Estimation of temporal parameters during sprint running using a trunk-mounted inertial measurement unit

Elena Bergamini a,b, Pietro Picerno a, Hélène Pillet b, Françoise Natta c, Patricia Thoreux b,d, Valentina Camomilla a,*

a Locomotor Apparatus Bioengineering Laboratory, Department of Human Movement and Sport Sciences, University of Rome “Foro Italico”, piazza Lauro de Bosis 15, 00135 Rome, Italy
b Laboratoire de Biomécanique, Arts et Métiers ParisTech, 151 bd de l’Hôpital, 75013 Paris, France
c Service Recherche, Institut National du Sport, de l’Expertise et de la Performance, 11 av du Tremblay, 75012 Paris, France
d Service de Chirurgie Orthopédique et Traumatologique, Hôpital Avicenne-Université Paris 13, 125 route de Stalingrad, 93009 Bobigny, France

Keywords: Feature identification, Foot contact detection, Inertial sensor, Sports, Stance and stride duration

Abstract

The purpose of this study was to identify consistent features in the signals supplied by a single inertial measurement unit (IMU), or thereof derived, for the identification of foot-strike and foot-off instants of time and for the estimation of stance and stride duration during the maintenance phase of sprint running. Maximal sprint runs were performed on tartan tracks by five amateur and six elite athletes, and durations derived from the IMU data were validated using force platforms and a high-speed video camera, respectively, for the two groups. The IMU was positioned on the lower back trunk (L1 level) of each athlete. The magnitudes of the acceleration and angular velocity vectors measured by the IMU, as well as their wavelet-mediated first and second derivatives were computed, and features related to foot-strike and foot-off events sought. No consistent features were found on the acceleration signal or on its first and second derivatives. Conversely, the foot-strike and foot-off events could be identified from features exhibited by the second derivative of the angular velocity magnitude. An average absolute difference of 0.005 s was found between IMU and reference estimates, for both stance and stride duration and for both amateur and elite athletes. The 95% limits of agreement of this difference were less than 0.025 s. The results proved that a single, trunk-mounted IMU is suitable to estimate stance and stride duration during sprint running, providing the opportunity to collect information in the field, without constraining or limiting athletes’ and coaches’ activities.

1. Introduction

Temporal parameters, i.e., flight and stance duration, during sprint running represent basic, yet very useful information for track and field coaches and their correlation with performance has been widely investigated in the literature (Čoh et al., 2006; Hunter et al., 2004a, 2004b), stereophotogrammetric systems (Ciacò et al., 2010), optical bars (Čoh et al., 2006), or video-analysis (Ito et al., 2006) have been used to measure or estimate these parameters during sprint running. These instruments, however, are either limited in terms of acquisition volume or require long post-processing time.

As an alternative, wearable inertial measurement units (IMUs) allow in-the-field performance monitoring without constraining athletes’ movements. Recently, stance duration has been estimated during sprint running using shank-mounted accelerometers (Purcell et al., 2005). However, more information concerning the overall strategy of the locomotor act could be provided mounting the unit close to the body centre of mass (Cavagna et al., 1971). Trunk-mounted IMUs have been used to estimate temporal parameters only during walking (Kavanagh and Menz, 2008) and distance running (Auvinet et al., 2002; Lee et al., 2010; Wixted et al., 2010), by identifying event-related features in the signals. During walking, for example, the peak forward acceleration of the centre of mass is related to foot-strike (Verkerke et al., 2005) or, during both walking and distance running, a repeatable change in the direction of trunk rotation about its longitudinal axis occurs prior to foot-off (Saunders et al., 2005; Schache et al., 2002).

However, robustness and reliability of any feature-identification approach rely on the accurate and consistent detection of such features within and across subjects. This highly depends on the signal-to-noise ratio, which, in turn, is influenced by the movements of the soft tissues separating the IMU from the skeleton. These movements are both subject-dependent
(Lafortune et al., 1995) and sensitive to the site and method of the unit attachment (Forner-Cordero et al., 2008). Moreover, they can be assumed to be larger during sprint running due to the explosiveness of the task, thus jeopardising the consistency of the identified features.

The purpose of this study was to identify recognisable and consistent features in the waveform of the signals supplied by a low-cost trunk mounted IMU for the given portion of the stride duration during the maintenance phase of sprint running. To this aim, maximal sprint runs were performed on tracks by both amateur and elite athletes. Data provided by an IMU were compared with force platform data or high-speed videos.

2. Materials and methods

Two groups of athletes participated in the study during two different experimental sessions, after giving their written informed consent, approved by the University Ethical Committee (Table 1).

The first experimental session involved six amateur athletes (group A). Tests were carried out on an indoor track. The facility was provided with six adjacent force platforms (Z2007400A, Kulzer, Switzerland; total surface: 6.6 x 0.6 m) embedded in the track and covered with tartan. The force signals were acquired at 200 sample/s and low-pass filtered at 70 Hz using a 4th-order Butterworth filter. All athletes sprinted with a forefoot strike technique.

A second session involved elite athletes (group E) of the Italian National Track and Field Team, tested on their outdoor training track. Reference data were collected using a high-speed camera (Casio Exilim EX-F1, Japan; 512 x 384 pixels, 300 frame/s), positioned 5 m away from the lane.

In both experimental sessions, each athlete was equipped with an IMU (FreeSense, Sensorex, Germany) containing a 3D accelerometer and a 3D gyroscope (± 6 g and ± 500 deg/s of full range, respectively; 200 sample/s) providing linear acceleration and angular velocity components, respectively along and about the axes of a unit-embedded coordinate system, and their magnitude (for their automatic detection. Performing features identification (Hanlon and Anderson, 2009), the first and was computed. Since increasing the number of time-series could be useful for their automatic detection.

A wavelet-based filter. All athletes sprinted with a forefoot strike technique.

3. Results

No consistent feature was detected for group A on a (Fig. 1(A)), its derivatives, or (Fig. 1(B)) that could consistently be related to tfo and tfs. These instants of time were instead related to positive peaks (assumed to coincide with foot-off) and negative peaks (corresponding to foot-strike) on the waveform (1(C)) and were used to estimate dstance.

A feature-based estimate of the cycle duration was performed based on a consistent positive peak (omega peak), detectable even by simple visual inspection in (Fig. 1(B)). Distance between odd omega peak was used to estimate dstride.

Repeated-measures ANOVA showed that all time intervals differed between groups (p < 0.05), but not across athletes (p > 0.05) and trials (p > 0.05) of the same group. Mean values (± SD) for dstance across all athletes, trials and strides were 0.125 s (± 0.015) for group A and 0.105 s (± 0.010) for group E. Equivalent means for dstride were 0.495 s (± 0.040) and 0.455 s (± 0.015).

Normality and no heteroscedasticity were found for dstance and estride (correlation = 0.01 and 0.07). Bland–Altman plots indicated the agreement between reference and IMU estimates for both groups, the mean errors being close to the IMU temporal resolution (0.005 s) (Fig. 2). No statistical differences were found between groups, athletes, and trials. 95% LOA were lower than

Table 1

<table>
<thead>
<tr>
<th>Gender</th>
<th>Group A</th>
<th>Group E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1</td>
<td>A2</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>M</td>
</tr>
<tr>
<td>Mass (kg)</td>
<td>56</td>
<td>45</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.71</td>
<td>1.48</td>
</tr>
<tr>
<td>Speed (m/s)</td>
<td>7.0</td>
<td>7.4</td>
</tr>
<tr>
<td>Personal best (s)</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>

Repeated-measures ANOVA on dstance, dstride, dstance, and dstride to verify the effect of factors: group, athlete and trial.

Descriptive statistics for dstance, dstride, and dstride (mean ± standard deviation (SD)) for independent factors.

Test of normal distribution of dstance and estride with the Shapiro–Wilk test (p > 0.05).

Bland–Altman plots of dstance and estride, corrected for the effect of repeated measurement error (Bland and Altman, 2007), to assess the agreement between measurement systems with multiple observations (Nevill and Atkinson, 1998).

Inspection of these Bland–Altman plots and correlation exploration (Nevill and Atkinson, 1997) to investigate the absence of heteroscedasticity.

Repeated-measures ANOVA on dstance and estride to verify the effect of the factors: group, athlete and trial.

When trial and athlete had no significant effect on variables, absolute reliability for repeated measurement was assessed in terms of limits of agreement (LOA) (Bland and Altman, 2007).

(dstance = tfo − tfs) and cycle duration between subsequent tfs of the same leg, assumed to be equal to the stride duration, d stride, were calculated.

Repeatable quantifiable features, such as maxima, minima, or slopes, were identified in each IMU dataset of group A, in correspondence with tfs and tfo.

Algorithms for their . Automatic detection were developed in Matlab (v7.9 Mathworks), and an estimate of stance (d stance) and stride duration (d stride) was performed.

The algorithms were tested on group E data using the same type of time-series dataset to estimate dstance and dstride. tfo and tfs were visually identified on the videos and reference dstance and dstride calculated.

Validation of the estimated parameters was performed, for both groups, by evaluating the absolute difference between IMU estimate (dstance and dstride) and reference measurements (d stance and d stride) calculated.

The following statistical analysis was performed using SPSS (version 17.0; alpha level = 0.05):

- Repeated-measures ANOVA on dstance, dstride, dstance, and dstride to verify the effect of factors: group, athlete and trial.
- Descriptive statistics for dstance, dstride, and dstride (mean ± standard deviation (SD)) for independent factors.
- Test of normal distribution of dstance and estride with the Shapiro–Wilk test (p > 0.05).
- Bland–Altman plots of dstance and estride, corrected for the effect of repeated measurement error (Bland and Altman, 2007), to assess the agreement between measurement systems with multiple observations (Nevill and Atkinson, 1998).
- Inspection of these Bland–Altman plots and correlation exploration (Nevill and Atkinson, 1997) to investigate the absence of heteroscedasticity.
- Repeated-measures ANOVA on dstance and estride to verify the effect of the factors: group, athlete and trial.
- When trial and athlete had no significant effect on variables, absolute reliability for repeated measurement was assessed in terms of limits of agreement (LOA) (Bland and Altman, 2007).

No consistent feature was detected for group A on a (Fig. 1(A)), its derivatives, or (Fig. 1(B)) that could consistently be related to tfo and tfs. These instants of time were instead related to positive peaks (assumed to coincide with foot-off) and negative peaks (corresponding to foot-strike) on the waveform (1(C)) and were used to estimate dstance.

A feature-based estimate of the cycle duration was performed based on a consistent positive peak (omega peak), detectable even by simple visual inspection in (Fig. 1(B)). Distance between odd omega peak was used to estimate dstride.

Repeated-measures ANOVA showed that all time intervals differed between groups (p < 0.05), but not across athletes (p > 0.05) and trials (p > 0.05) of the same group. Mean values (± SD) for dstance across all athletes, trials and strides were 0.125 s (± 0.015) for group A and 0.105 s (± 0.010) for group E. Equivalent means for dstride were 0.495 s (± 0.040) and 0.455 s (± 0.015).

Normality and no heteroscedasticity were found for dstance and estride (correlation = 0.01 and 0.07). Bland–Altman plots indicated the agreement between reference and IMU estimates for both groups, the mean errors being close to the IMU temporal resolution (0.005 s) (Fig. 2). No statistical differences were found between groups, athletes, and trials. 95% LOA were lower than
measurements to support feature detection; while the discrepancy with validated results by Lee et al. can be accounted for by both a different foot position at ground contact and the higher explosiveness of sprint running. In the referenced studies selective gait events related to heel strike could probably be detected as the ankle cannot damp/filter the shock/vibration. During a sprint, the forefoot strike entails considerable damping through the multiarticular anatomy of the foot. Moreover, the movement of the muscular masses at the trunk level is characterised by a larger translational component with respect to the rotational component which, consequently, may be assumed to affect the acceleration more than the angular velocity. It is suggested that results obtained in distance running studies using IMUs not to be automatically extended to sprint running.

The magnitude of the angular velocity signal, as well as its wavelet-mediated second derivative, are characterised by repeatable and consistent events that allow for the estimate of stride and stance duration. The angular velocity peak proved to be consistent across levels of expertise, athletes, and trials. As reported in the literature, this peak is associated to a trunk rotation about its longitudinal axis, which occurs during walking as well as during distance running (Schache et al., 2002; Saunders et al., 2005). Our results evidenced the presence of this rotation during sprint running and its potential use in estimating stride duration, but not $t_{FS}$ and $t_{FO}$. Such instants were consistently associated only with the positive and negative peaks of the wavelet-mediated $\dot{\omega}$ waveform. It is worth to underline that signal inconsistencies preventing easy feature identification can be present as well in other contexts such as, for example, some types of pathological walking. Given the efficacy of this method
on highly noisy data, there is a potential for widening its fields of application.

The absolute difference between IMU and reference measurements was of the same order as the temporal resolution of the criterion measure, as well as of the unit estimates (0.005 s) for both stride (< 2% of $d_{\text{stride}}$) and stance (< 8% of $d_{\text{stance}}$) duration. This error does not prevent discrimination of amateur from elite athletes’ temporal parameters (the average difference of $d_{\text{stance}}$ between groups is 0.020 s). It may allow the analysis of the race strategy through observation of step frequency (Salo et al., 2011) or of stance times profile (Fig. 3).

In conclusion, the proposed method presents the potential to provide reliable estimates of temporal parameters during sprint training sessions. To provide coaches with reliable and automatic information, validation of the method for different phases of the sprint run during the whole race is required.

Conflict of interest statement

The authors do not have any financial or personal relationships with other people or organisations that could inappropriately influence the manuscript.

Acknowledgements

The authors wish to thank all the athletes who participated in the study and the coach Filippo di Mulo for their valuable time, Adrien Michel and Dr. Marco Donati for their practical and technical support in performing the experiments and in processing data, and John McCamley for his contribution to the refinement of the manuscript. This research was supported by a grant of the Università Italo-Francese (Call Vinci) awarded to E. Bergamini. The study sponsor had no involvement in the study design, in the collection, analysis and interpretation of data, and in the writing of the manuscript and decision to submit the manuscript for publication.

References