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A Novel Approach for Simplification of Industrial Robot Dynamic
Model Using Interval Method*

Ke Wang1, François Léonard2 and Gabriel Abba2, Member, IEEE

Abstract— This paper proposes a new approach to simplify
the dynamic model of industrial robot by means of interval
method. Due to strong nonlinearities, some components of robot
dynamic model such as the inertia matrix and the vector
of centrifugal, Coriolis and gravitational torques, are very
complicated for real-time control of industrial robots. Thus,
a simplification algorithm is presented in this study in order
to reduce the computation time and memory occupation. More
importantly, this simplification is suitable for arbitrary tra-
jectories in whole robot workspace. Furthermore, the method
devotes to finding negligible inertia parameters, which is useful
for robot model identification. A simulation has been carried
out on a test trajectory using a 6-DOF industrial robot model,
and the results have shown good performance and effectiveness
of this method.

I. INTRODUCTION

Robot manipulators have been increasingly used in various
industrial applications in recent years, such as assembly,
spray painting, materials machining and welding tasks, im-
proving the productivity, flexibility, and quality. However,
for most industrial robots applied to machining and Friction
Stir Welding (FSW) process, a high precision and real-
time performance can not be achieved. In order to ensure
a better tracking performance, many studies about industrial
robot control have been performed. Although the machining
accuracy can be raised by means of observer-based control
or other methods [1], it can not avoid to bring a more
complicated control structure. As a result, a great deal of
calculation and memory occupation will be carried out in
robot controller, affecting the real-time capability. Therefore,
low complexity models are essential and model reduction
methods are very useful tools.

Industrial manipulators are highly nonlinear, highly cou-
pled and time-varying systems. There exist many model re-
duction methods available for nonlinear systems [2], includ-
ing heuristic methods, linearization around equilibrium point
or trajectory, balancing using energy functions, balancing
empirical Gramians [3], proper orthogonal decomposition,
trajectory piecewise-linear approach [4], model reduction
through system identification. A computationally efficient
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reduction method relating to balanced truncation was also
proposed in [5]. All these methods can reduce the number
of states and improve calculation speed, while the limitation
is that they are only applicable to specific trajectories.

Interval method has been widely used in various applica-
tions [6], [7], such as parameter and state estimation, robust
control and robotics, etc. Using interval analysis, Kieffer and
Jaulin [8] proposed a guaranteed recursive nonlinear state
estimator, which can solve many actual tracking problems.
Its applications to the robust autonomous localization and
tracking of mobile robots were presented in [9], [10]. The
main limitation of such technique lies in the explosion of
complexity with the number of state variables. A similar
robust navigation method was also applied to sailboat robots
[11], and an interval-based method for the validation of
reliable and robust navigation rules was given meanwhile.
The authors of [12] combined the interval computation and
constraint propagation to tackle some difficult problems in
nonlinear identification and robust control.

In the field of industrial robots, a new approach based on
interval analysis was developed to find the global minimum-
jerk (MJ) trajectory of a robot manipulator within a joint
space scheme using cubic splines [13]. The geometric design
issue of serial-link robot manipulators with three revolute (R)
joints was solved for the first time using an interval analysis
method [14]. Gouttefarde et al. [15] presented an interval-
analysis-based approach to the wrench-feasible workspace
determination of n-DOF parallel robots driven by n or more
cables. In [16], a novel approach based on interval method
was used to deal with problems of dynamic self-collision
detection and prevention for 2-DOF robot manipulator. The
forward kinematic map of serial manipulator was extended
to intervals using the product of exponential formulation in
order to analyze the kinematic errors [17].

As for model simplification using interval method, Martini
proposed a method to simplify a 7-DOF helicopter model
[18]. During this simplification, the terms related to the com-
ponents of the inertia matrix and the vector of centrifugal,
Coriolis and gravitational torques were first studied from the
point of view of specific trajectories, including the normal
and helical trajectories. Then all the terms were analyzed
by using interval method, which could be generalized to
arbitrary trajectories. A simulation for the two trajectories
was carried out to demonstrate effectiveness of this method
as well. Nevertheless, his method is limited to some specific
flight trajectories.

The objective of this paper is to propose a simplification
approach for the dynamic model of heavy industrial ma-



nipulator using interval method. In the model-based control
design, simple models are highly preferred. By applying the
resulting simplified model to practical control system, the
computation time and memory occupation will be greatly
reduced, particularly in the observer-based control presented
by Qin et al. [1], [19]–[21]. What is more important is
that this simplification is suitable for arbitrary trajectories in
whole robot workspace. Moreover, the simplification devotes
to finding negligible inertia parameters, which is very useful
for robot model identification.

This paper is organized as follows: The modeling of an in-
dustrial manipulator KUKA KR500-2MT is firstly presented
in Section II. In Section III the definition and operation
of interval is introduced, followed by the simplification
algorithm of robot model and results for whole workspace. In
Section IV, a simulation is carried out on a test trajectory to
verify the performance of simplification. Section V provides
some usage of the simplified model. Finally, Section VI
concludes this paper by discussing the advantage of this
simplification.

II. ROBOT DYNAMIC MODEL

The industrial robot considered in this study is a serial
manipulator KUKA KR500-2MT, as shown in Fig. 1. It has
six degrees of freedom, and is composed of six moving links
and six revolute joints. We would like to use this robot model
to present our simplification method. In order to simplify the
modeling of robot, we assume that the tool is directly fixed
on link 6 and the spindle of tool is coincident with the axis
of joint 6.

Fig. 1. Robot KUKA KR500-2MT (by courtesy of Institut de Soudure)

On the basis of the research work of Khalil and Dombre
[22], the modified Denavit-Hartenberg geometric description
is commonly adopted in the modeling of robots. Fig. 2 shows
a geometric description of the robot manipulator. After defin-
ing the reference frames for the robot, the Modified Denavit-
Hartenberg notation can be applied to obtain the geometric
parameters, which are listed in Table I. The numerical values
of these parameters used for the simplification are given in
Table VI of Appendix.

In accordance with this description, the robot motion can
be completely described by the vector q of six generalized
coordinates: q = [q1,q2,q3,q4,q5,q6]

T . The description fa-
cilitates to calculate symbolic expressions of the geometric,

Fig. 2. Geometric description of the robot [1]

TABLE I
GEOMETRIC PARAMETERS OF ROBOT MODEL [1]

j µ j σ j α j d j θ j r j
1 1 0 π 0 q1 −L1z
2 1 0 π/2 L1x q2 0
3 1 0 0 L2 π/2+q3 0
4 1 0 −π/2 −D4 q4 −L34
5 1 0 π/2 0 q5 0
6 1 0 −π/2 0 −π/2+q6 −L5
t 0 2 0 0 0 −Ltz

kinematic and dynamic model of robot with the help of the
software SY MORO+ [23], [24], or other robotic techniques.

Using the Newton-Euler method or the Lagrange equa-
tions, one can get the dynamic model of the robot as the
following form [1]:

M(q)q̈+H(q, q̇)+Ff r(q̇)+ JT (q)F = Γ (1)

where M(q)(6×6) is the symmetric, uniformly positive def-
inite and bounded inertia matrix, H(q, q̇)(6×1) represents
the vector of centrifugal, Coriolis and gravitational torques,
Ff r(q̇)(6×1) is the vector of friction at the robot axis, F(6×1)
is the vector of efforts applied by robot on external envi-
ronment, JT (q)(6×6) is the transposed Jacobian matrix of the
tool frame, Γ(6×1) is the vector of gearbox torque, and q,
q̇ and q̈ represent the robot angular position, velocity and
acceleration vectors respectively.

III. SIMPLIFICATION USING INTERVAL METHOD

A. Basic Definitions and Operations of Intervals

The interval denoted by [a,b] is the closed set of real
numbers given by:

[a,b] = {x ∈ R : a ≤ x ≤ b} (2)

If the left and right endpoints of an interval X are
denoted by X and X respectively, the width, midpoint and
absolute value of this interval X can be defined as follows:

w(X) = X −X (3)



m(X) = (X +X)/2 (4)

|X |= max{|X |, |X |} (5)

Let X , Y be real compact intervals and the general form
of the interval arithmetic operations are defined as:

X ⊙Y = {x⊙ y : x ∈ X ,y ∈ Y} (6)

where ⊙ stands for one of the basic operations including
addition, subtraction, multiplication and division, and here
we assume 0 /∈ Y in case of division. In addition, these
operations can be expressed in terms of the endpoints of
intervals, and the following rules hold:

X +Y = [X +Y ,X +Y ] (7)

X −Y = [X −Y ,Y −X ] (8)

X ·Y = [min{XY ,XY ,XY ,XY},max{XY ,XY ,XY ,XY}] (9)

X/Y = X · 1
Y
, where

1
Y

= [1/Y ,1/Y ] i f 0 /∈ Y (10)

Similarly the notion of intervals and interval arithmetic can
be extended to include interval vectors and interval matrices
as well. More details about intervals are presented in the
books of Moore [6] and Jaulin [7].

B. Simplification Algorithm

From (1), we can observe that the expressions of some
components are very complicated, such as the inertia matrix
M(q) and the vector of centrifugal, Coriolis and gravitational
torques H(q, q̇). All expressions of these components show
strong nonlinearities and a high coupling between the control
inputs, which make it difficult to design the control law of
robot. Therefore, it is necessary to simplify these expressions
in order to acquire a simple model containing essential terms
and characteristics of the robot manipulator.

Various model reduction methods for nonlinear systems
are existent, however, most of them are only applicable to
specific trajectories. According to the specification of robot
KUKA KR500-2MT, the range of angular motion, velocity
and acceleration for each axis are given in Table II. As
shown in this table, all the variables about trajectories in
operational workspace are intervals. As a result, interval
method will be an easier and more effective way to simplify
robot dynamic model compared with other methods. More
importantly, the interval-method-based simplification can be
definitely applied to arbitrary trajectories in robot workspace.

TABLE II
RANGE OF ROBOT MOTION, VELOCITY AND ACCELERATION

Axis Angular Motion Velocity Acceleration
1 ±185◦ ±42◦/s ±59◦/s2

2 −130◦ to +20◦ ±42◦/s ±43◦/s2

3 −94◦ to +150◦ ±42◦/s ±78◦/s2

4 ±350◦ ±76◦/s ±42◦/s2

5 ±118◦ ±74◦/s ±92◦/s2

6 ±350◦ ±123◦/s ±68◦/s2

For every component of inertia matrix M(q)(6×6) and
vector H(q, q̇)(6×1) in (1), its expression can be described
as follows:

Mi j = f1(sin(qm), cos(qn))

Hi = f2(sin(qm), cos(qn), q̇l)
(11)

where i, j,m,n, l ∈ {1,2,3,4,5,6}, f1 and f2 are maps. Thus,
a simple component can be taken as an instance to address
the simplification algorithm, such as M44, formulated as:

M44 = ZZ4R +ZZ6c2
5 +2XY5c5s5 +2L5MY6c5c6s5

+2Y Z6c5c6s5 +XX5Rs2
5 +2L5MX6c5s5s6

+2XZ6c5s5s6 +2XY6c6s2
5s6 +XX6Rs2

5s2
6

(12)

where si, ci denote sin(qi) and cos(qi) respectively, ZZ4R,
ZZ6, XY5, MY6, Y Z6, XX5R, MX6, XZ6, XY6, and XX6R are 10
of 36 regrouped inertia parameters used in robot modeling,
and more details can be found in [20], [25]. The whole
algorithm process can be divided into 3 steps.

1) Compress the interval

First of all, some trigonometric transformations can be
used to rewrite products and powers of sine and cosine func-
tions in the expression, in terms of trigonometric functions
with combined arguments. For example:

2cos2(x) = 1+ cos(2x)

2sin(x)cos(y) = sin(x+ y)+ sin(x− y)
(13)

Then we carry out the following transformation:

acos(x)+bsin(x) =
√

a2 +b2 cos(x− arctan(a,b)) (14)

Accordingly the component M44 is transformed as:

M′
44 =

10

∑
i=1

Ti = ZZ4R +
1
2

ZZ6 +
1
2

XX5R +
1
4

XX6R

+
1
4

t0 cos(2q6 − arctan(−XX6R,2XY6))

+
1
8

t0 cos(2q5 +2q6 − arctan(XX6R,−2XY6))

+
1
8

t0 cos(2q5 −2q6 − arctan(XX6R,2XY6))

+
1
2

√
t2
1 + t2

2 cos(2q5 +q6 − arctan(−t1, t2))

+
1
2

√
t2
1 + t2

2 cos(2q5 −q6 − arctan(t1, t2))

+
1
4

√
t2
3 + t2

4 cos(2q5 − arctan(t3, t4))

(15)

where t0 =
√

XX2
6R +4XY 2

6 , t1 = L5MX6+XZ6, t2 = L5MY6+

Y Z6, t3 = 2ZZ6 −2XX5R −XX6R, t4 = 4XY5. As a result, the
number of terms in the component is reduced from 16 to
10, and the interval is compressed from [−8.8580,306.27]
to [76.007,195.34] without any approximation.



2) Remove unimportant terms

The norm of an interval, also called absolute value, can be
gained from (5). Since most of terms in the expression are
intervals, it is possible to compare them by calculating their
norms. Define kt as a proportional factor, then any term Ti
can be neglected if it satisfies:

|Ti|
g(|T1|, |T2|, · · · , |Tn|)

≤ kt (16)

where n is total number of terms of a component, g is one of
maps which can find the maximum value, sum and root mean
square (RMS) value of inputs. In this paper, the maximum
value map is adopted. This step can be illustrated by M′

44 in
(15), and the norm ratio of each term to maximum one is
provided in Table III, except the first 4 constant terms.

TABLE III
NORM RATIO OF EACH TERM TO MAXIMUM

Term T5 T6 T7 T8 T9 T10
Ratio(%) 33.6 16.8 16.8 2.30 2.30 100

If kt is chosen as 5%, correspondingly the term T8 and T9
in expression (15) will be removed. The simplified compo-
nent is in the range of [77.611,193.74], approximately equal
to the original one.

3) Neglect unimportant inertia parameters

As a matter of fact, not every inertia parameter has a great
influence on norm of a term. Take the term T10 in (15) for
an instance, the inertia parameter XX5R, XY5, XX6R, and ZZ6
are found in the expression. Define kp as a new proportional
factor, then any inertia parameter P can be removed if it
meets the following condition:

ep =
| |T |P=0 −|T | |

|T |
≤ kp (17)

The result is given in Table IV. Assuming that kp is assigned
to 15%, the inertia parameter XY5 can be neglected.

TABLE IV
NORM OF TERM AND ERROR AS P=0

P none XX5R XY5 XX6R ZZ6
Norm 34.727 27.726 30.225 26.390 25.211
ep(%) 0 20.16 12.96 24.01 27.40

C. Programming and Results

In the light of above algorithm, programs are developed
by using Mathematica well-known for symbolic and interval
calculations. The flow chart of the program can be seen
in Fig. 3. The results are valid for the whole workspace.
Choosing kt = 5% and kp = 5%, the change in the number of
terms and negligible inertia parameters for M(q) and H(q, q̇)
are respectively listed below:


238
112 73
93 72 47
89 41 23 10
56 35 17 5 3
40 26 10 3 1 1

⇒


8
3 18
53 22 20
27 33 15 8
52 24 14 3 3
36 26 10 1 1 1




341
357
337
321
318
302

⇒


97
10
46
107
88
136


TABLE V

NEGLIGIBLE INERTIA PARAMETERS

kt kp M(q) H(q, q̇)
1% 3% XY3R, XZ3 XY3R, XZ3
1% 5% MX2R, XY3R, XZ3, MX4 XY3R, XZ3, MX4
5% 3% XY3R, XZ3 XY3R, XZ3
5% 5% MX2R, XY3R, XZ3, MX4 XY3R, XZ3, MX4

1

M
n

ij kT=
∑

kT

1 2max[ , , , ] ?k t nT k T T T> ⋅ ⋯

N

Mij ij kM T′ ′= +
Y

mT

0
?

s
m m p mP

T T k T
=

− ≤ ⋅N

0Mij ij m PM T =′′ ′′= +

Y

k + +

max ?s s≤
Y

N

m + +
s + +

Fig. 3. Program flow chart

IV. SIMULATION ON A TEST TRAJECTORY

A simulation is carried out on a test trajectory (see Fig. 4),
in order to analyze the effectiveness and performance of the
simplification method. According to the trajectory data, the
interval of angular position, velocity and acceleration can be
found in Table VII of Appendix.

Generally, the proportional factors kt and kp can be se-
lected intuitively. Calculating the root mean square (RMS)
errors can also be considered as a good approach. In this
case, three representative components are chosen to find the
most appropriate factors, including M11, M21, and M22. Based
on the balance between accuracy and simplicity, the number
of terms after simplification, RMS error, and value range of
component are taken into account.

As a result, we select kt = 3%, and kp = 1%. The change
in the number of terms for each component of inertia matrix
M(q) and the corresponding RMS errors are shown as:

238
112 73
93 72 47
89 41 23 10
56 35 17 5 3
40 26 10 3 1 1

⇒


14
12 26
61 39 24
27 37 19 8
52 32 14 3 3
40 26 10 3 1 1


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Fig. 4. Angular position and velocity in the trajectory of FSW

eRMS(%) =


1.08
4.46 0.77
3.07 2.48 0.83
9.68 1.57 0.55 0.38
0.91 1.60 1.56 1.29 0
3.64 0 0 0 0 0


Similarly, by choosing kt = 3%, and kp = 1%, the change

in the number of terms for each component of vector H(q, q̇)
and the corresponding RMS errors are given as follows:

341
357
337
321
318
302

⇒


147
46
66
153
116
170

 eRMS(%) =


5.89
4.41
4.11
8.38
4.99
2.83


Fig. 5 and Fig. 6 show the comparison between simplified

and original component for M(q) and H(q, q̇). From these
figures, it can be seen that on the whole the simplified model
is in good agreement with original one, even though some
components may not match exactly, such as M41.

However, it should be mentioned that all of the inertia
parameters, which are obtained through model identification,
have a certain degree of error [20]. Compared with the accu-
racy of inertia parameter, the error caused by simplification
in this simulation is acceptable, and the global RMS errors
of M(q) and H(q, q̇) are 0.95% and 4.41% respectively.

In fact, the torque T =M(q)q̈+H(q, q̇) in (1) is frequently
computed in practical control. Fig. 7 gives the comparison
between simplified and original component of torque T , and
the RMS errors for each axis are 1.07%, 3.44%, 4.07%,
7.5%, 5.6%, and 2.77% respectively. Furthermore, the global
RMS error of torque T is 2.61%. All the above simulation
results shows a good performance of simplification.

V. DISCUSSION ON USAGE OF SIMPLIFIED MODEL

Seen from the simulation results, the simplified model
is much simpler than the original one while with enough
accuracy. As a consequence, the simplified model can be

0 5 10 15
3500

4000

4500

5000

5500

6000

 

 

0 5 10 15
−200

0

200

400

600

800

 

 

0 5 10 15
4000

5000

6000

7000

8000

C
om

po
ne

nt
 o

f I
ne

rt
ia

 M
at

rix
 M

(q
) 

[N
m

s2 /r
ad

]

 

 

0 5 10 15
−50

0

50

100

C
om

po
ne

nt
 o

f I
ne

rt
ia

 M
at

rix
 M

(q
) 

[N
m

s2 /r
ad

]

 

 

0 5 10 15
0

200

400

600

Time [s]

 

 

0 5 10 15
0

50

100

150

200

Time [s]

 

 

M11 Ms11 M21 Ms21

M22 Ms22 M31 Ms31

M32 Ms32 M41 Ms41

Fig. 5. Comparison between simplified and original component in M(q)

0 5 10 15
−800

−600

−400

−200

0

200

 

 

0 5 10 15
0

1000

2000

3000

4000

 

 

0 5 10 15
−1500

−1000

−500

0

500

C
om

po
ne

nt
 o

f V
ec

to
r 

H
 o

f C
en

tr
ifu

ga
l, 

C
or

io
lis

 a
nd

 G
ra

vi
ta

tio
na

l T
or

qu
es

 [N
m

]

 

 

0 5 10 15
−300

−200

−100

0

100

200

C
om

po
ne

nt
 o

f V
ec

to
r 

H
 o

f C
en

tr
ifu

ga
l, 

C
or

io
lis

 a
nd

 G
ra

vi
ta

tio
na

l T
or

qu
es

 [N
m

]

 

 

0 5 10 15
−400

−200

0

200

400

Time [s]

 

 

0 5 10 15

−200

−100

0

Time [s]

 

 

H1 Hs1 H2 Hs2

H3 Hs3 H4 Hs4

H5 Hs5 H6 Hs6

Fig. 6. Comparison between simplified and original component in H(q, q̇)

applied to many control methods to simplify the control
structure and improve the real-time performance, such as the
computed torque controller or the observer-based control.

In the research work presented by Qin et al. [1], [19]–
[21], as a strong external force is exerted on the robot
during the machining or FSW process, the natural stiffness
of industrial robot is not sufficient. To compensate the
manipulator deformation, a nonlinear observer is designed
to estimate the robot states (q, q̇, q̈) and the external force
F .

In this observer-based control for robot KUKA KR500-
2MT, a corrected target position is given to the interpolator
of robot controller every 12ms so as to compensate the error
between the desired position and so-called real position esti-
mated by a discrete observer, whose sampling time is 1.2ms
[21]. The diagram of external deformation compensation of
KUKA robot is provided in Fig. 8, which can explain the
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reason why the simplification is needed for this control.
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Fig. 8. External deformation compensation of KUKA robot [21]

With regard to the estimation of external force in the above
observer-based control, it can be obtained by:

F̂ =−J−T (q)M(q)ẑ4 (18)

where F̂ denotes estimated external force, and ẑ4 denotes
observer state 4 [1]. Obviously, the inertia matrix M(q) can
be replaced by the simplified one Ms(q) in (18).

In addition, the resulting negligible inertia parameters have
a significant meaning for the robot model identification. The
identified inertia parameters will be more precise as the
negligible inertia parameters are removed [25].

VI. CONCLUSIONS

A new approach using interval method for simplification
of industrial robot dynamic model is presented in this paper.
From the symbolic dynamic model of a 6-DOF industrial
manipulator, all the expressions of components in inertia
matrix M(q) and vector H(q, q̇) show complexities and
strong nonlinearities, besides, a high coupling between con-
trol inputs also exists. Thus, a simplification algorithm is
proposed to make the robot model much simpler. As a
simple component of inertia matrix, M44 is taken to illustrate
the entire process. The results for the whole workspace
are suitable for arbitrary trajectories. A simulation on a
test trajectory is carried out and the comparisons between
simplified and original components of M(q), H(q, q̇) and

T are performed. A good accuracy of the simplified model
is shown, demonstrating the effectiveness and good perfor-
mance of the method. The simplified model can be applied
to the observer-based control, and it also devotes to finding
negligible inertia parameters, which is very useful for robot
model identification.

APPENDIX

TABLE VI
NUMERICAL VALUES OF ROBOT GEOMETRIC PARAMETERS

Length L1x L1z L2 L34 D4 L5 Ltz
(m) 0.500 1.045 1.300 1.025 0.055 0.235 0.435

TABLE VII
ACTUAL INTERVAL OF THE ANGULAR POSITION AND VELOCITY

Axis AngularPosition(rad) Velocity(rad/s) Velocity(rad/s2)
1 [-1.3457,0.6393] [-0.7091,0.7141] [-2.5811,2.2603]
2 [-1.9929,-0.9411] [-0.2951,0.5056] [-1.4035,1.2476]
3 [-0.1359,1.5707] [-0.6485,0.7263] [-3.0617,1.6341]
4 [-0.8298,0.5699] [-0.9569,0.6014] [-1.3964,1.2582]
5 [-0.5254,1.5709] [-0.7805,1.3723] [-1.9199,1.6932]
6 [-2.4747,0] [-0.7331,0.9391] [-3.9371,1.5219]
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