Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/8868

To cite this version:

Any correspondence concerning this service should be sent to the repository Administrator: archiveouverte@ensam.eu
Les défis d’une filière industrielle émergente

Le Pôle Mer Bretagne en bref

Ils ont initié une démarche originale qui conjugue l’animation d’une dynamique de projets sur chacun des territoires et ont prouvé, depuis leur création, que le “Mer” a de l’avenir et qu’elle est source d’innovation et de développement économique.

Dans une région forte de près de 2 900 chercheurs dédiés au maritime et à la mer représentant plus de 100 000 emplois, le Pôle Mer Bretagne développe des synergies de compétences afin d’appuyer à la filière maritime bretonne une dynamique économique par l’innovation.

Aujourd’hui, le Pôle Mer Bretagne fédère un réseau de près de 330 acteurs au sein duquel grands groupes, PME, laboratoires et centres de recherche réunissent leurs énergies et leurs compétences dans le but de développer des projets collaboratifs innovants dans le domaine maritime. De la genèse jusqu’à la valorisation des résultats des projets labellisés, le Pôle accompagne les partenaires des projets pendant toute la durée de vie du projet.

Dès sa création en 2005, le Pôle Mer Bretagne a inscrit les énergies marines renouvelables dans sa feuille de route stratégique à un moment où le paysage était relativement vierge, seuls les projets SeaRev (houlomoteur) et Marénerg (hydrolienne) étaient recensés. Les énergies marines renouvelables ont la particularité de mobiliser des compétences très

ABSTRACT

The Renewable Marine Energy (RME) is a challenge and an opportunity for the very next decades. For many years France has been delaying its involvement in this industrial area but is now aiming to install 6 GW of electrical power produced at sea by 2020. To keep in line with these international and European commitments, France encourages many stakeholders to join their efforts towards a fast and efficient development of these technologies within the French waters. This paper introduces the industrial background and the outstanding actions – from government and regional authorities. The Pôle Mer Bretagne (Brittany Maritime Competitiveness Cluster) is dealing with to help developing the RME industry in France. It is foreseen that this industry will represent by 2020 an overall market of 30 billion euros and 10 000 jobs. To achieve such a goal, several actions have been launched these last years. Among those, the best financial tool is the “Investment for the Future” (“Investissements d’avenir”) initiative which offers a proper framework to develop ambitious projects such as:

• The five R&D projects dedicated to the design of innovative offshore energy harnessing devices:
 - Two floating wind turbines (WINFLO & VERTIWIND)
 - Two tidal turbines (ORCA & SABELLA)
 - And one wave converter (S3)
• The Institute of Excellence in Carbon-free Energy “France Energie Marine” aiming at aggregating all the French research efforts dedicated to RME and to manage the test sites that already exist or that will be installed soon.
• The selection of the contractors for the four first French wind farms to be installed in the Channel and the Atlantic Ocean for a total power of 1 728 MW.

The paper introduces the various devices to be designed in the next future, highlighting the critical aspects where R&D is still needed, and the specificities of such systems from an electrical engineering point of view. Finally it concludes with an overview of the supporting initiatives, such as education and infrastructures, and of the perspectives.
Les défis d’une filière industrielle émergente

« transverses » que l’on retrouve dans toutes les thématiques marines et maritimes traitées par le Pôle :
• sécurité et sûreté maritimes : surveillance et protection des installations, évitement ;
• naval : nouveaux navires dédiés à l’installation et l’exploitation ;
• offshore oil & gas : utilisation de technologies similaires ;
• pêche-aquaculture : développement de co-activités ;
• environnement : exploration des gisements (connaissances météo-oceanographiques) et étude d’impacts, capteurs environnementaux.

Avec les régions d’Outre-mer, au cœur de la ZEE française, les collaborations entre acteurs se développent avec les Antilles, La Réunion (Qualitropic), la Polynésie Française (Grappe d’entreprises Tahiti Faha’otu).

À l’international, les Pôles Mer Bretagne et Mer PACA coordonnent leurs actions pour la promotion de l’excellence maritime française. Ils ont défini une stratégie de développement qui leur a permis de signer des accords de collaboration pour faire émerger des projets collaboratifs entre grandes régions maritimes : Norvège, Angleterre, Allemagne, Italie, Québec, Maroc, Brésil, etc.

Le Pôle Mer Bretagne en quelques chiffres

• Cinq thématiques de travail : sécurité et sûreté maritimes, naval et nautisme, ressources énergétiques marines, ressources biologiques marines, environnement et aménagement du littoral ;
• Territoires : Bretagne, Basse-Normandie, Pays de la Loire ;
• Près de 330 adhérents dont plus de 50 % de PME ;
• Un Pôle jumeau : le Pôle Mer PACA ;
• 158 projets collaboratifs innovants labellisés (novembre 2012) par le Pôle Mer Bretagne représentant un budget global de 561 M€ ;
• En 2012, les projets collaboratifs innovants labellisés par les Pôles Mer Bretagne et Mer PACA ont atteint le milliard d’euros en termes de budget global R&D ;
• Plus d’informations sur : www.pole-mer-bretagne.com

Un nouvel espace de développement industriel

Toujours dans le cadre du Programme Investissements d’Avenir, le Pôle Mer Bretagne a porté au côté de l’Ifremer le dossier France Energies Marines dans le cadre de l’appel à projets « Instituts d’Excellence sur les énergies décarbonnées ».

Le ministère a lancé le 11 juillet 2011 un premier appel d’offres pour le développement de capacités de production d’électricité par énergie éolienne offshore. Au printemps 2012, après en avoir saisi la CRE, le gouvernement a annoncé les résultats de l’appel d’offre (figure 1) :
• Fécamp (Seine-Maritime, puissance 498 MW), lauréat : Eolien Maritime France ;
• Courseulles-sur-Mer (Calvados, puissance 450 MW), lauréat : Eolien Maritime France ;
• Saint-Nazaire (Loire-Atlantique, puissance 480 MW), lauréat : Eolien Maritime France ;
• Saint-Brieuc (Côtes d’Armor, puissance 500 MW), lauréat : Ailes Marines SAS ;
• Le Tréport (Seine-Maritime – Somme), déclaré sans suite.

La société Eolien Maritime France (EMF), dont les actionnaires principaux sont EDF Energies Nouvelles et Dong Energy Power, énergéticien danois, propose des éoliennes
fournies par Alstom. La société Ailes Marines SAS, dont les actionnaires principaux sont Iberdrola, énergéticien espagnol, et EOLE-RES SA, propose des éoliennes fournies par Areva et des partenariats avec Technip et STX notamment.

Cet automne, dans son discours prononcé en clôture de la Conférence environnementale, le Premier ministre a annoncé qu’un appel d’offres sera lancé d’ici décembre 2012 pour la création d’un parc éolien au large du Tréport et de Noirmoutier. Cet appel d’offres représenterait environ 1,3 GW réparti sur deux sites : 600 MW à Noirmoutier et 705 MW au Tréport.

Enfin, un appel d’offre spécifique est attendu sur l’hydro-energie aﬁn d’exploiter les courants du Raz Blanchard dans le Cotentin, 2ème plus gros potentiel européen.

S’agissant d’une ﬁlière industrielle en émergence, le poids économique qu’elle représentera est difficile à jaudger. On estime que le chiffr de d’affaires généré par les infrastructures EMR pourrait représenter 30 Md € d’ici 2020 (Source : Economie verte et équitable en France, Etude parlementaire : 12/2010, rapporteur : Gisèle GAUTIER), dont 10 Md € pour la première tranche de l’appel d’offres des éoliennes offsho-

re. De plus, ce premier appel d’offres gouvernemental devrait générer de 4 000 à 7 000 emplois directs et indirects. Au total, la ﬁlière industrielle des EMR pourrait compter 10 000 emplois en 2020 (Source : GICAN).

Les technologies

Énergie marémotrice

Le principe de l’énergie marémotrice repose sur l’exploita-
tion de la différence d’énergie potentielle de gravité entre
deux réservoirs ; le réservoir supérieur est rempli à marée
haute alors que le réservoir inférieur est vidé à marée basse.
La différence de niveau permet d’alimenter une turbine hy-
draulique qui entraîne une génératrice. Le volume des résé-
voirs et leur différence de hauteur caractérisent l’énergie totale
qui est mise en œuvre ; le débit maximal admissible dans
la turbine ainsi que la différence de hauteur déterminent la
puissance instantanée maximale.

La seule usine marémotrice en France est celle de la Rance
de puissance 240 MW (24 turboalternateurs de 10 MW).
Compte tenu de l’impact environnemental et du coût des in-

![Figure 1 : Lauréats du 1er appel d’offres éolien en mer - Source : Ministère de l’écologie, du développement durable et de l’énergie.](image-url)
frastructures de ce type de dispositif, il est peu vraisemblable que d'autres projets de ce type voient le jour en France.

Hormis le système de régulation, les usines marémotrices sont très semblables aux barrages hydroélectriques, dont elles reprennent un certain nombre de technologies.

Eolien offshore

Alors que les premiers projets de parcs éoliens offshore étaient extrapolés du terrestre, la course au gigantisme que permet l’implantation en mer accélère le développement de nouvelles machines spécifiques et en particulier de génératrices dont la puissance dépasse les 5 MW et excèdera probablement 10 MW à l’horizon 2020.

Le premier marché visé est celui de l’éolien offshore dit « posé », c’est-à-dire dont les fondations sont solidaires du fond marin, typiquement jusque 50 m de profondeur. Sui-vront ensuite rapidement, compte tenu de la nature des fonds français, des machines flottantes permettant d’étendre le domaine marin exploitable, plus loin des côtes.

Les plus grandes machines atteindront des tailles telles que le diamètre des pales sera proche de 200 m (ce qui représente plus de deux fois l’envergure d’un A380), et la nacelle culminera à environ 120 m de haut. D’un point de vue de la conception des structures, de telles dimensions de pale posent un vrai défi technologique surtout quand on veut minimiser la maintenance dans un environnement hostile. Les dimensions des mâts, quand à elles, contraignent à prendre en compte la fatigue des matériaux comme l’un des principaux critères de dimensionnement.

D’un point de vue production électrique, la tendance actuelle est de développer des génératrices à entraînement direct (dites direct-drive) dont la vitesse de rotation n’excède pas 12 à 15 tr/min. La dimension de ces machines induit des difficultés de maîtrise de l’entrefer et plus généralement des problèmes de conception des machines électriques à faible de vitesse de rotation.

Outre le développement des machines, la conception des réseaux de connexion requiert des compétences particulières qui ne bénéficient pas encore de retours d’expérience importants :

- intégration au réseau de systèmes de production d’électricité intermittent ;
- concentration de puissance en mer (hubs) ;
- connexions électriques en milieu agressif ;
- câbles dynamiques pour les éoliennes flottantes.

Des problèmes connexes de contrôle-commande, d’analyse en temps réel et de prédiction de la ressource (le vent) devront être résolus.

Energie hydrolienne

L’exploitation de l’énergie des courants est relativement ancienne mais son développement à grande échelle n’est envisagé que depuis quelques années. Les projets les plus avancés comportent une hélice couplée à une génératrice sous-marine, en nacelle (Sabella, SeaGen) ou périphérique (OpenHydro, Orca).

Le mouvement des marées est un phénomène alterné mais qui est prévisible sur de longues périodes. L’intégration
au réseau de fermes hydriennes n’est donc pas impactée par un caractère imprévisible de la ressource mais elle reste intermittente et, de ce fait, la production électrique a des conséquences importantes sur la conformité au réseau. Certains sites estuariens sont également propices à l’accueil de ce type de technologie.

D’un point de vue de dimensionnement structurel, les hydriennes présentent deux défis majeurs. Le premier concerne l’envergure des pales qui, selon les puissances actuellement envisagées, est à la frontière entre l’utilisation des matériaux métalliques et celle des matériaux composites. Le second défi concerne le dimensionnement des pales et des tuyères vis-à-vis de chargements impulsifs comme les collisions de grume en fonctionnement ou les impacts de vague pendant les phases de remorquage.

Du fait de la nature immergée des hydriennes, les concentrateurs envisagés doivent être compatibles avec les problèmes d’immersion à des profondeurs de l’ordre de 30 à 50 m. Si l’étanchéité des composants peut être assurée par l’emploi de caissons étanches, deux problèmes annexes apparaissent :

- la connexion entre les divers éléments, qui peut être réalisée en surface dans le meilleur des cas mais qui termine inéluctablement sous l’eau ;
- les câbles sous-marins, qui devront résister à un milieu particulièrement hostile, soumis à des variations de courant marin très énergétique et à l’abrasion.

Energie des vagues

Le foisonnement des technologies actuellement développées ne permet pas de dégager une tendance forte quant aux systèmes qui atteindront le stade de l’industrialisation, le couplage du système aux vagues pouvant être ponctuel vertical ou latéral, en surface ou à la côte. Il est vraisemblable toutefois que les futures fermes houlomotrices seront implantées à proximité des côtes sur des superficies importantes.

Par rapport à la nature ondulatoire de la ressource, la production brute d’énergie doit être lissée pour gommer les variations sur les fréquences de l’ordre de plusieurs secondes (passage des vagues). Des systèmes de régulation hydrauliques ont été testés avec succès mais il est concevable de mettre en œuvre des systèmes de lissage électriques.

Les structures des systèmes de captation de l’énergie des vagues sont assez bien connues pour les systèmes flottant (type PELAMIS) mais posent des problèmes assez compliqués pour les structures construites sur le littoral (colonnes d’eau oscillantes par exemple).

Enfin, à l’instar des autres technologies évoquées précédemment, les problèmes de connexion entre équipements et les conditions environnementales sévères sont des obstacles techniques à surmonter.

Energie thermique des mers

L’exploitation d’une différence de température entre les eaux de surface (typiquement 25° C) et des eaux de profondeur (5° C entre 600 et 1 000 m de profondeur) dans un cycle thermodynamique permet de disposer d’une source d’énergie disponible en permanence dans les territoires de la ceinture intertropicale. En zones plus tempérées, une utilisation dérivée de l’ETM, permet de climatiser des bâtiments situés près des côtes (SWAC = Sea Water Air Conditioning).

L’originalité de cette technologie est de fournir une électricité de base, dont la source est quasi constante (hors événements climatiques de type cyclonique). C’est une véritable solution alternative pour atteindre l’indépendance énergétique à faible dégagement de dioxyde de carbone pour les îles françaises situées dans la ceinture intertropicale.

Le principal défi technologique de ces solutions est la maîtrise du sous-système chargé d’apporter l’eau froide dans la machine thermodynamique (CEF = Conduite d’eau froide). De vrais projets de R&D technologiques sont actuellement

![Figure 3 : Déplacement d’une hydrienne – Crédit photo : DCNS.](image)
menés tant du point de vue du dimensionnement structurel des conduites que sur celui de la définition des systèmes de pompage.

Dans le cas de l’exploitation d’une centrale terrestre (à proximité immédiate de la côte), on peut considérer que les installations électriques sont similaires à celles d’une centrale thermique classique. En revanche, si la production d’énergie est envisagée sur une plate-forme en mer, les problèmes liés au raccordement électrique se posent :
• raccordement sur un flotteur et ancrage à très grande profondeur ;
• caractéristiques du milieu (profondeur importante, contraintes environnementales éventuelles) ;
• utilisation d’un câble (omblical sous-marin) composite permettant le transfert de données et la conduite des installations à distance.

L’énergie osmotique
Cette énergie fait l’objet de développements expérimentaux qui n’ont pas encore débouché sur des systèmes industrialisables mais qui présentent un fort potentiel de développement. Le principe exploite la différence de salinité entre l’eau de mer et l’eau douce en provenance des fleuves. Les usines envisagées seront ainsi proches des côtes, à proximité de la ressource. En faisant abstraction de l’effet des marées sur le débit des cours d’eau, on peut estimer que cette énergie pourrait être exploitée en permanence comme énergie de base.

Verrous technologiques
Ils demeurent nombreux et justifient l’effort de R & D qui est mené pour les lever :

Hubs sous-marins
Des hubs, ou concentrateurs sous-marins, de capacité de plusieurs dizaines de MW devront être disponibles d’ici 5 à 10 ans. Il leur faudra être capable de résister aux conditions sévères de l’environnement marin, en particulier pour les applications aux hydroliennes, et de fonctionner avec les contraintes de bio-salissures et de développement des organismes aquatiques. Leur maintenance devra être réduite et leur mise en œuvre rapide (contrainte liée aux conditions climatiques). Il faut rappeler qu’aujourd’hui les câbles remontent à des sous-stations en surface qui nécessitent des positions et fondations supplémentaires dans la ferme.

Machines de forte puissance en direct-drive
Ces machines devront être développées à partir de technologies permettant de s’affranchir des tensions du marché des aimants permanents, éventuellement des machines supraconductrices mais dont la disponibilité, le rendement et la fiabilité devront être démontrées.

Câblage et connectique sous-marin
Leur coût devra être compatible avec les contraintes économiques des EMR. Ils pourront être potentiellement extrapolés de l’industrie parapétrolière mais dont leur coût global (mise en œuvre et achat) devra être maîtrisé.

Systèmes de prédiction de la production
Ces systèmes sont nécessaires pour faciliter la conformité au réseau (tension, fréquence, harmoniques, flicker) mais aussi pour faire face aux pannes, arrêts, variations temporelles de la production.
Figure 5 : Schéma de principe d’un système hydrolien associant un système de stockage d’énergie (SSE) – Source : Institut de recherche de l’École Navale/LBMS.

Dispositifs de stockage de forte capacité

De tels dispositifs permettront de résoudre, au moins en partie, les problèmes liés à la nature peu prévisible de certaines productions (en particulier l’éolien et le houlomoteur).

Ils devront être de forte capacité (plusieurs centaines de MWh) et de forte puissance (plusieurs dizaines de MW). Les contraintes économiques et environnementales sont là aussi particulièrement importantes.

Systèmes de régulation et de lissage de la production

Au sein même des systèmes, ils permettent d’améliorer la production et d’éviter de reporter sur des systèmes de stockage ou de convertisseurs à forte puissance les variations de la ressource.

La formation

L’émergence d’une filière industrielle EMR doit s’accompagner d’une offre de formation adaptée afin de former du personnel qualifié pour le développement des projets et pour l’exploitation et la maintenance des fermes. Une vision à as-

Les chaînes de conversion électromécaniques

Les chaînes de conversions électromécaniques des systèmes EMR (hydrolien, houlomoteur et éolien offshore) sont soumises à un cahier des charges exigeant. Tout d’abord, les machines se trouvent dans un environnement hostile et le plus souvent isolé. Minimiser les interventions de maintenance est alors nécessaire. De ce fait il semble pertinent de développer des solutions dédiées qui permettent de minimiser les transmissions mécaniques (élimination ou simplification des multiplicateurs par exemple) ou hydrauliques. Le développement de génératrices à entraînement direct dédiées reste ainsi un enjeu en termes d’intégration mécanique et de compacité. A titre d’exemple, des solutions dites « rim-driven » où les génératrices sont situées en périphérie des pales d’une turbine hydrolienne sont proposées par des sociétés comme "Open Hydro" et ont été étudiées en laboratoire [1,2] (figure 6). L’intégration de ces génératrices intégrées nécessite une approche globale multidisciplinaire de la conception du système.

Proposer des solutions électromécaniques capables de tolérer les défauts tout en continuant à fonctionner peut être aussi une voie qui conduit à une plus grande robustesse. Ainsi l’usage de structures polyphasées peut permettre d’offrir des possibilités de redondance [3]. Ces systèmes robustes doivent être accompagnés de systèmes performants de prédiction et détection des défauts en temps réel.

Une deuxième caractéristique des systèmes EMR est que la variabilité de la ressource conduit à une extraction de puissance fortement intermittente. Ceci exige que la chaîne de conversion électromécanique soit capable de s’adapter pour extraire le maximum d’énergie et pour injecter au niveau du réseau électrique une puissance de qualité. Ainsi des convertisseurs à MLI peuvent être associés à des commandes temps réel pour permettre un contrôle dynamique très performants du point de fonctionnement du système. L’association de moyens de stockage avec les systèmes d’extraction d’EMR constitue également une solution à développer pour lisser la production d’énergie et contribuer aux réglages des réseaux électriques et à l’amélioration de la qualité de l’énergie [4,5]. Les moyens de stockage peuvent permettre également de diminuer les contraintes sur le dimensionnement des installations de transports d’énergie associées aux EMR. Il semble également évident que les aspects contrôle commande global au niveau de la mise en ferme sont eux aussi une clé de la diminution de l’interruption, les effets de foisonnement pouvant contribuer à améliorer la qualité de l’énergie.
sez long terme est donc nécessaire pour développer sur les territoires français et européen les compétences n’existent pas suffisamment aujourd’hui.

L’offre de formation existante peut se diviser en deux catégories principales : les formations dédiées et les formations connexes aux EMR.

Formations dédiées

La première formation dédiée à avoir vu le jour est le « Mastère Spécialisé Energies Marines Renouvelables » dispensé par l’ENSTA Bretagne. Créée en 2009 et labélisée par le Pôle Mer Bretagne, cette formation est accréditée par la Conférences des Grandes Écoles (CGE). Elle fait intervenir différents acteurs clés comme l’Ecole Navale, Telecom Bretagne, l’Institut Européen Universitaire de la Mer, l’ENIB, l’Ifremer et le Cetmef. L’objectif est de former des chefs de projets capables de concevoir et développer la filière des EMR.

L’Ecole Centrale de Marseille propose un « Mastère Spécialisé Ingénierie et Energies Marines », également accrédité par la Conférence des Grandes Écoles. Cette formation vise à apporter à des ingénieurs des compétences spécifiques pour répondre aux défis technologiques des EMR.

L’Université de Caen Basse Normandie à travers son École Supérieure d’Ingénieurs (ESIX) propose une formation d’ingénieur consacrée à la production industrielle avec une option EMR. Cette formation a pour objectif de former des ingénieurs pour l’industrie, capables d’intégrer et d’anticiper les évolutions technologiques de production, d’animer des équipes et de gérer des projets multi-spécialités.

Finalement, l’ESITC de Caen (Ecole d’Ingénierie et Travaux de la Construction) propose depuis 2011, un « Mastère Spécialisé Ouvrages Maritimes et Portuaires ». Cette formation, reconnue par la Conférence des Grandes Écoles, forme des ingénieurs spécialisés et des cadres de haut niveau capables de se positionner comme référents nationaux et internationaux dans le domaine des ouvrages portuaires, maritimes et des projets d’énergies marine renouvelable, avec la maîtrise des impacts environnementaux.

Formations connexes

L’offre de formations connexes est plus large. Une récente étude dans le cadre du projet INTERREG MERIFIC (Energies marines dans les territoires insulaires et périphériques), dont le Pôle Mer Bretagne est partenaire, montre qu’il existe un grand nombre de formations de différents niveaux (de technicien à cadre) sur le territoire breton. Ces formations concernent essentiellement les aspects matériels, mécanique, mécanique et production, électrotechnique, maintenance industrielle, systèmes automatiques et complexes, ingénierie électrique. Ces formations sont généralement dispensées par les universités et les écoles d’ingénieurs mais aussi par les lycées techniques et autres organismes de formations comme le GRETA, l’AFTEC, le CFAI. En Bretagne il faut aussi noter l’existence d’un master dédié au droit des espaces et des activités maritimes délivré par l’UBO et l’IUEM. Finalement, dans le domaine de la sécurité en mer, la Bretagne est dotée de deux centres de formations : le CEFCM (Centre européen de formation continue maritime) à Concarneau et le CESAM (Centre d’entraînement à la survie et au sauvetage en Mer) à Saint Malo.

Les infrastructures

Le développement des EMR nécessite un accompagnement important des collectivités territoriales pour la mise en place d’infrastructures au service des opérateurs. Les territoires maritimes Manche-Atlantique investissent dans leurs ports (Le Havre, Cherbourg, Brest, Nantes-St-Nazaire), les réseaux routiers et les transports, les zones industrielles capables d’accueillir les futures usines de ce nouveau secteur d’activités. La Région Bretagne, par exemple, s’est engagée dans un programme global d’investissements visant à en développer les infrastructures du Port de Brest. En partenariat avec le Département du Finistère, Brest Métropole Océane, la CCI de Brest (concessionnaire du port) et l’État, la Région Bretagne et le SMIB (Syndicat Mixte de Brest Iroise) ont posé les bases d’une stratégie de développement à grande échelle pour faire du port, et de l’hinterland bretonais extension, une plate-forme technologique et industrielle pour les EMR. Le programme sur six ans avec un budget global de 134 M€ vise à accueillir sur 38 ha de polders de nouvelles activités industrielles avec en tête de proue les EMR et, en particulier, l’éolien offshore et l’hydrolien.

Projets illustratifs

Vent, vagues et marées : le littoral français dispose du deuxième potentiel européen en matière de ressources éner-

Portés par des entreprises et des organismes de recherche, une dizaine de projets s’inscrivant dans la thématique des énergies marines ont été labellisés par le conseil d’admi-
nistration du Pôle Mer Bretagne. Ils couvrent tous les champs possibles, démontrant ainsi la vitalité du potentiel R&D, ainsi que l’engagement des industriels dans le Grand Ouest.

WINFLO, projet porté par Nass & Wind et DCNS, développe une éolienne offshore flottante, technique particulièrement adaptée au littoral métropolitain où l’éolien posé trouve rapidement ses limites.
Le projet BILBOQUET

Le projet BILBOQUET porte sur la réalisation d’un nouveau système de génération d’électricité à haut rendement en récupérant l’énergie de la houle, grâce au mouvement relatif d’un flotteur guidé entraînant une génératrice.

Ce système a fait l’objet d’un projet labellisé conjointement par les pôles Mer Bretagne et Mer Paca en 2010. Il est conduit à travers un partenariat de six entreprises et deux centres de recherche, dont le leader est le groupe D2M. À l’été 2011, il a été retenu à l’issue du douzième appel à projets du FUI pour un accompagnement financier par l’Etat et les collectivités territoriales (http://www.pole-mer-bretagne.com/le-projet-bilboquet-produire-de-lelectricite-par-recuperation-de-lenergie-de-la-houle.php).

Une colonne ancrée, dont le mouvement réduit sert de point de référence au système flottant oscillant avec la houle, supporte les équipements principaux. Le flotteur qui monte et descend en fonction de la houle avec une amplitude maximisée transmet son énergie par l’intermédiaire d’une crémaillère et d’une transmission mécanique à haut rendement. Le Bilboquet peut être ancré par des profondeurs variées et offre la qualité primordiale d’un fonctionnement multidirectionnel. Le projet en cours vise à réaliser un démonstrateur de 120 kW jusqu’aux essais en mer pour valider les travaux de R&D. Cette taille de machine permettrait déjà une alternative énergétique à certaines petites communautés insulaires isolées telles qu’on peut en rencontrer par milliers en zone intertropicale. À partir de là, l’ambition est de produire à terme d’unités de 2 MW de puissance moyenne pour des utilisateurs à proximité des côtes ou sur des îles. La Bretagne offre une puissance moyenne exploitables au large jusqu’à 45 kW par mètre linéaire de front de vague, et encore 25 kW près des côtes.

DCNS conduit aussi le projet ESPADON visant à développer une conduite verticale d’eau fraîche de 1 000 m avec quelques mètres de diamètre, fiable et économique, afin de faire sauter l’un des verrous technologiques ouvrant l’exploitation de l’ETM.

BILBOQUET (voir encadré), comptez parmi les cinquante projets mondiaux visant à la production d’électricité par récupération de l’énergie de la houle (voir encadré).

SABELLA (voir encadré), a ouvert la voie à MEGAWATFORCE puis BLUESTREAM, deux concepts intégrant des architectures de turbines sophistiquées. Ces hydroliennes de seconde génération, asymétriques, peuvent s’orienter dans le courant tout en permettant, via une tuyère, d’atteindre une vitesse de rotation supérieure. À iso-puissance, la taille est réduite.

ORCA, projet porté par ALSTOM, a pour objet de tester, en grandeur réelle, les principaux éléments de réalisation d’hydroliennes de grande puissance afin d’en analyser les performances et de réaliser les économies d’échelle nécessaires à un coût de production d’électricité plus proche du marché à terme.

Enfin deux projets, co-labellisés avec le Pôle Mer Paca, concernent des systèmes portés sur des bouées d’acquisition des données, maillon indispensable à l’exploitation des énergies marines.

SIMEO veut réunir en un seul équipement les capteurs qui collecteront des informations sur la vie des vertébrés marins, qu’ils nagent ou qu’ils volent.

BLIDAR de son côté vise à fabriquer un système de mesure du vent en mer, reposant sur une technologie Lidar qui permet de s’affranchir de mats de mesure.

Perspectives : Concrétisons la filière

Les énergies marines sont en mesure maintenant de contribuer significativement au bouquet des énergies renouvelables et à la réduction de la dépendance énergétique de
Le projet SABELLA

SABELLA est le nom d’un ver marin sédentaire et tubicolé dont les tentacules créent des courants permettant d’amener les particules alimentaires en suspension vers sa bouche. Mais quand il s’agit de la force des courants de marée et de production d’électricité, c’est le nom d’une technologie hydrolienne développée par la société SABELLA SAS, créée en 2008 par quatre entreprises bretonnes : HYDROHELIX Energies, SOFRESID Engineering, IN VIVO Environnement et DOURMAP.

Un prototype a fonctionné dans l’Odet pendant près d’une année en 2009, démontrant sa fiabilité comme sa robustesse dans l’environnement marin, tout en prouvant via une caméra sous-marine son innocuité vis-à-vis des poissons.

Ces résultats ont permis à SABELLA SAS d’être sélectionné en 2011 suite à un appel à manifestation d’intérêt de l’ADEME spécifiquement dédié aux énergies marines.

Une machine à l’échelle 1 est aujourd’hui en construction. Son achèvement à Brest est prévu au printemps 2013. La génératrice, d’un MW de puissance crête, est en prise directe sur l’axe du rotor, sans multiplicateur : c’est un gage de robustesse. Un couplage avec des capteurs de mesures « courantométriques » permet de réguler la vitesse de rotation. L’ensemble intègre un convertisseur immergé, avec un transport vers la terre en 5 500 volts.

Cette hydrolienne sera installée en mer d’Iroise dans le chenal du Fromveur, entre les îles d’Ouessant et de Molène, là où les courants de marée atteignent régulièrement les huit nœuds soit 15 km/h.

Avec une connexion au réseau électrique de l’île prévue à la mi-2013, cette mini-centrale fournira jusqu’à 500 kW et assurera 20 % de la consommation totale des insulaires. L’étape suivante à partir de 2014 devrait voir l’installation d’une ferme pilote de trois à dix hydroliennes, pour aller à terme vers l’autonomie énergétique de l’île. Pour valoriser cette production, un partenariat a été conclu avec GDF Suez.

La puissance totale du chenal du Fromveur est estimée autour de 400 MW, avec un potentiel théorique de plus de 200 machines !

*Agence De l’Environnement et de la Maîtrise de l’Energie.

nouveaux pays. La France a la chance de disposer là de ses propres ressources, y compris dans ses outre-mer.

La concrétisation d’une réelle valorisation de ce potentiel demeure toutefois incertaine, dans la mesure où elle dépend d’une politique énergétique globale sur le long terme. Une décision d’exploitation, ou non, des gaz de schiste par exemple peut impacter une stratégie engagée.

Au-delà d’une diversification ou d’un renforcement énergétique régional, les énergies marines offrent également la perspective d’un nouveau souffle industriel.

Dans quelle mesure les énergies marines vont-elles permettre de créer de l’activité ? Pour quels secteurs économiques ? Sur quels territoires ? Chacun de son côté y voit une opportunité et pourtant seule une mobilisation coordonnée...
des acteurs autour d’une stratégie partagée permettra de profiter de perspectives de marché encourageantes.

Au moment où la ré-industrialisation de la France est affichée comme une ambition première, il serait dommage de ne pas jouer tous les atouts dont nous disposons en matière d’énergies marines : des acteurs industriels leaders, une recherche active, l’IEED France Energies Marines, des sites propices, une acceptabilité sociétale majoritairement acquise.

Il s’agit maintenant de se positionner à temps face à une vive concurrence et les délais sont comptés aujourd’hui.

Aussi comme l’a clamé tout récemment le CESER Bretagne :

« concrétisons la filière ! ».

Références