Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: http://hdl.handle.net/10985/8972

To cite this version:
Jaouher SELMI, Jean-Philippe COSTES, Philippe LORONG, Gérard POULACHON, Patrice CARRAS - Prediction of the Spindle and Tool Receptance : Industrial Application in Reaming Process - In: High Speed Machining, Czech Republic, 2014-09-11 - High Speed Machining - 2014

Any correspondence concerning this service should be sent to the repository Administrator: archiveouverte@ensam.eu
PREDICTION OF THE SPINDLE AND TOOL RECEPTANCE: INDUSTRIAL APPLICATION IN REAMING PROCESS

Jaouher SELMI1,3*, Jean Philippe COSTES1, Philippe LORONG2, Gérard POULACHON1, Patrice CARRAS3

1Arts et Métiers Paristech, LaBoMaP, Rue porte de Paris, Cluny, France
2Arts et Métiers Paristech, PIMM, Boulevard de l’hôpital, Paris, France
3RENAULT, Rue des bons raisins, Rueil Malmaison, France

* Corresponding author e-mail: jaouher.selmi@renault.com

Abstract

It is proposed to apply a methodology in order to evaluate the ability of different machining systems (Spindle/Tool) to run a reaming process in a stable way. The methodology is based on an experimental measurement of the dynamic behavior for the system including the spindle and the tool holder. Then, by coupling frequencies response functions, a new system (Spindle/Tool) FRF is predicted at the tool tip. Finally, the critical depth of cut is analytically calculated from the eigenvalues of the characteristic equation of the dynamic reaming process.

Keywords:
Spindle, Dynamic, Chatter, Stability, Reaming, FRF coupling

1 INTRODUCTION

Besides of machining-center power and torque limits, self-excited vibrations occurrence (chatter) constitutes a real productivity limitation. Peklenik and Gartner [Peklenik 1967], Pruvot [Pruvot 1995] and Kopppka [Kopppka 2008] have shown that stiffness lack in machining systems can have a negative effect on dimensional produced work piece accuracy.

Tlusty [Tlusty 1954] and Tobias [Tobias 1965] exposed the theory of regeneration; they demonstrated that the instability is due to this phenomenon and appears when a depth of cut threshold is reached. Besides, Altintas and Budak [Altintas 1995] have set a model for stability chart prediction in milling process. The lobe stability diagram is a chart which represents stability and instability domains during machining and allows the choice of preferential cutting conditions in order to increase productivity and avoid vibration. Thus, machining center reliability from avoiding chatter point of view depends on how machining center will be used.

Many other studies have been carried on spindle characterization. Gurney [Gurney 1961], Sadek [Sadek 1970] and Yuce [Yuce 1983] have used the coefficient of Merit to compare spindles dynamic behavior by setting the structure into forced vibrations. In addition, Tobias [Tobias 1962] used stability chart as a comparative dynamic test certificate. Gagnol [Gagnol 2006] has performed studies on spindle dynamic behavior. Otherwise, Ertürk and Özsahin [Ertürk 2006a], [Ertürk 2006b] and [Özsahin 2009] have performed studies on the spindle and the tool dynamic behavior. The studies were based on spindle FE model through beam receptance coupling. Besides, Wang [Wang 1996] has performed a study on spindle design improvement in order to avoid chatter in milling. He compared two different spindles design using different tools in the same cutting conditions. The used criterion was the depth of cut when chatter appears. Catania [Catania 2011] has used an approach based on the modal parameters identification in order to model the spindle and the frame of the machine tool. The tool was represented by a discrete modal approach. The semi-discretization method was used to fit the stability chart. Finally Namazi [Namazi 2007], has led a study on tool FRF prediction especially applied for shrink fit tooling.

The present paper does not focus on the spindle model establishment as it was done by Gagnol and Erturk. The spindle dynamic behavior is identified experimentally using a reference tool. Then, using receptance coupling ([Erturk 2006a], [Namazi 2007]), the FRF at the new tool tip is built. Then referring to the analatycal stability model in milling and drilling [Altintas 1995] and [Jochem 2007], it was considered that the reaming has the same behavior as drilling from lateral chatter point of view. In this way, the equations of stability model were adapted to be used with different reamer geometries. In order to estimate critical stability limits [Tobias 1962], the stability charts were fitted using the predicted dynamic properties at the tool tip and the cutting forces factors. The critical depth of cut in reaming process is used in the evaluation of the dynamic behavior of the machining system.

2 SPINDLE FRF MATRIX IDENTIFICATION:

2.1 Principle and definitions:

Three mechanical systems are introduced (Fig. 2). The used vocabulary will be defined as follows:
• **system1**: The spindle, the tool holder and the forward section of the tool
• **system2**: The spindle and the tool holder
• **system3**: The forward section of the tool

![Fig. 1: The reference tool](image)

Note that the **System2** and the **System3** are linked through the rigid cross section illustrated in Fig. 2.

![Fig. 2: The system1, the system2 and the system3](image)

The aim of this subsection is to show a general methodology applicable for all kind of machine tool in order to identify the **System2** FRF matrix at B (Fig. 4). The principle is based on measurements using a reference tool and calculations. All the study is made for a 2D problem supposing that the dynamic behavior of the spindle is axisymmetric. If it is not the case, this analysis must be conducted in two orthogonal planes parallel to Z axis of the spindle. Furthermore, the motion of the joint cross section (Fig. 2) between the **system1** and the **system2** is well characterized by transversal displacement on Y direction and rotation around X direction.

The use of the reference tool is useful for getting all the needed terms of the **System2** FRF matrix. This matrix will represent the whole dynamic behavior of the **System2** at B- taking into account its transversal displacement and bending rotation responses and will be defined later through the equation (6). Without this intermediate mean, the **System3** FRF matrix is hard to obtain directly by measurement. We notice that bending moments and rotations at the cross-section can not be measured with simple hammer test method. This trial gives results only about transversal forces and displacements. In this way, hammer shocks are conducted on the spindle as depicted in the Fig. 3 and have as results the acquisition of the transfer functions h_{iEuu}, h_{iBBuu}, h_{iEBuu} which are defined as follows:

$$h_{iEuu} f_E = u_E$$ \hspace{1cm} (1)

$$h_{iBBuu} f_B = u_B$$ \hspace{1cm} (2)

Where f_j and u_j are respectively the transversal force and displacement at the point j. The obtained FRFs will be used in the presented approach which will drive to the identification of the entire FRF matrix of the **System1**.

H1, **H2** and **H3** are respectively condensed FRF matrix of the systems (1,2,3) presented in the Fig. 2, they are defined between the points E and B such as :

• **system1**: The spindle and the reference Tool

$$H^1 \begin{pmatrix} f_B \\ m_B \\ m_E \end{pmatrix} = \begin{pmatrix} u_B \\ u_E \\ \theta_E \end{pmatrix} \text{ with } \begin{pmatrix} H^{1}_{BB} & H^{1}_{BE} \\ H^{1}_{EB} & H^{1}_{EE} \end{pmatrix}$$ \hspace{1cm} (4)

H1 can be detailed as :

$$\begin{pmatrix} h_{BBuu} & h_{BBub} & h_{BBue} & h_{BBub} & h_{BBue} & h_{BBub} \\ h_{BBbe} & h_{BBbe} & h_{BBue} & h_{BBbe} & h_{BBbe} & h_{BBbe} \\ h_{EBuu} & h_{EBub} & h_{EBue} & h_{EBub} & h_{EBue} & h_{EBub} \\ h_{EBbe} & h_{EBbe} & h_{EBbe} & h_{EBbe} & h_{EBbe} & h_{EBbe} \\ h_{EEuu} & h_{EEub} & h_{EEue} & h_{EEub} & h_{EEue} & h_{EEub} \end{pmatrix} \begin{pmatrix} f_B \\ m_B \\ m_E \end{pmatrix} = \begin{pmatrix} u_B \\ u_E \\ \theta_E \end{pmatrix}$$ \hspace{1cm} (5)

• **system2**: The spindle and the tool holder

$$H^2 \begin{pmatrix} f_B \\ m_B \end{pmatrix} = \begin{pmatrix} u_B \\ \theta_B \end{pmatrix}$$ \hspace{1cm} (6)

Is equivalent to :

![Fig. 3: The experimental configuration using the spindle and the reference tool](image)

![Fig. 4: The spindle identification approach](image)

Besides, the vibrations are supposed to be led by the dynamic behavior of the spindle and the tool. Therefore, the machine tool frame influence on vibrations will be neglected. Note that f and M represent respectively, the shear force and the bending moment, and u and θ are the transversal displacement and bending rotation angle.
The forward section of the tool

\[
\begin{pmatrix}
\hat{h}_{BB,uu}^2 & \hat{h}_{BB,u0}^2 \\
\hat{h}_{BB,0u}^2 & \hat{h}_{BB,00}^2
\end{pmatrix}
\begin{pmatrix}
f_{B-} \\
m_{B-}
\end{pmatrix} = \begin{pmatrix}
\hat{u}_{B-} \\
\hat{\theta}_{B-}
\end{pmatrix}
\]

(7)

\[H^3\left(\begin{array}{c}
m_{B+} \\
K_{B+}
\end{array}\right) = \begin{pmatrix}
u_{B+} \\
\theta_{B+}
\end{pmatrix}
\text{With } H^3 = \begin{pmatrix}
\hat{H}_{BB}^2 & \hat{H}_{BE}^2 \\
\hat{H}_{EB}^2 & \hat{H}_{EE}^2
\end{pmatrix}
\]

(8)

Then

\[
\begin{pmatrix}
\hat{h}_{BB,uu}^2 & \hat{h}_{BB,u0}^2 \\
\hat{h}_{BB,0u}^2 & \hat{h}_{BB,00}^2
\end{pmatrix}
\begin{pmatrix}
f_{B+} \\
m_{B+}
\end{pmatrix} = \begin{pmatrix}
\hat{u}_{B+} \\
\hat{\theta}_{B+}
\end{pmatrix}
\]

(9)

2.2 The FE definition of the tool:

The reference tool is composed of the tool holder and the forward section of the tool (Fig.4) which is characterized by a given diameter, length, density \(\rho \) (\(Kg/m^3 \)) and Young modulus \(E \) (GPa). The tools are represented by a finite elements models. The equation of motion on their nodes can be written as follows:

\[
Kq + M\ddot{q} = f
\]

(10)

Where, \(K \) and \(M \) are respectively the stiffness and mass matrix of the FE model, and \(f \) and \(q \) are the generalized vectors of force and displacement. Assuming an harmonic response solution of the equation (10):

\[
q = q_0 e^{i\omega t} \text{ and } f = f_0 e^{i\omega t}
\]

(11)

Using the equations (10) and (11) drives to:

\[
(K - \omega^2 M)^{-1}f = q
\]

(12)

The FRF matrix \(H^3 \) of the tool can be written as follows:

\[
H^3 = (K - \omega^2 M)^{-1}
\]

(13)

It is considered that the structural damping of the tool is neglected comparing to the spindle damping.

2.3 Experimental method/model entries:

All of the presented tests in this section were made on the same machining center (DMG). The machine center used is a three axes architecture, equipped with a spindle (KESSLER) and ball screw axis technology. The spindle can be moved in the working space following the three directions (X, Y and Z). Impulse hammer shocks are conducted on the reference tool at the points \(B \) and \(E \) in order to obtain 3 FRF \(h_{BE}^2 \) which are required to identify the system\(_2 \) dynamic behavior through the matrix \(H_{BB}^2 \) defined in the equation (6). The experimental setup is depicted in the Fig. 3. Hammer tests were made following the instructions and the details described below:

- Two low mass bandwidth accelerometers [Sensitivity: 100mV/g] were located on the reference tool like depicted in (Fig. 3) and connected to a computer through 50 kHz frequency data acquisition card.
- A modal hammer [Sensitivity: 2,27mV/N] was connected to the acquisition card.

Besides, other experimental tasks are performed on the system\(_2 \) as depicted in the Fig. 5. Then, the used equipment and configurations are the same as used before. In this experimental task, the transversal FRF at the point \(B \) is generated. It will be compared in the next paragraph with the calculated results. This step has been done for verification and only for the transversal FRF of the system\(_2 \). However, the other components of the matrix \(H_{BB}^2 \) are difficult to obtain directly by measurement and are established only by calculations.

2.4 The identified dynamic behavior of the System\(_2 \):

The objective of this subsection is to show the identified FRFs of the matrix \(H_{BB}^2 \). Those functions will be used later in order to predict the dynamic behavior at the tool tip. Knowing that \(H_{BB}^2 \) is symmetric. It contains 3 FRF and can be expressed such as:

\[
H_{BB}^2 = \begin{pmatrix}
\hat{h}_{BB,uu}^2 & \hat{h}_{BB,u0}^2 \\
\hat{h}_{BB,0u}^2 & \hat{h}_{BB,00}^2
\end{pmatrix}
\]

(14)

The resolution of the equations (1), (2), (3), (5), (7), (9), (21) and (22) drives to the identification of the transfer functions which constitute the matrix \(H_{BB}^2 \) of the system\(_2 \) : \(\hat{h}_{BB,uu}^2, \hat{h}_{BB,u0}^2, \hat{h}_{BB,0u}^2, \hat{h}_{BB,00}^2 \). These functions are illustrated in the Fig. 6 and Fig. 7.

Fig. 6: The measured and the calculated transversal FRF \(\hat{h}_{BB,uu}^2 \) of the system\(_2 \)

The Fig. 6 shows results of the modeled and the experimentally measured FRF at the point \(B \) of the
The accuracy of the depicted results (Fig. 6) makes the approach reliable. It has been noted that the measurement of the FRFs of the bending rotations is difficult. Then, the other component of the matrix H_{BB} can be predicted only by simulation (Fig. 7). This application was made using a solid tool with high stiffness and high first natural frequency in order to minimize the disturbance related to the tool in the studied frequencies range. The same approach can be applied on different kind of spindle with different tool holder technologies. Thus, the spindles dynamic properties can constitute a data base for machining process design activities.

The objective is to obtain the new tool tip matrix H_{EE} (16) using the reached results. Its transversal component $h_{EE,uu}^t$ will be used later for stability lobes establishment in reaming process. Different kind of models can be used in order to represent the dynamic behavior of the tool, among others, analytical model or full 3D FE model. For the shown results, a 2D FE model was used. The principle of this approach consists in representing the system1 by a dynamic model at the tool tip. This result can be obtained through coupling the H_{BB} and the H_{EE} FRF matrix. Therefore, all of the transfert functions, and of the matrix H_{BB} are required. It will be supposed that tool active parts (rakes parts of the teeths) have a rigid motion. In the following developments we use the definitions below:

- System_1:

$$H^1 = \begin{bmatrix} f_{B} \\ m_{B} \\ f_{E} \\ m_{E} \end{bmatrix} = \begin{bmatrix} u_{B} \\ \dot{\theta}_{B} \\ u_{E} \\ \dot{\theta}_{E} \end{bmatrix}$$ \hspace{1cm} \text{With, } H^1 = \begin{pmatrix} H_{BB} & H_{BE}^t \\ H_{EB}^t & H_{EE}^t \end{pmatrix}$$

(15)

Considering that external forces are equal to zero at B, the relation between the displacements and forces at E is the following:

$$H_{EE}^1 \begin{bmatrix} f_{E} \\ m_{E} \end{bmatrix} = \begin{bmatrix} u_{E} \\ \dot{\theta}_{E} \end{bmatrix}$$

(16)

- System_2:

$$H_{BB}^3 \begin{bmatrix} f_{B}^- \\ m_{B}^- \end{bmatrix} = \begin{bmatrix} u_{B}^- \\ \dot{\theta}_{B}^- \end{bmatrix}$$

(17)

- System_3:

$$H_{BB}^3 \begin{bmatrix} f_{B}^+ \\ m_{B}^+ \end{bmatrix} = \begin{bmatrix} u_{B}^+ \\ \dot{\theta}_{B}^+ \end{bmatrix}$$

(18)

The equation (23) uses the matrix H_{BB}^3 with the identified functions in the subsection (2.4) to constitute the FRF at the tool tip.

3.2 Experimental validation:

Impulse hammer shocks were performed at the reaming tools tip in order to get the transversal FRF $h_{EE,uu}^t$. The measurement configuration is depicted in Fig. 9. Besides, tasks were performed at the same conditions as presented in the subsection (2.3). The used tools have the characteristics detailed in the table 1.
3.3 Results and discussions:

The graphs depicted in the Fig. 10 are the representation of the modeled FRF as compared with measured one. Both of them are illustrated at the tool tip. The closeness of the experimentally measured and modeled FRF shows a good correlation. In a high speed spindle using ball bearing guiding outfit, its static stiffness is a speed dependent because of the gyroscopic effect and centrifugal forces action on the balls ([Gagnol 2011] and [Abele 2004]). Also, the dynamic properties of the spindle changes and can be seen regarding the tool tip [Abele 2010]. However, centrifugal forces and gyroscopic effects start to have a weight only at high speeds, at lower speeds these effect could be neglected. This study focuses on the reaming process of cast iron where the rotation speed remain inferior to 2000 rpm for the studied tools.

4 APPLICATION IN THE REAMING PROCESS:

The objective of this subsection is to show how to compare different machining systems using the methodology described before. The principle is based on fitting the stability lobes through the predicted FRF for a known tool geometry and mechanical parameters. The evaluation of machining system is based on the critical depth of cut criterion \(a_{p,crit} \). It is defined as the maximum depth of cut which is stable at all speeds. Above this depth of cut chatter can arise in certain speed bands which are separated from each others by chatter free speed bands [Tobias 1962].

4.1 Analytical prediction of chatter vibration in reaming

Roukema and Altintas have presented an analytical prediction of the stability lobes in drilling process [Jochem 2007], taking into account the chip thickness, and the cutting forces variation during machining. Considering that the drilling and the reaming have the same behavior from lateral vibrations point of view, a model for three flutes reamer is presented.

![The reaming model principle](image)

It is supposed that forces are proportional to the chip area. Then, the forces on each flute are defined as:

\[
f_{x1} = k_{r,1} b (h_1 + dh_1), f_{r1} = k_{f,1} f_{x1}
\]

\[
f_{x2} = k_{r,2} b (h_2 + dh_2), f_{r2} = k_{f,2} f_{x2}
\]

\[
f_{x3} = k_{r,3} b (h_3 + dh_3), f_{r3} = k_{f,3} f_{x3}
\]

Where \(f_{xj}, f_{rj}, k_{r}, k_{r}, b, h \) and \(dh \) are respectively the tangential and radial forces at the flute having the index \(j \), the tangential and radial cutting factors, the width of cut, the static chip thickness and the dynamic chip thickness. The total force applied at the tool tip on X and Y directions:

\[
f_x = -f_{x1} \sin(\varphi) - f_{x2} \sin(\varphi + \varphi_1) - f_{x3} \sin(\varphi + 2\varphi_1) + f_{x1} \cos(\varphi) + f_{x2} \cos(\varphi + \varphi_1) + f_{x3} \cos(\varphi + 2\varphi_1)
\]

\[
f_y = f_{x1} \cos(\varphi) + f_{x2} \cos(\varphi + \varphi_1) + f_{x3} \cos(\varphi + 2\varphi_1) + f_{x1} \sin(\varphi) + f_{x2} \sin(\varphi + \varphi_1) + f_{x3} \sin(\varphi + 2\varphi_1)
\]
Where φ and φ_f are the rotation angle of the tool and the reamer pitch angle as illustrated in Fig.11.

4.1.1 Dynamic reaming model

Because of the regenerative displacement dx and dy at the tool tip, a varying chip thickness dh on each flute is produced. The radial generated displacement at each flute is presented in the Fig. 11 and can be expressed as:

$$
\begin{align*}
du_1 &= dx \cos(\varphi) + dy \sin(\varphi) \\
&= \frac{dx \cos(\varphi) + dy \sin(\varphi)}{\tan(\alpha_f)} \\
&= \frac{\cos(\varphi + \varphi_f)}{\tan(\alpha_f)} \\
&= \frac{\cos(\varphi + 2\varphi_f)}{\tan(\alpha_f)} \\
&= \frac{\cos(\varphi + 2\varphi_f)}{\tan(\alpha_f)}
\end{align*}
$$

The chip thickness variation dh_i is related to the radial displacement through the tool tip angle α_f (Fig. 11) and can be written such as:

$$
\begin{align*}
\frac{dh_1}{\tan(\alpha_f)} &= \frac{dx \cos(\varphi) + dy \sin(\varphi)}{\tan(\alpha_f)} \\
&= \frac{dx \cos(\varphi + \varphi_f) + dy \sin(\varphi + \varphi_f)}{\tan(\alpha_f)} \\
&= \frac{dx \cos(\varphi + 2\varphi_f) + dy \sin(\varphi + 2\varphi_f)}{\tan(\alpha_f)}
\end{align*}
$$

Knowing that the static component of the chip thickness has no influence on the stability study, the dynamic forces will be expressed using the dynamic chip expressions. The use of (24), (25), (26), (27) and (28) drives to:

$$
\begin{align*}
\frac{df_x}{\tan(\alpha_f)} &= \frac{dx \cos(\varphi + \varphi_f)}{\tan(\alpha_f)} \\
&= \frac{dx \cos(\varphi + 2\varphi_f)}{\tan(\alpha_f)} \\
&= \frac{dx \cos(\varphi + 2\varphi_f)}{\tan(\alpha_f)}
\end{align*}
$$

Through the equations (37), (38), (39), (40) and (41), the different component of the matrix $B(t)$ can be written as:

$$
B_0 = \frac{1}{T_0} \int B(t) dt
$$

This matrix is periodic and will be approximated by the average component of the Fourrier series as:

$$
B_0 = \frac{\pi}{2\pi} k_i b B_{red} = \frac{\pi}{2\pi} k_i b \left(\begin{array}{c}
b_{xx} \\
b_{xy} \\
b_{yx} \\
b_{yy}
\end{array} \right)
$$

Then, the time depending directional factors matrix $B(t)$ can be defined as:

$$
B(t) = \frac{dx}{dy} \left(\begin{array}{c}
b_{xx} \\
b_{xy} \\
b_{yx} \\
b_{yy}
\end{array} \right)
$$

Through the equations (37), (38), (39), (40) and (41), the different component of the matrix B_{red} can be written as:

$$
B_{red} = \frac{1}{T_0} \int_0^{2\pi} \left(\begin{array}{c}
-\cos(\varphi) \sin(\varphi) - \cos(\varphi + \varphi_f) \sin(\varphi + \varphi_f) \\
-\cos(\varphi + 2\varphi_f) \sin(\varphi + 2\varphi_f) \\
-\cos(\varphi + 2\varphi_f) \sin(\varphi + 2\varphi_f) \\
-\cos(\varphi + 2\varphi_f) \sin(\varphi + 2\varphi_f)
\end{array} \right)
$$

Therefore:

$$
\begin{align*}
b_{xx} &= -\frac{n_{k_x}}{\tan(\alpha_f)} \\
b_{xy} &= -\frac{n_{k_x}}{\tan(\alpha_f)} \\
b_{yx} &= -\frac{n_{k_x}}{\tan(\alpha_f)} \\
b_{yy} &= -\frac{n_{k_x}}{\tan(\alpha_f)}
\end{align*}
$$

Then, considering that δ_r is the displacement vector, the dynamic reaming force equation become:

$$
f(t) = \frac{\pi}{2\pi} K_i b B_{red} \delta_r
$$
4.1.2 Frequency domain solution

The characteristic equation of the reaming process was analytically solved referring to Altintas and Budak method [Altintas 1995]. Considering the transfer functions matrix at the tool tip $H_{EE}^{rad}(i\omega_c)$, the harmonic regenerative displacement at the chatter frequency ω_c can be described in the frequency domain as:

$$\delta(i\omega_c t) = r(i\omega_c t) - r(i\omega_c T) = \left[1 - e^{-i\omega_c t} \right] e^{-i\omega_c t} H_{EE}^{rad} f$$

with

$$H_{EE}^{rad} = \begin{pmatrix} h_{EE,uu}^1 & 0 \\ 0 & h_{EE,uu}^2 \end{pmatrix}$$

(48)

Where $\omega_c T$ is the phase delay between the vibrations at successive tooth period T.

$$f e^{-i\omega_c t} = \frac{1}{2} b k_i [1 - e^{-i\omega_c T}] B_{red} H_{EE}^{rad} f$$

(49)

The characteristic equation of the reaming process has a non trivial solution if the determinant is equal to zero:

$$det\left[1 - \frac{1}{2} k_i b_i (1 - e^{-i\omega_c T}) B_{red} H_{EE}^{rad} \right] = 0$$

(50)

The solution of this equation is found using the eigenvalues of the characteristic equation:

$$det\left[1 - \lambda B_{red} H_{EE}^{rad} \right] = 0$$

(51)

λ and κ are defined as follows:

$$\lambda = \frac{3}{8} b k_i (1 - e^{-i\omega_c T})$$

(52)

$$\kappa = \frac{\lambda_1}{\lambda_2} = \frac{\sin(\omega_c T)}{1 - \cos(\omega_c T)}$$

(53)

Where λ_1 and λ_2 are the real and imaginary parts of λ. T and ω_c are respectively the tooth passing period and the chatter frequency. Therefore, the stability lobes are fitted using the following equations:

$$b_{lim} = -\frac{2\lambda k_b}{Z k_i} (1 + \kappa^2)$$

(54)

$$T = \frac{1}{\omega_c} (\varepsilon + 2\kappa) n \Rightarrow n = \frac{60}{Z \varepsilon T}$$

(55)

Where n, ε and Z are respectively the rotation speed in (rpm), the phase shift between the chip inner and outer modulation and the teeth number.

4.2 Results and discussions:

In this application we have chosen to test the methodology on two different machining systems. The chosen process is reaming operation. In the simulation two different tools are considered to be tested on the machine tool in order to estimate the critical stability limits of both. All of the tools characteristics are detailed on the Tab.1. The considered cutting pressure in this simulation is $k_c (1100 \text{ MPa})$ for cast iron and carbide tool application. The factor k_c is equal to 0.35.

Simulations were performed on the two different combinations of the spindle and the tools, taking into account the critical depth of cut criterion to evaluate the dynamic behavior of the different systems. As shown through the Fig. 12, the critical depth of cut is 0.28 mm for the first tool against 0.18 mm for the second. Knowing that the used machine tool was the same in both simulations, the gap is explained by the difference of the stiffness of the first mode of each tool. The presented approach, as shown through the depicted results in the Fig. 12, is helpful to estimate quickly the critical depth of cut for a given machining system. It can be very useful in the process design stage for estimating and comparing the critical depth of cut of different systems. This criterion as defined in this study does not take into account the axial and torsional dynamic behavior of the system. It is based on the hypothesis that chatter in reaming process is ruled by the lateral dynamic properties.

![Fig. 12: Stability chart for the machining system](image)

It was shown in the subsection (2.3) that the difference between measured and calculated FRF is small. Nevertheless, both of them represent the machining system when the tool tip is free. During machining, the dynamic properties of the tool are different since the contact and the speed of cut alter the stiffness and the damping [Jochem 2007]. Thus, this fact can have an influence on the stability limits. Moreover, at low speed, when the tooth passing period is considerably higher than the chatter vibration period, the stability becomes difficult to model because of process damping. This can be explained by the appearance of a significant number of wave left by the tool on the workpiece. It creates a variation of the clearance angle of the tool during the operation. The created waves on the surface generate a resistant force at the opposite direction of the motion. Altintas and Weck [Altintas 2004] pointed out that there is no mathematical model for representing the interaction between the tool clearance and the wavy surface.

The cutting factors k_i and k_c are a tool and material dependent quantities and are estimated for an operating point. Since the machining is made in these conditions, the linearity of the cutting law is valid and can be used for stability chart establishment. In this way, the critical depth of cut depends also on the feed rate which should be taken into account through the cutting factors.
4.3 Conclusions

In this paper a method for machining system dynamic behavior prediction at the tool tip is illustrated and compared against experimental tasks. Knowing that the chatter stability is dependent of the dynamic behavior of the machining system, the predicted functions have been used for stability chart establishment in reaming process with two different tools. Besides, the prediction FRF model was validated experimentally through hammer trials and results were accurate enough for stability lobes fitting. A dynamic model for chatter vibration in reaming process was later presented and used the predicted FRF at the reamer tips for stability lobes establishment. In summary, the presented methodology includes three main steps:

• The identification of the FRF matrix of the spindle and the tool holder by decoupling the reference tool FRF.
• The transversal FRF at the reaming tool point is predicted by FRF coupling.
• The stability lobes are predicted and lead to the determination of the critical depth of cut ap,cri.

Although the presented method, the machine tool and the tool potential to run a heavy reaming can be quickly evaluated and compared rapidly to other systems. It can be very helpful in the design stage of the machining process, in order to select a couple spindle and tool for a given operation. The same methodology can be applied for other machining operations as milling and drilling.

References

Paper in a journal:

Paper in proceedings:

Technical reports or thesis:

