of
Taylor-Vortices to RMS fluctuation({(ug)? ). 02 (fig.
7). The presence of these Taylor Vortices indueeggnes:
the Inflow and Outflow directed towards and outvgatte
inner cylinder. Taylor vortices and small scalecfuations
have the same intensity (betwe@r@a to 0,10;) for n=0.5.
For thinner gaps, the ratio of the Taylor vorticestribution
to the small scales contribution is obviously irased .

e

3

5
A
=)
\

0.2 0.4 0.6

(r—Ri)/(R2 — Ri)

0.8

1)

——n=0.5

@)

0 0.2 0.4 0.6

3) (r—Ry)/(Rz — R1)

Figure 7 : Statistics on the azimuthal component on singlespha
flow for Re =5000 and for different radius ratios: (1)
mean field, (2) RMS fluctuations({{uj)?}.s: 052, (3)
RMS fluctuations (((u§)?)e) "2

0.8 1

Looking more closely at near-wall turbulent struet) we
can see the presence of herringbone-like stredksy &re
more intense in the outflow jet zone. These strezkee
been numerically studied by Dong (2008), and their
structure imposes the local distribution of wakahstresses
(fig. 8). Moreover, an increase of the shear stiesdearly
visible in the region of jet impact (either on thmner or
outer cylinder).

2f — ==, T A
5> é;ﬁgM ST 2
_ < e -

OR\/(Ry — R)

Figure 8 :Wall shear stresses fay = 0.5 and Re = 5000. (1)
Inner cylinder, (2) Outer cylinder

We also computed the total shear stress and tebied
conservation of the kinetic momentum as;.~cte/ r* g

described by Eckhardt et al. (2007)



g
Teor ) = .mirg({”‘f’}fﬂffr) — ol g (2.4)
Two main contributions are present: turbulent foictwhich
dominates in the core region and viscous frictiohiclw
dominates in the near wall region (fig. 9).

A —+— Re = 1000 Turbulent friction
)
-0.2 I| —+— Re = 1000 Total friction
\u
0.4 lli . - =" Re = 3000 Turbulent friction
é 06 " P .. == Re = 3000 Total friction
% ' ‘\\, [ = == Re = 5000 Turbulent friction
= 24
<} -08 B\ = == Re = 5000 Total friction
=
_1’ Re = 8000 Turbulent friction
Re = 8000 Total friction
-1.2
—— —R}/r?
-1.4
0 0.2 0.4 0.6 0.8 1
(r—Ry)/(Ry — Ry)

Re = 1000 Viscous friction
—+— Re = 1000 Total friction

Re = 3000 Viscous friction
== Re = 3000 Total friction

Re = 5000 Viscous friction
= == Re = 5000 Total friction
Re = 8000 Viscous friction
Re = 8000 Total friction

Frottement

— -y

0.2 0.4 0.6 0.8

(r—Ry)/(Ry — Ry)

Figure9: Different contributions of the global shear for
n = 0.5 and for different Reynolds numbers: (1) turbulent
shear, (2) viscous shear

1

The pdf of the local friction (fig. 10) is not synenic

(similarly  to  turbulent channel flows). (1)
10 ‘
—— Re = 1000
Re = 3000
=10} Q * Re=4000 | A
/\Fs ©  Re = 5000
3 Re = 8000
<192t J
v
~
£
T 107t 1
> A
o
6 ‘
10—1 0 1 2 3 4 5
Tw/< Tw > a6t
16
—— Re = 1000
Re = 3000
<10} A * Re=4000|
~ © Re=5000
C Re = 8000
= 10 F 4
V
~
Lo
A 10 " 1
i wophy
10—6 @0 1 I i I L _0®
-4 -2 0 2 4 6 8 10
(2) Tw/< Tw >z6t
Figure 10: Normalized pdf of the wall shear stress for

1 = 0.5 and for different Reynolds numbers: (1) for
the inner cylinder, (2) for the outer cylinder

2. Bubble dispersion
Bubbly Taylor Couette flow has been numerically
investigated by Climent et al. (2007) for passii&drsion.

They observed accumulation in the Taylor Vortiaglsich is

similar to the experimental evidences of Djeridakt(1999).
Two dimensionless parameters were defined to ctaiae
the respective contributions of the different migna

mechanisms (eq. 2.5 and 2.6).

0= U‘Tl-’{‘i (25)
Un\® Ry

= —_— 2.6

H 4(5’1) Ry R, (2:6)

The first parameter (eq. 2.5) depends on the cteaistic
velocity of the Taylor Vorticedl;,, and on the terminal
rising velocity of the bubbles. This is a measufeooce
balance in the axial direction: small C values inghat
bubbles are not sensitive to the Taylor Vortices toen rise
in the domain. On the contrary high C values imibigt
buoyancy effects are small and bubbles trajectoaies
strongly affected by the Taylor Vortices (favoueabl
condition for bubble entrapment). H gives an estintd the
relative influence of attraction in the Taylor Vieds in the
radial direction (with high H) and centripetal atition
towards the inner cylinder due to added mass affect
(typically small H). It is important to recall that depends
only on the flow parametergn. Re}, while C also depends
on bubbles characteristics.

In the literature for higher Reynolds numbers, at tbeen
observed that millimetric bubbles are trapped abrtices
while submillimetric bubbles are trapped near theer
cylinder, in the outflow region (Mehel (2007)). Muret al.
(2008) observed different accumulation patterntheeithe
formation of collars, or the formation of spiralsied to
buoyancy effects.

In our simulations the dispersed phase is compo$edyf
spherical bubbles, and we considered two bubbléi rad
(Rp/Ry; =2.107* — 2,107}, two Reynolds numbers
(Re = 3000 — 50007 and focused on the larger gap
(n =0.5). Bubble positions are randomly seeded in a
cylindrical slab located close to the inner cylin@eetween
r=R; + Ry and »=H; + Ry + 0.1{(R; — R;)). Bubble
velocities are initialized at the local fluid velbc We
obtained bubble accumulation only for the largebties.
Bubbles attracted towards the inner cylinder acdatauin
the herringbonelike streaks (fig. 11) when buoyahag a
minor effect.

With small bubbles we did not observe any accuraat
patterns. Small bubbles are actually much moreiémited
by small scale turbulent fluctuations and accuneutaither
in the Taylor Vortices nor in the outflow regionorFarge
bubbles, accumulation is clear on the mean voidtira
profiles (fig. 12) which is peaking near the inrostinder.
Bubble concentration maxima near the inner cylinkere
also been experimentally observed by Mehel et2407)
and Murai et al. (2008) and numerically by Sugiyashal.
(2008). Such bubble concentration profiles point the
limit of our modelling approach overestimating pealfues
compared to Mehel et al. (2007) and Murai et &08).
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Figurel1l: Bubble positions near the inner cylinder for
the case »=0.5 , Re=5000 , H=0.0637 and
Ry,/R.=2.10% Top: without buoyancy, bottom: with
buoyancy {~0.5).
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Indeed direct bubble interactions (such as coltisimay
prevent strong accumulation and helps dispersiadttbble
by turbulence. As a preliminary conclusion, we sag that
bubbles are sensitive to the three major contidimstiof the
Turbulent Taylor Vortex Flow: the primary azimuthiidw
induce an important attraction towards the inndnder,
the Taylor vortices force accumulation (either ortices or
outflow regions), and the small scale turbulenttiiations
enhance local mixing of the dispersed phase. Smlbles

are far more sensitive to these small

fluctuations, which leads to an overall uniformtdi®ution

of the void fraction.
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Mean void fraction profiles at different
times for casen = 0.5, Re = 5000, H=0.0637, C=: (1)
for Ry/Ry= 21077 (2)Rp/Ry,=2.1071

It is finally important to notice that bubbly Tayl&@ouette
flow also presents accumulation in the radial dicec for
high Reynolds number cases (Van Gils et al. (2011 it
is difficult to compare our simulations with the ghi
turbulent regime since the structure of the carfiew is

scale turbule

different than in our simulations.

3. Two-way coupling simulations
We account for the feedback effect of the dispersease
on the carrying fluid. These aspects have been
experimentally investigated by Murai et al. (200@y
Reynolds numbers ranging from 600 to 4500. Thewgiabtl
noticeable drag reduction due to the presence loifles for
moderate Reynolds numbers. Sugiyama et al. (2008)
numerically investigated the bubbly drag reductifom
Reynolds numbers ranging from 600 to 2500. They
observed drag reduction when coherent structurethef
flow were disorganized by the bubbles. Modificataf the
Taylor vortices by the dispersed phase (increagbeofxial
wavelength of the Taylor cells) have also been
experimentally observed by Mehel et al. (2007). &bwer,
bubble drag reduction has been experimentally tiyeted
at high Reynolds numbers by Van den Berg et abD%2@nd
more recently in the °C device by Van Gils et al. (2011).
For such high Reynolds numbers, deformability abddas
can play a significant role. Drag reduction has aigen
investigated in other geometrical configurationctsuas
Ferrante and Elghobashi (2004) for a spatially tgieg
turbulent boundary layer. Using a modelling apphoaery
much similar to ours, they emphasized role of diffec
compressibility: bubble migration near the wall uce a
non-zero divergence of the flow field which movéde t
turbulent structures away from the wall, leadingatglobal
friction reduction.

In our study, Weber numbers have been evaluateu tivét
data of the passive bubble dispersion and aredlpiequal

to 10% Spherical shape of the bubbles can be safely
assumed.

To study two-way coupling, we chose to consider case
with the smallest bubbles. Actually, simulationghMarge
bubbles produced strong numerical instabilities doe
strong local accumulation of bubbles in near-wall
turbulence structures (a model to prevent bubble
overlapping is required for such conditions). Table
summarizes the parameters we used. We focus ors case
without gravity. Wall units are based on the foctivelocity

for each wallu; =,z ;/p , the associated viscous length

scale &7 =v/uj A and turbulent Reynolds number
Re! =ui(R, — R/ v.
n| 0.5
Re | 5000
Ry/Ry | 2,107
(R.-R,)/R, | 1250
2R, /5%, | 0.23
C| o
H | 0.0637
Re,” | 300
Re,” | 150

Table 4 : Parameters of the two-way coupling simulations.

The dispersed phase is composed Sftibbles, leading to
an average void fractiom; —— = 1.35 1075 Simulations
with these characteristics did not cause any nuatifn of

the carrier flow. By multiplying the forcing termisy a



factor ¥ = 1000we can reach an average void fraction
£3°°% = 1.35 1072 Each bubble represents a cluster of
1000 bubbles. This can be acceptable if the nunafer
simulated bubbles is sufficient to statisticallysdebe the
dynamics of the dispersed phase.

With this configuration, we obtain some modificaiso of
the structure of the flow (fig. 13) that are similéo
observations of Sugiyama et al. (2008) : enhanceroén
small scale structures and reduce strength of tndof
vortices.

Figure13: Isovalue of the velocity field]|¢]| = 0.5)
after three rotations of the inner cylinder (colocsresponds
to the axial velocity, and highlights the preseatthe Taylor
\ortices). Left: one-way coupling, right: two-wagupling.
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We did not observe significant modification of theean
velocity profiles. We observe two different tramgi¢rends
(fig. 14): drag increase on the inner cylinder ahthg
reduction on the outer one. Such modulation igedl¢o the
evolution of the turbulent shear stress (fig. 15hick
presents a decrease in the cross-correlation dfutieiating
velocity of the coherent motion as described byiyarga et
al. (2008).
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Figure 14 : Temporal evolution of the torques acting
on the inner cylinder (1) and outer cylinder (2Jm& is
scaled with the one revolution time of the inneliroler
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Figure 15 : Comparison of the radial evolution of the
mean turbulent shear stress for single and twoepbases
(normalized with the velocity of the inner cylinjler

Simulations must be continued to get a definitenemson
whether bubbles are reducing or increasing draghis
range of parameters. Nevertheless, similar redoltshe
study of Sugiyama et al. (2008) confirm that thganaole
of bubble modulation is located in the core offlbgv.

A possible interaction scenario would be an intéoac
between bubbles and the inflow-outflow jets. Thasstill
hypothetical at this stage of the work. The studythe
single-phase case highlighted that high frictionnem
correspond to impacting jets. The rotation of tin@er
cylinder induces an important centripetal attractiowards
the inner cylinder. Bubble migration may increase t
impact of the inflow jet and decrease the intensitythe
outflow, leading to an increase of the inner torcarel
reduction of the outer torque. Our simulations for
single-phase flows showed that the relative infogeof the
jets tends to decrease with the Reynolds numberaiMt al.
(2008) observed crossover between drag reductidrdeag
increase for Reynolds numbers near fr@&~2500. It
would be then interesting to consider other Reysold
numbers, in order to investigate more systemayidhibse
interactions.

Ill - Conclusions and future prospects

We have implemented a numerical approach whichlegsab
to compute bubble dispersion with two-way couplbased

on Euler-Lagrange approach. The formulation of the
influence of the dispersed phase on the continumssis
based on local averaging that modifies the Naviek&s
equations. The main modifications are the presesfca
forcing term in the momentum balance equation and
effective compressibility effects.

Our study consists in four contributions: the firghe
concerns the validation of the feed-back effectsomple
configurations. We obtained a very good agreemetwéen
computed and analytic solutions. The second parbusf
study is related to the Taylor-Couette single phfige.
Turbulent Taylor-Couette flow, in the range of coesed
Reynolds numbers, is composed of three major
contributions: a primary azimuthal flow induced Hbiye
rotation of the inner cylinder, large scale TayMortices
inducing two jet zones, and small scale turbulent
fluctuations. The third part of our study deals hwihe
analysis of passive bubble dispersion. We obsethed
bubble migration is controlled by the three conttibns of
the flow. The azimuthal flow induces a sustainedration



towards the inner cylinder, the Taylor Vortices nggnerate
accumulation in the axial direction and turbulermtzamps
local accumulation. The last part of our study @ne
turbulence modulation induced by bubbles. We ndtiee
global decrease of turbulent fluctuations locatedhe core
of the flow, a rearrangement of the flow in the meall
region while the mean flow profile remains unchahge
Concerning the drag modulation, we observed differe
trends for the inner and outer cylinders. In ofteconclude
more precisely on reduction or increase of dragyilit be
necessary to consider other configurations, maibly
changing the global void fraction and the Reynaidmber
of the flow. Moreover, statistics on two-way coumgli
simulations need to be further converged.
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