
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/9096

To cite this version :
Justin-Hervé NOUBISSI, Christophe GUILLET, Jean-Luc MARTINEZ, Frédéric MERIENNE - A
predictive approach for a real-time remote visualization of large meshes - In: IEEE International
Conference on Advanced Computing & Communication Technologies, India, 2012-01-07 - 2012
Second International Conference on Advanced Computing & Communication Technologies -
2012

Any correspondence concerning this service should be sent to the repository

Administrator : scienceouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/9096
mailto:scienceouverte@ensam.eu
https://artsetmetiers.fr/

A predictive approach for a real-time

remote visualization of large meshes

Justin-Hervé NOUBISSI1, Christophe GUILLET2

1 Arts et Métiers ParisTech, CNRS, Le2I

Institut Image

Chalon-sur-Saône, France

Jean-Luc MARTINEZ1, Frédéric MERIENNE1

2 Université de Bourgogne, CNRS, Le2I

Institut Image

Chalon-sur-Saône, France

Abstract. Remote access to large meshes is the subject of studies

since several years. We propose in this paper a contribution to

the problem of remote mesh viewing. We work on triangular

meshes. After a study of existing methods of remote viewing, we

propose a visualization approach based on a client-server

architecture, in which almost all operations are performed on the

server. Our approach includes three main steps: a first step of

partitioning the original mesh, generating several fragments of

the original mesh that can be supported by the supposed smaller

Transfer Control Protocol (TCP) window size of the network; a

second step called pre-simplification of the mesh partitioned,

generating simplified models of fragments at different levels of

detail, which aims to accelerate the visualization process when a

client(that we also call remote user) requests a visualization of a

specific area of interest; the final step involves the actual

visualization of an area which interest the client, the latter

having the possibility to visualize more accurately the area of

interest, and less accurately the areas out of context. In this step,

the reconstruction of the object taking into account the

connectivity of fragments before simplifying a fragment is

necessary.

Keywords: mesh, sewing, partitioning, simplification,

visualisation.

I. INTRODUCTION

The advent of 3D models leads nowadays to the need to
exchange more and more. Thus, the increased requirements in
terms of data volume, the fact that our digital model can be on
remote locations, making it essential to further improve the
performance of simplification techniques according two main
axes: the degree of simplification and speed of simplification.
If treatments are possible simplification in real time, it
becomes possible to take into account the criteria snapshots
(application context) and thus hope to obtain better
distribution of the rate of simplification. Many approaches
have been proposed, allowing the visualization of local or
global mesh distance regardless of the TCP window size of
the network. Others have focused on reducing the volume of
data, but they are limited in terms of mesh quality and
reduction rate. Thus, the real-time visualization of large
meshes distance taking into the user's needs remains a need
for concern. In this context, we propose to develop a new
method of remote monitoring adapted to the user needs. Our
visualization is made taking into account the TCP window
size of the network, the user also has the possibility to view
several parts of the object at different levels of detail: the
more specific area of interest to a higher level of detail, and
other areas out of context less precise, with lower levels of
detail. Our approach preserves the connectivity within the
meaning of fragments (fragments of a seam with different

levels of detail and taking into account the connectivity of said
fragments before partitioning is performed).

II. RELATED WORK

Extremely progressive development of networks and the
Internet has pushed for several years researchers to find
strategies to access and exchange of 3D geometric data
remotely. So, many researchers have focused on the difficulty
to transfer the data for visualization, data that are often very
large.

[12] introduced the first system of progressive mesh (PM)
for generating various levels of mesh simplification, which
aims to reduce the volume of data at each step of the
simplification. A PM is a linear sequence of increasingly
coarse meshes built from an input mesh by repeatedly
applying edge collapse operations. It provides a continuous
resolution representation of an input mesh and is useful for
efficient storage, rendering and transmission. [8] proposed a
simplification method depends on the point of view, to display
interactive objects of several million triangles. The authors
propose to perform pre-processing (pre-simplification),
building a tree of sub-meshes while optimizing disk access.
During the exploration of the tree, only nodes required
viewing are displayed. [13], [17], [1] propose a mesh cutting
approach. The input mesh is partitioned into pieces small
enough, which are then simplified individually. The partition
boundaries are left untouched such that the simplified pieces
can be stitched back together seamlessly. [4] proposed an
approach based on client/server architecture for generating
static levels of detail (LOD) of the simplification of a given
mesh. With this approach we, only select the detail which
corresponding to the client request for viewing. [9] proposed
an approach based on a client / server architecture. To
improve adaptive visualization and reduce transmission time,
the system uses the cache and a prediction mechanism on the
client side. They subdivide the view dependent tree into
blocks which allow selective refinement and maintain on the
server side a list of active odes for each client connected. The
server responses the requests from the clients for sending the
update operations needed to satisfy the visual query. [16]
proposed a client/server framework for view dependent
streaming of progressive meshes: the servers send the base
mesh and the vertex hierarchy of 3D models to the client. The
client creates further requests for selective refinement
operations, and the server continues to send the rest level of
detail of the models until the requests stop. However, the
application cannot support interactive exploration of models,
which involves selective refinement. [7] designed a
client/server system for allowing an application to deliver a
mesh progressively, which overcomes some limitations of

previous work. [21] proposed an approach based on the
compression of triangles. They decompose a mesh into a set
of clusters, each containing a few thousand vertices and
triangles.
Then, the compression and decompression are performed at
the granularity of clusters. At runtime, if an application
requires a triangle, the proposed technique first identifies a
cluster called the triangle, without decompressing
decompresses the cluster of other clusters, and returns the
uncompressed data to the application. However, their method
is not progressive, and therefore, the overall imaging of a
mesh would require to fully load into memory. [5] and [2]
propose an approach that consists on hierarchical splitting
mesh into several fragments and compress each fragment
separately. With this, the can decompress fragment separately,
without waiting full decoding of entire mesh.

Previous work has allowed us to identify three main
categories of approaches for remote viewing: mesh
simplification as progressive mesh, compression and mesh
partitioning. The first is to generate multiple layers of
simplified representations of the original mesh, each level
representing a crude form of the mesh at the previous level,
with fewer vertices. Over the mesh is coarse, the less of
vertices, and the amount of information to be displayed is
small. This approach has thus to be able to accelerate time
data visualization, because the more the amount of data is
small, more time viewing is low. This approach, while
interesting, suffers from the fact that it does not propose to
view only a specific area of interest, forcing the transfer of the
original model in its entirety. It thus has a further
disadvantage, that of failure to take into account the TCP
window size of the network. The second approach is data
compression, proposes to encode geometry and topology of
the original mesh to represent it with the least bit possible.
Thus, the data volume is reduced, and the model can pass
through a much smaller TCP window than the previous
approach. A decoding phase is then carried out after transfer
to reconstruct the object to view, which can be time
consuming. A third approach is to partition the original mesh
3D model, generating several fragments representing parts of
the large mesh. Thus, there is the possibility, in contrast to
previous approaches, to only transfer over the network the
area of interest of the user. Although this is a step forward,
this approach seems limited, since the user does not see the
vicinity of its area of interest or the entire object from which
its area of interest. More, the partition being performed
according to the number of fragments we want to obtain, and
therefore, according to criteria that do not depend on the width
of the windows TCP network, it may also have limits network.

In this context, we propose a client/server approach, in
which almost all operations are performed on the server, and
which taking into account the TCP window size of the
network.

III. PROPOSED APPROACH

We propose a method divided into three steps: a first step
of partitioning the original mesh, generating several fragments
of the original mesh; and a second pre-simplification of the
mesh partitioned, generating simplified models of fragments

of different levels of detail; the final step involves the actual
visualization of an area which interest the client, the latter
having the possibility to visualize more accurately the area of
interest, and less accurately the areas out of context. Figure 1
presents our architecture approach.

A. Partitioning

Mesh partitioning, also sometimes calls mesh
segmentation or mesh decomposition, has became an essential
problem in many domains like modelling [10], simplification
[6], skeleton extraction [15], compression [14]. Our definition
about mesh partition is therefore:

Mesh partitioning : Let M be a 3D boundary-mesh, and

E the set of faces of the mesh M. A partitioning of M is the

set of sub-meshes  
110 ,...,,  pMMM induced by the

partition of E into p sub-sets intersecting pairs. An example of
mesh partitioning can be seen in Figure 2 .

All the approaches existing in literature about mesh
partitioning do not taking in count the TCP window size of the
network, which is a condition in our context, because we work
on large meshes transmission through the network. We

Figure 2 : example of mesh partitioning

Figure 1 : architecture of proposed approach.

propose an approach that based on the region growing
method.

The split process that we propose is done on the server,
before the client request. Assume that it is only one part of the
initial mesh which interests the client. Therefore, it becomes
expensive in term of time and memory to transmit the entire
object with all the details, even on areas that particularly not
interest him. What's more, if we consider that we have an
initial mesh M, and that the file which support the mesh M
cannot be transferred over the network because of its large
size (we note size_file(M) the size of file that support the
mesh M), it becomes necessary to partition M to allow to
transfer only the region of interest of the client in the
necessary details, other parts that can be transferred to lower
detail, which would reduce the waiting time of the remote
user, and take into account the size of the TCP network. This
operation is done on the server, before the client request.

All vertices must be ordered. Let  be the supposed
smaller TCP window size. We consider that we have a mesh
M, and that the file which support the mesh M can not be
transferred over the network because of its large size (we note
size_file(M) the size of file that support the mesh M). So, we
want to partition M. Let B be the bounding box of M. We call

kiis 1, the different vertices of M, where k is the number of

all vertices of M. So, we define  ksssS ,...,, 21 as the set of

all vertices of the M. We also call  3211, iiinii ssst  a

triangle i formed by three vertices, with n representing the

number of all triangles of mesh M.  BssstB iiii  321 ,,/

defines the bounding box of M which contains all the triangles

of M (Bs means that is inside or at the border of B).

For splitting our mesh M, we first divide B in the middle
into two boxes, and we get two new sub-bounding boxes B1

and B2, such as BBB  21 . Axis of partitioning is chosen

so that when the threshold for partitioning is not met, the two
sub-bounding boxes must contain triangles. So, we obtain two
sub-meshes M1 bounded by B1 and M2 bounded by B2. If

size_file(M1) ≤  and size_file(M2) ≤  , we stop the
partitioning; else we repeat the fragmentation of each Bi

(i=1,2) until size_file(Mi) ≤  .

An example of our fragmentation principle in 2D can be

visualized in Figure 3.

So, at the end of our fragmentation, we have:

size_file(Mi) ≤  (1≤ i ≤ p), where p represents the number
of all last fragments that we have obtained. Now, we are sure
that our all fragments files can be transferred over the
network. Moreover, this operation of fragmentation is
important because it would enable us at some point,
depending on client needs, to select only part of the mesh to
allow quick viewing (less time consuming).

Quick view is one of the fundamental objectives, so we
can also further accelerate the visualization process by
displaying only the mesh at the levels of details the client
needs. This process of reducing the details of a mesh,
introduces what we call mesh simplification.

B. Simplification
The mesh simplification is an operation that aims to

define from a base mesh M1, another resulting mesh M2, such
that card(M1)>card (M2), where Card(M1) and card(M2)
respectively correspond to the number of faces associated with
the base mesh M1 and the resulting mesh M2.

We need this operation for generating many levels of
details for each fragment that we have obtained after
partitioning; and fewer details; the size file supporting the
mesh is reduced.

We can classify simplifications methods that exist in three
mains categories:

 Vertex clustering [18]. This method involves placing a
grid of cells on the mesh and merges all the points
contained within the same cell. This method is very
fast, but the visual appearance of the final mesh is not
relatively good. The model topology is not preserved.

 Edge collapse [11] uses an iterative selection of edges
to be removed. At each step, the two vertices of the
selected edge are joined to form a single vertex.

 Vertex decimation [20], [3], [19]: The idea is to
remove a vertex and all faces that using this vertex,
and then re-triangulate the hole created. This approach
is commonly used when we want to preserve the mesh
topology. However, this method preserves topology
and is limited to manifold meshes.

In our context, we want to transmit fragments preserving
their geometry and topology, even after several levels of
simplification. To do this, we opt for using the vertex
decimation method, which is appropriate, as we work on
manifold meshes.

Our simplification is done on the server, before the client
request. We want to simplify our various fragments to
generate these fragments with different levels of detail,
allowing the client to have a more accurate view of its area of
interest and a less precise view of the surrounding areas. We
wish to keep the geometry. For this reason, it is important to
establish a principle of reducing the number of mesh faces at
each stage of simplification. We also want to keep the
topology of the mesh. We opted for the vertex decimation
method. The selection criterion for removing a vertex at every
stage of the decimation is based on the evaluation of discrete

Figure 3 : example of our mesh partitioning in 2D.

 Partitioning

Gaussian curvature of the surface described by the polyhedron
around each vertex.

The formula for evaluating the discrete Gaussian curvature

is given by: 
i

i
A 2 , where i

 represent the angles of

adjacent faces to the vertex i. So, at each stage of the vertex
decimation, we remove the vertex with the minimum radius of
curvature. For preserving the mesh connectivity within the
meaning of the fragments, we propose a first approach which
consists on not delete the vertices located on the border of the
fragment through the simplification process. Figure 4 shows
the set of vertices non-removable in this case.

This method of simplification preserving the boundaries of
the fragments could be an interesting approach that we ensure
the faithful reproduction of the semantics of the grid after
transfer of the various fragments across the network.
However, the fact that it does not allow to include in the
process of simplifying the vertices on the border of the
fragments leads to a limitation of the rate of simplification of
the fragments. More, as we can see in Figure 4, this could
generate degenerate triangles. For solving this, we propose
another simplification approach, which include the boundaries
of the fragments.

We propose to add the following conditions:

1) Each vertex must have a list of integers containing

the levels of details of all simplification which it belongs.

2) Let us consider a set of fragments  
piiF




1 ,

where Fi represent the fragment i and p the number of

fragments of the mesh after the partitioning. We also consider
 

njjsS



1 as the set of all vertices of the mesh, where n

represent the number of all vertices of the mesh.

We define the following stages:

a) Each vertex must have indices of the fragments that

contain it. To do this, we define the application S:

by: .,)(/,
1

sFFSs
isiis s




Notation: s represents the cardinal of s
 .

b) Our criteria of not removing a vertex on the border

of the fragment:

,Ss s cannot be removed on the border if at least one

of the followings is true:

 s is on the border of a fragment with 2s ,

 s is an external vertex and 2s ,

c) Preserving the connection of fragments after

simplification. When we include the vertices located on the
border of the fragments while simplifying, the connection

between the fragments can be lost. To maintain this

connection, it is important to define a relationship between the

fragment that we want to simplify and the simplified

fragment, including the neighbouring fragments of the

fragment to simplify. Let SbF be the set of vertices of the

border of the fragment F, and s

is the set of fragments that

contain the vertex s.

Neighbourhood: two vertices s1 and s2 are called neighbours

if there is an edge that connects s1 to s2. We note 21 ss  .

bFSs and siF  , if s can be removed on the

border, then jjj sss 


/
)1(, if sFi  and jj sF  , then

add Fi to
js before removing s.

d) Creation of the fragment connection between two

fragments after simplification. At each step of simplification

 Create sub-lists of vertices on the border which have
at least two indices of fragments in common, and had
a removable vertex as common neighbour before
removing this vertex,

 Create polygons for each sub-list,

 Triangulate all polygons created.

An example of creating a fragment of connection is shown
in Figure 6.

Figure 5 : example of presentation of some non-removable vertices on

the border of some fragments. The red points represent the vertices on

the border of fragments that can be removed, the yellow points

represent the vertex on the border of fragments, but not removable.

Figure 4 : generation of two levels of detail for the simplification of

fragments, seen in 2D. Left, a partitioned mesh (LOD 0); in the center a

first simplification of fragments (LOD 1); right, a second simplification

of fragments (LOD 2). The points in red represent the non-candidates

vertices for deletion throughout the vertex decimation.

C. Real-time visualization
When a client requests a viewing area of interest, we

display his area of interest with the requested details (fine
mesh), and others areas out the context being displayed at
levels less detailed.

IV. RESULTS

Figure 7 presents a result of partitioning of a hollow
pyramid which has 15360 faces initially. The size of initial
image is 2186 Ko and she has 8632 vertices.

Figure 9 : visualization after the simplification of some fragments

and the mesh reconstruction. We can see the different mesh

connection of the fragments. The last object in the lower right has

7672 faces and 4992 vertices.

Figure 8 : example of two fragments simplification with

maximum radius of curvature = 120°.

Figure 7 : Example of result of our partitioning approach testing

with a hollow pyramid which has 15360 faces initially.

Figure 6 : example of creating a fragment of connection. A simplified

model of a fragment in pink color, a simplification of another fragment

in blue. Black points represent the new vertices on the border of

fragments after simplification, green fragment represent the connection

between two fragments pink and blue after simplification.

TABLE 1. COMPARISON OF DIFFERENT APPROACHES

Methods

Approaches

[5], [2] [21] [16] [9]
Proposed

approach

Partitioning pre-

processing
   

Simplification

pre-processing
   

Progressive

simplification
   

Local visualization  

Global

visualization
   

Taking into

account the TCP

window size

 

Compression  

Decompression  

Local transfer    

Global transfer     

V. CONCLUSION

In this paper, through a study of approaches to viewing
real-time remote existing simplification, we proposed an
approach to real-time remote visualization on of large
volumes of triangular meshes, taking into account the size of
the window TCP network. Our approach is based on a "pre-
partitioning" mesh on the server, before any request for
viewing an area of interest from the client, which generates
fragments of the original mesh depending on the TCP window
size of the network. We also generate “pre-simplified” meshes
of the partitioned mesh on the server, which could accelerate
the time of viewing an area which interest a client, and
therefore, reduce the waiting time. We have also proposed an

algorithm for connecting different fragments after their
simplification.

In the future, assuming for example that the initial model
is a coarse level of detail, and the remote user may want a
much more detailed mesh. It should therefore, propose a
strategy for refinement of our mesh. More, today, in our
visualization process, we transmit all the fragments or the part
of object that the user wants to visualize. Thus, we want to
develop a process which allow, in the process of transmission
for viewing, to transmit only vertices or/and triangles that are
not yet transmitted. This will reduce more the user waiting
time for viewing.

ACKNOWLEDGEMENT

This research study was realized in the framework of the
Pestiv-3D project, with the partnership of Arts et Métiers
ParisTech, Grooviz, Eurocopter and Cimpa-AirBus.

REFERENCES

[1] Bernardini f., Martin i., Mittleman j., Rushmeier h., and Taubin g. 2002.

Building a digital model of Michelangelo’s Florentine Pieta. IEEE
Computer Graphics and Applications 22, 1, 59–67.

[2] Clement Courbet, Celine Hudelot. Random Accessible Hierarchical

Mesh compression for Interactive Visualization. SGP '09 Proceedings of
the Symposium on Geometry Processing. 2009.

[3] Ciampalini, A., Cignoni, P., Montani, C. and Scopigno R.

“Multiresolution decimation based on global error”. Technical report,
Centre National de la Recherche Scientifique, Paris, France, 1996.

[4] P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno. External

memory management and simplification of huge meshes. IEEE

Transactions on Visualization and Computer Graphics, 9(4):525–537,
2003.

[5] S. Choe, J. Kim, H. Lee, Seidel: Random accessible mesh compression

using mesh chartification. In IEEE Transactions on Visualization and
Computer Graphics (2009).

[6] D. Cohen-Steiner, P. Alliez, and M. Desbrun. Variational shape

approximation. ACM Transactions on Graphics (SIGGRAPH),
23(3):905–914, 2004.

[7] Danovaro, E., De Floriani, L., Magillo, P., Puppo, E., Sobrero, D., 2006.

Level-ofdetail for data analysis and exploration: a historical overview
and some new perspectives. Computers & Graphics 30 (3), 334–344.

[8] El-Sana J., CHIANG Y.-J.. External memory viewdependent
simplification. Computer Graphics Forum 19, 3, 139–150.

[9] El-Sana J., Sokolovsky N., 2003. View-dependent rendering for large

polygonal models over networks. International Journal of Image and
Graphics 3 (2), 265–290.

[10] T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer, A. Tal, S.

Rusinkiewicz, and D. Dobkin.Modeling by example. ACM Trans.
Graph. (SIGGRAPH), 23(3):652–663, 2004.

[11] Garland, M. and Heckbert, P. “Surface simplification using quadric error

metrics”. In SIGGRAPH ’97: 24th annual conference on Computer
graphics and interactive techniques, pp. 209–216. 1997.

[12] Hugues Hoppe. 1996. Progressive meshes. In Proc. of ACM
SIGGRAPH, 99– 108.

[13] HOPPE, H. 1998. Smooth view-dependent level-of-detail control and its
application to terrain rendering. In Visualization’98 Proceedings , 35–42.

[14] Z. Karni and C. Gotsman. Spectral compression of mesh geometry. In

Proceedings of SIGGRAPH 2000, pages 279– 286. ACM SIGGRAPH,
2000.

[15] S. Katz and A. Tal. Hierarchical mesh decomposition using fuzzy

clustering and cuts. ACM Trans. Graph. SIGGRAPH), 22(3):954–961,
2003.

[16] Kim J., Lee S., Kobbelt L., 2004. View-dependent streaming of

progressive meshes. In: 2004 International conference on shape

Figure 10 : example of mesh sewing after simplification of fragments

with their connection mesh.

modeling and applications (SMI 2004). 7–9 June, Genova, Italy. IEEE
Computer Society, Silver Spring, MD, pp. 209–220.

[17] Prince C. 2000. Progressive Meshes for Large Models of Arbitrary
Topology. Master’s thesis, University of Washington.

[18] Rossignac, J. and Borrel, P. “Multiresolution 3d approximations for

rendering complex scenes”. In B. Falcidieno and T. Kunii, eds,

Modeling in Computer Graphics: Methods and Applications, pp. 455–
465. Springer- Verlag, 1993.

[19] Schroeder, W. J. “A topology modifying progressive decimation

algorithm”. In VIS ’97: 8
th

 conference on Visualization ’97, pp. 205–ff.
IEEE Computer Society Press. Los Alamitos, CA, USA. 1997.

[20] William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen:

Decimation of triangle meshes. In Edwin E. Catmull, editor,

Proceedings of the 19th Annual ACM Conference on Computer

Graphics and Interactive Techniques, pages 65-70, New York, NY,
USA, July 1992. ACM Press.

 [21] Yoon S., Lindstrom P.: Random-accessible compressed triangle meshes.

IEEE Trans. On Visualization and Computer Graphics 13, 6 (2007), 16–
1543.

