Science Arts & Métiers (SAM) is an open access repository that collects the work of Arts et Métiers Institute of Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: http://hdl.handle.net/10985/9176

To cite this version:

Any correspondence concerning this service should be sent to the repository Administrator: scienceouverte@ensam.eu
Methodology for the Diagnosis of Hydromechanical Actuation Loops in Aircraft Engines

Benjamin Lamoureux1,2, Jean-Rémi Massé3, and Nazih Mechbal4

1Sncema (SAFRAN Group), Systems Division, Villaroche, France
2Arts et Métiers ParisTech, PIMM, Paris, France
3SNPE, Division, Villaroche, France
4nazih.MECHBAL@ensam.eu

Abstract—This document provides a method for on-board monitoring and on-ground diagnosis of a hydromechanical actuation loop such as those found in aircraft engines. First, a complete system analysis is performed to understand its behaviour and determine the main degradation modes. Then, system health indicators are defined and a method for their real-time on-board extraction is addressed. Diagnosis is performed on-ground through classification of degradation signatures. To parameterize on-ground treatment, both a reference healthy state of indicators and degradation signatures are needed. The healthy distribution of indicators is obtained from data and a physics-based model is used to simulate degradations, quantify indicators sensibility and construct the signatures database. At last, algorithms are deployed and a statistical validation of the performances is conducted.

I. INTRODUCTION

In aircraft engine industry, one of the greatest challenges is to increase products availability because costs of ownership induce prohibitive expense during aircraft immobilization. Up to now, delays and cancellations occurred randomly because system component failures were not predictable. Nowadays, new means of computation makes it possible to monitor the evolution of many engine’s features and prognostics and health management (PHM) [1] has become not only a possibility but a necessity to anticipate unwanted events. For aircraft engine manufacturers, PHM is a double challenge: to limit delays and cancellations and to reduce the time of maintenance operations by providing operators with trouble shooting assistance.

A good summary of the main works done in the PHM field can be found in [2] and some of the methods have already been experimented in particular in the field of electronics, for example to monitor the remaining usable lifetime of batteries [3]. In France, some works such as [4] or [5] have addressed the issue of modelling a multi-levels architecture for a complex system’s monitoring process or formalizing the prognostics process [6].

As far as predictive monitoring applied to aeronautics is concerned, research is focused on developing mathematical tools for diagnosis and prognostics [7]. Some good reviews on the subject can be found in [8] for the diagnosis and [9] for prognostics.

However, academic research and industrial needs are not on the same page on the following points: (1) experimental studies are restricted to sensor faults, vibration analysis and structural health monitoring (SHM) [10] but health assessment of control systems is rarely addressed; (2) papers commonly make the hypothesis that every variable is measured so indicators are easily constructible but actually, position, number and precision of sensors is defined and most of the time not modifiable; (3) because of data storage issues, indicators extraction must be performed on-board and the specific constraints related to the real time in-situ computation is almost never addressed and (4) physics-based models are necessary to quantify the impacts of degradation and their potential evolution.

This document focuses on the diagnosis of the following system: an actuation loop which purpose is to regulate the position of an aircraft engine variable geometry. The study will be articulated around five points: System Analysis, Indicators Definition, Degradations Modelling, Indicator Transformation Laws Computation and Statistical Validation of Performances.

II. SYSTEM ANALYSIS

In order to monitor a system, the first step is to determine its degradation modes and it can be achieved through expertise, experience feedback or Failure Mode and Effects Analysis (FMEA).

The system is a closed loop composed of three main components: A controller, a servovalve and a cylinder. The position of the cylinder is measured by a linear variable differential transformer (LVDT), as shown in Fig. 1. The controller is of type proportional–integral–derivative (PID).

This study will focus on the mechanical degradations of the system and electrical ones will not be treated. For example, electrical wires oxidation, micro cuts and connectors’ faults will not be addressed.
A. Degradation modes of a servovalve

In this application, the studied servovalve type is two-stage flapper-nozzle. In this type of servovalve, the power transmission chain is the following one:
1. A control current is sent to a torque motor
2. The current is converted to a displacement of the flapper through an electromagnetic effect
3. The displacement of the flapper changes the position of the second stage spool via a hydraulic control
4. The position of the spool reorganizes the distribution of the flows. A flapper-nozzle servovalve configuration is shown in Fig. 2.

The following list of the degradation modes selected for the servovalve is inspired by [11]:

1) **Increased contamination of the filters:** As dust and debris accumulate in the servovalve, filters gradually lose their efficiency and the hydraulic resistance increases. The result is a slower response of the servovalve.

2) **Drift of the null bias current:** As the torque motor ages and loses its magnetic properties, the null bias current of the servovalve, namely the current for which the flows are equal in control ports 1 and 2, can drift from its nominal value.

3) **Increased backlash:** With the progressive wear of the internal feedback spring, the hysteresis of the servovalve increases.

4) **Increase of the friction force between spool and sleeve:** This phenomenon is due to the cumulative effects of continuous movement of the spool and contamination of the hydraulic fluid because the debris induces a silting effect.

5) **Increase in the radial clearance between spool and sleeve:** Because of the contamination, abrasion of the corners of the spool lands resulting in an increase of internal leakage.

B. Degradation modes of a cylinder

The cylinder considered in this application is a double-acting hydraulic cylinder with a cooling diaphragm between the two sides. The hydraulic fluid used is fuel.

The following list of the degradation modes selected for the hydraulic cylinder is inspired by [12]:

1) **Internal leakage between the two sides:** As the seal ages, dust and debris accumulate between the seal and the sleeve resulting in an abrasive effect degrading the cylinder body.

2) **Clogging of the cooling diaphragm:** With the increase of the temperature, a coking of the fuel can occur, resulting in the clogging of the diaphragm.

C. Other potential degradation modes

The list of degradation modes presented above is not exhaustive and many other phenomena can occur such as a damage of the kinematic chain downstream of the cylinder or the burst of a pipe but the choice was made to focus only on the servovalve and cylinder’s degradations.

III. INDICATORS

A. Flow Gain curve of a Servovalve

Among the different measures characterizing a servovalve, the flow gain curve is one of the most significant because it displays both static and dynamic features as shown in Fig. 3.

The extraction of this curve requires that the servovalve is equipped with flowmeters but in our application, only the position of the cylinder is measured. However, the cylinder’s velocity V_{cyl} and the servovalve output flows in each control port Q_{SV_head} and Q_{SV_rod} can be linked via the simplified equation:

$$V_{cyl} = \begin{cases}
\frac{(Q_{SV_head} - Q_{cooling})}{S_{head}} & \text{during shaft outlet} \\
\frac{-(Q_{SV_rod} - Q_{cooling})}{S_{rod}} & \text{during shaft inlet}
\end{cases}$$ (1)$$

Where $Q_{cooling}$ is the cooling flow between the two sides of the cylinder and S_{head} and S_{rod} are respectively the cross-sectional area of the head and the rod sides.
B. Velocity Gain of a hydromechanical loop

In order to get around the lack of flowmeters to monitor the servovalve only, the idea is to monitor the whole loop by following salient features on the Velocity Gain curve.

This curve can be obtained only with the measures of both the control current \(I_{\text{contro}} \) and the cylinder’s velocity \(V_{\text{cyl}} \). The value of \(V_{\text{cyl}} \) is computed by derivation of the cylinder’s position \(X_{\text{cyl}} \).

Blue points in Fig. 4 are the result of an extraction of the velocity gain curve performed during an entire flight. Because of the hysteresis of the servovalve, the dispersion of the points is substantial and therefore a smoothing algorithm based on local means is applied to the data.

The curve smoothing is performed on-board through a real-time algorithm in order to store the least possible data in the controller during the flight. Then the on-ground part consists in processing the information contained in the curve and carrying out the health monitoring procedure.

C. Indicators Construction

From the extracted curve, we define many indicators related to the targeted degradation. Those indicators are listed in Table I and their graphical equivalent is shown in Fig. 5.

<table>
<thead>
<tr>
<th>Name</th>
<th>Targeted degradations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope change #1 abscissa</td>
<td>Degradations impacting the horizontal position of the curve</td>
</tr>
<tr>
<td></td>
<td>Increase of the radial clearance between spool and sleeve</td>
</tr>
<tr>
<td>Slope change #1 ordinate</td>
<td>Degradations impacting the vertical position of the curve</td>
</tr>
<tr>
<td></td>
<td>Diaphragm clogging, cylinder internal leakage</td>
</tr>
<tr>
<td>Slope change #2 abscissa</td>
<td>Idem (X_1)</td>
</tr>
<tr>
<td>Slope change #2 ordinate</td>
<td>Idem (Y_1)</td>
</tr>
<tr>
<td>Null Bias Current</td>
<td>Degradations impacting the value of the Null Bias</td>
</tr>
<tr>
<td>(I_{\text{nb}} = \frac{X_1 + X_2}{2})</td>
<td>Null Bias current shift</td>
</tr>
<tr>
<td>Idle Current of the Loop</td>
<td>Degradations impacting the static behaviour of the loop</td>
</tr>
<tr>
<td>(Current for null velocity)</td>
<td>All the degradations</td>
</tr>
</tbody>
</table>

There are two ways degradations can be modelled: additive and multiplicative. The former consists in adding a value to some variables and the latter consists in a multiplication of some variables as shown in Fig. 6.

IV. DEGRADATIONS MODELING

A. Model and Sub-models Construction

A physical model of the hydromechanical system has been developed in Matlab-Simulink® in order to simulate its behaviour in presence of some degradation and to quantify their impacts. This model is composed of three sub-models: Servovalve, cylinder and controller. The granularity of the sub-models must be important enough to simulate all the degradations discussed in the system analysis. For example, the sub-model of the servovalve, the most complex one, must include the modelling of the two-stages, the filters and the feedback spring. A good method for modelling servovalves is given in [13].
<table>
<thead>
<tr>
<th>Degradation</th>
<th>Modelling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased contamination of the filters</td>
<td>Multiplicative: To simulate a decrease of the efficiency, the flow is multiplied by a scalar in the range [0,1]</td>
</tr>
<tr>
<td>Drift of the null bias current</td>
<td>Additive: A value corresponding to the opposite of the drift is added to the control current.</td>
</tr>
<tr>
<td>Increased Backlash</td>
<td>Multiplicative: Modification of the transfer function governing the position of the spool in the second stage.</td>
</tr>
<tr>
<td>Increase of the friction force</td>
<td>Additive: Increase of the coefficient of friction between spool and sleeve.</td>
</tr>
<tr>
<td>Increase in the radial clearance</td>
<td>Multiplicative: Decrease of the restriction coefficient at the corners of the spool lands victims of abrasion.</td>
</tr>
<tr>
<td>Internal leakage between the two sides</td>
<td>Multiplicative: Increase of the restriction coefficient of the cooling flow</td>
</tr>
<tr>
<td>Clogging of the cooling diaphragm</td>
<td>Multiplicative: Decrease of the restriction coefficient of the cooling flow</td>
</tr>
</tbody>
</table>

B. Model Updating

The main hypothesis of this method is that operational data are available. Thus, it is supposed that the distribution of the indicators concerning to a healthy state is well known.

For each simulation, the goal is to compute the velocity gain of the system by simulating the velocity of the cylinder for a gradually increasing control current from lower saturation boundary to upper saturation boundary.

Before simulating the degraded states, it is necessary to simulate and update the model parameters against operational data for the reference healthy state. Fig. 7 shows both extracted and estimated velocity gain curves for the healthy state. The estimated one is obtained from a model configured with averaged parameters given by constructors.

The result after model updating on parameters is also given in Fig. 7, and it can be noted that a difference remains between the curves around the idle current of the loop. The model used in this application is not enough accurate to explain this local deviation.

C. Simulation of the degradations

For this paper, the focus will be on only two degradations namely the drift of the null bias current of the servovalve and the internal leakage between the two sides of the cylinder.

Results of the simulation on the updated model with those two degradations are given in Fig. 8.

![Fig. 8](image)

V. INDICATORS TRANSFORMATION LAW COMPUTATION

A. Construction of the laws

In this part, a design of experiment is generated to organize the simulations of the behaviour of the system in presence of degradations. For each case, simulations are run for gradually increasing intensities of degradation. Eventually, the results are summarized in the form of indicators transformation laws (ITL).

With Ind_i representing the ith indicator in a healthy state, Ind_i^{deg} the ith indicator in presence of the degradation deg, and Int^{deg} the intensity of the degradation deg, the ITL named F_i^{deg} corresponding to the ith indicator and the degradation deg can be defined as follows:

$$Ind_i^{deg} = A_i \times Int^{deg}$$

Where A_i is the coefficient of the linear regression of Ind_i^{deg} with respect to Int^{deg}. ΔInd_i^{deg} is the change in the value of the indicator and can be also expressed this way:

$$\Delta Ind_i^{deg} = Ind_i^{deg} - Ind_i$$

Thus, ΔInd_i^{deg} provides the change in the indicator’s value for a given intensity of degradation.

B. Utilization of the laws

Once computed, an ITL makes it possible to generate an estimated value of indicators for a degraded state from a healthy value computed from operational data according to the following equation:

$$Ind_i^{deg} = Ind_i^{healthy} + \Delta Ind_i^{deg}$$

In this application, 7 degradations and 10 indicators are considered, which means that 70 ITL must be computed. For instance, the law giving the value of X_1 for the degradation drift of the null bias current is:

$$I_{NN drift}^{X_1} = I_{X_1}^{healthy} + A_{X_1}^{NN drift} \times Ind_{NN drift}$$
Where \(p_{\text{healthy}} \) is computed by averaging the extracted value of \(X_i \) for a given number of flights for which the system is considered flawless.

VI. STATISTICAL VALIDATION OF PERFORMANCES

A. Key Performance Indicators

For this application, both fault detection and diagnosis are addressed. A presentation and definition of Key Performance Indicators (KPI) is given in Table III.

<table>
<thead>
<tr>
<th>KPI</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>False Positive Rate</td>
<td>Proportion of False Positive (false alarm) among all the states where a fault is detected</td>
</tr>
<tr>
<td>False Negative Rate</td>
<td>Proportion of False Negative (undetected faults) among all the states where no fault is detected</td>
</tr>
<tr>
<td>False Classification Rate</td>
<td>Proportion of False Classification among all classifications</td>
</tr>
<tr>
<td>Robustness</td>
<td>Capacity of the monitoring system to be still efficient when some parameters drift from their nominal values.</td>
</tr>
</tbody>
</table>

B. Method for fault detection and diagnosis

A more precise presentation of the method presented below can be found in [14].

1) Indicators Model Learning:

The first step is to learn a Gaussian model of the indicators distribution in a reference state, typically a healthy state. The model is learned from extracted indicators on a given number of flights and is presented as follows:

\[
\text{Model}(i) = \frac{\mu_i^{\text{healthy}}}{\sigma_i^{\text{healthy}}} \tag{6}
\]

Where \(\mu_i^{\text{healthy}} \) is the mean of the indicators and \(\sigma_i^{\text{healthy}} \) their standard deviation.

2) Fault Detection:

It is based on an abnormality score named \(Z_{\text{score}} \). For the indicator \(i \), \(Z_{\text{score},i} \) is defined as follows:

\[
Z_{\text{score},i} = \frac{l_i - \mu_i^{\text{healthy}}}{\sigma_i^{\text{healthy}}} \tag{7}
\]

Where \(l_i \) is the currently measured value of indicator.

Then a global abnormality score of the system \(Z_{\text{score}} \) is computed from \(Z_{\text{score},i} \) with \(i \in [1;10] \) via the Mahalanobis distance [15].

Indicators are extracted on-board and \(Z_{\text{score}} \) is computed on-ground at each flight. The parameterization of the fault detection consists in defining a relevant threshold value \(T_h \) and if the value of \(Z_{\text{score}} \) crosses \(T_h \), it means that a fault has been detected.

3) Diagnosis:

Diagnosis is performed via a classification of signatures. A signature is a vector of indicators. For this application, a signature is a vector appending 10 indicators extracted from flight data:

\[
\text{Sign} = (Z_{\text{score}, X_1}, Z_{\text{score}, X_2}, \ldots, Z_{\text{score}, \text{global}})^T \tag{8}
\]

If the system is healthy, \(\text{Sign} \) is a zero vector of size 10.

Assuming that the maximal intensities of the degradations are known, it is possible to determine the signatures of the degradations \(\text{Sign}_{\text{ref}, \text{deg}} \) associated.

\[
\text{Sign}_{\text{ref}, \text{deg}} = \left(\frac{l_i^{\text{deg}, \text{healthy}} - \mu_i^{\text{healthy}}}{\sigma_i^{\text{healthy}}} \right)^T \tag{9}
\]

When a fault is detected, the classification algorithm is run. This algorithm is based on a pattern recognition method which finds the reference signature that most closely matches the currently measured signature. A guilt probability is assigned to each component of the system.

C. Statistical Validation

1) Matrix of the signatures

To perform fault detection and diagnosis, it is essential to determine the matrix of the signatures. It shows the signature corresponding to the maximal intensity of the degradations. A part of this matrix, taking into account only two degradations is given in Table IV.

<table>
<thead>
<tr>
<th>Degradation</th>
<th>Influences ((Z_{\text{scores}}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X_1)</td>
<td>(Y_1) (Y_2) (Y_3) (I_{\text{bias}}) (I_4) (\text{HyS}) (G_{\text{null}}) (G_{\text{drift}}) (G_{\text{null}})</td>
</tr>
<tr>
<td>Drift of the null bias current</td>
<td>24 0 26 0 28 24 0 0 0 0</td>
</tr>
<tr>
<td>Internal leakage between the two sides</td>
<td>0 4 0 11 0 1 0 0 0 0</td>
</tr>
</tbody>
</table>

2) Performances of fault detection

Once the matrix of the signatures is available, a detection threshold \(T_h \) on the global score \(Z_{\text{score}} \) must be defined.

The value of this threshold must be low enough to ensure detection of all the different degradation, even those not provided by the system analysis and high enough to ensure a low rate of false alarms. To set this value in an optimal way, it is essential to take into account the standard deviation of the \(Z_{\text{score}} \).

First, the computation of the probability density function of \(Z_{\text{score}}^{\text{healthy}} \) is performed to set a first value of \(T_h \), as shown in Fig. 9. Typically, the chosen value for \(T_h \) is:

\[
T_h = \mu^{\text{healthy}} + A \times \sigma^{\text{healthy}} \tag{10}
\]

At first approach, the chosen value for \(A \) is \(A = 2 \) because it ensures that only 5% of false detection. However, this value can potentially limit the false negative rate so it is necessary to check if the degradations are still detectable.

To ensure the performances, the distributions of \(Z_{\text{score}}^{\text{healthy}}, Z_{\text{score}}^{\text{leak}} \) and \(Z_{\text{score}}^{\text{drift}} \) are compared as presented in Fig. 9.
Performances for different values of A are presented in Table V.

![Figure 9: Distribution of Global scores and likelihood functions]

Table V

<table>
<thead>
<tr>
<th>A</th>
<th>Null Bias Drift</th>
<th>Internal Leakage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>False Positive</td>
<td>False Negative</td>
</tr>
<tr>
<td>0</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>1</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>2</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>3</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

3) Performances of diagnosis

The classification algorithm gives, for each component of the system, a probability of guilt proportional to the colinearity between the current signature and the referenced signatures. The diagnosis performances depend on the intensity of the degradations. Results are shown in Table VI.

Table VI

<table>
<thead>
<tr>
<th>Effective Degradation</th>
<th>Percentage of max intensity (From ITL)</th>
<th>Probability of guilt of Drift</th>
<th>Probability of guilt of Leak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drift</td>
<td>25%</td>
<td>0.94</td>
<td>0.06</td>
</tr>
<tr>
<td>Drift</td>
<td>50%</td>
<td>0.94</td>
<td>0.06</td>
</tr>
<tr>
<td>Drift</td>
<td>100%</td>
<td>0.94</td>
<td>0.06</td>
</tr>
<tr>
<td>Leak</td>
<td>25%</td>
<td>0.37</td>
<td>0.63</td>
</tr>
<tr>
<td>Leak</td>
<td>50%</td>
<td>0.13</td>
<td>0.87</td>
</tr>
<tr>
<td>Leak</td>
<td>100%</td>
<td>0.11</td>
<td>0.89</td>
</tr>
</tbody>
</table>

VII. CONCLUSION

This paper provides a methodology to perform fault detection and diagnosis on a hydromechanical actuation loop. A first part details how to construct relevant indicators to perform on-board extraction of indicators and a second part how to achieve and validate fault detection and diagnosis on-ground. It must be noted that further works will follow, dealing with the management of uncertainties, the architecture of monitoring for a wider system and also prognostics.

References

