Science Arts & Métiers (SAM) is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: http://hdl.handle.net/10985/8964

To cite this version:
François MALBURET, Tomasz KRYINSKI, Jean-Paul NAUZIN - Lightweight design: mass in transit - Showcase 2013 p.4 - 2012

Any correspondence concerning this service should be sent to the repository Administrator: archiveouverte@ensam.eu
Mass in transit

TOMASZ KRYNSKI and JEAN-PAUL NAUZIN (PSA PEUGEOT CITROËN) AND FRANÇOIS MALBURET (ARTS ET MÉTIERS PARISTECH) OFFER SOME FACTORS FOR CONSIDERATION WHEN DESIGNING A LIGHTWEIGHT VEHICLE

“Decreasing the vehicle’s weight directly decreases the energy that has to be dissipated proportionately and therefore makes it possible to use smaller brakes”

The new worldwide accreditation cycle, the Worldwide Harmonized Light-duty Test Procedures (WLTP), will replace the current European cycle, the New European Driving Cycle (NEDC), as of 2020. It should be more representative of customers’ actual use of vehicles. In particular, it will include more violent acceleration/deceleration phases and higher average speeds than the current cycle, with a view to bringing the measured consumption closer to that experienced by the customer.

The implementation of this new cycle will force automotive manufacturers to completely reassess the various impacts related to consumption. While the influence of some major factors in the NEDC cycle (downsizing or electrification of components, etc.) will be more limited in the WLTP cycle, the impact of factors such as weight will increase.

Figure 1 shows that the weight of vehicles has increased substantially over the past 15 years, a trend that is common to all manufacturers. This change is due to a number of factors which, when listed in order of importance, are as follows: 40% due to passive safety; 15% due to the development of vehicle equipment; 15% due to improved soundproofing, as well as safety-related structural reinforcements; increased vehicle size; pollution reduction systems; and increased weight of other components such as suspension systems, brakes and gearboxes systems, in order to offset the increased loads on vehicle axles.

The impact of weight on consumption has been shown in a statistical study carried out on 33 recent diesel vehicles. It roughly indicates that an additional consumption of approximately 0.5 l/100km can be expected per 100kg of extra weight. In practice, this is far more complex, as consumption depends on more than weight alone. Factors related to the vehicle’s aerodynamic drag as well as its expected performance, which determines the size of the powertrain, must also be factored in.

Reducing consumption involves much more than engine development. All consumption sources – including tire rolling resistance and vehicle weight – as well as their reduction potentials, need to be assessed through a systematic, physical approach. It is also very important to account for the way in which the various actions are interconnected in order to achieve the best result.

Designing a lightweight vehicle

There are many ways to reduce vehicle CO₂ emissions by reducing weight: through direct effects (e.g. reducing the weight of components by using lighter materials) and indirect effects (virtuoso cycle generated by weight savings). In terms of direct effects, understanding the way in which weight and architecture are interconnected is key when it comes to lightweight vehicle design.

Vehicles are comprised of ‘hard’ items such as the engine and brakes, which constitute a mostly non-compressible weight when changing the airflow around the tire. Therefore, modeling the vehicle’s dimensions will not have a significant impact on the weight of its components. Put simply, on a constant equipment basis, the variation in weight from one vehicle to another is primarily related to the variation in the vehicle’s dimensions. This is referred to as downsizing, or architecture fine-tuning, which ensures ample interior space by reducing the dimensions that are relevant for weight reduction purposes. To do this, the vehicle’s weight is broken down into five parts, as shown in Figure 2. The statistical data on the same segment provides an average data for each segment, which varies according to the technologies used.

The value of these gradients is empirical and is used for pre-project calculations.

Rolling resistance

Tires play a crucial role in reducing fuel consumption, as they affect rolling resistance, aerodynamics, and the general architecture (Figure 3).

Rolling resistance is directly related to the wheel’s tire geometrical data. The larger a vehicle’s wheels are, the lower its friction coefficient is.

\[C_{rr} = C_{rr} \cdot f \]

With the f function dependent on the size of the tire and the technology used.

The design of the tread layer can reduce the aerodynamic drag by a few percent. The design of the tread layer and the outer sidewall can reduce the air surface and optimize the airflow around the tire. Therefore, modeling in the preliminary vehicle design phase to define the impact of architecture on consumption, the effects of the aerodynamic pressure zones around the wheel area are neglected.

More generally, reducing consumption involves finding a compromise between the various factors related to aerodynamics, rolling resistance, and weight. For example, increasing the wheels’ diameter increases the aerodynamic drag while maintaining the same interior space; reduces the rolling resistance coefficient; and increases the aerodynamic drag. Overall, increasing the wheels’ diameter increases the vehicle’s consumption.

New materials and technologies

Once the vehicle’s architecture has been determined, weight can also be reduced by introducing new materials and integrating components and functions in the same system. Figure 4 shows the weight proportions of the various subsystems of a vehicle.

A classical way to reduce vehicle weight involves the use of lighter materials such as aluminum, magnesium, plastic, or carbon fiber, as well as steel alloys. As mentioned above, reducing a vehicle’s weight by 100kg results in savings of 0.5 l/100km. However, the large-scale distribution of these lightweight materials is not developed widely enough and is still too limited to high-end cars.

The use of new technologies can contribute to reducing vehicle weight directly. This can be the case by combining functions, optimizing components, developing intelligent solutions, or integrating functions such as third-generation bearings, one-piece parts, future mechatronics systems, or using nanotechnologies over the longer term. Given the large number of sensors and electronics in passenger vehicles, nanotechnologies have a strong potential to miniaturize and transfer data. A major hurdle is producing these components and integrating them into production lines, as well as recycling them.

Virtuous cycles

Following an initial weight-reduction phase by optimizing the architecture and choice of materials, a second weight-reduction phase can be obtained by assessing the effects of the first weight-reduction phase.

Reducing a vehicle’s weight and the inter-structure forces also has an effect on the vehicle’s performance, which can be broken down into three main groups – impact, rigidity, and resistance. Each of these groups is affected by a set of performances that has a bearing on weight.

These performances need to be taken into account when optimizing each subsystem. This will often result in finding a compromise.

The downsizing of brake system components is one example of a virtuous effect. The required braking power at time t is expressed by:

\[P_{braking} = \frac{m \cdot v \cdot a}{t} \]

If we assume that the power losses related to rolling and aerodynamic forces are insignificant, as well as the engine braking action, then we can approximate the braking power output by:

\[P_{braking} = \frac{m \cdot v \cdot a}{t} \]
Material world

Marelli is studying the potential for composite knuckles and is also working on a front subframe made from a composite material. The latter partly won’t need reinforcement from a ductile material, according to Monchiero.

“For components like the arms, which you have to sacrifice under crash conditions, yes it’s necessary,” he says. “But according to our first level of verification for subframes, it’s probably not. These components have to be stiffer, more resistant, so it probably isn’t necessary to use a hybrid [material] solution.”

The rapid pace of development in this area provides a real opportunity for innovation, Monchiero believes. “The base plastics materials are being developed very quickly. I see that when I talk to suppliers of plastic materials over the course of a few months, they tell me that they now have new materials available. For example, when we started work on the composite area, we used a thermoset material because at the time, this was the plastic material with the fastest curing time. But new thermoset materials are also achieving very short cure times, meaning that each operation needs less than one minute rather than the 10 or 15 minutes of before. We had to change to using thermoset material because the technology had developed so much.”