Avrchive Ouverte - Open Repository

Science Arts & Métiers (SAM)

is an open access repository that collects the work of Arts et Métiers Institute of
Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/9375

To cite this version :

Damien ANDRE, Jean-Luc CHARLES, Jérdbme NEAUPORT, lvan IORDANOFF - The GranOO
workbench, a new tool for developing discrete element simulations, and its application to
tribological problems - Advances in Engineering Software - Vol. 74, p.40-48 - 2014

Any correspondence concerning this service should be sent to the repository \ Arts

Administrator : scienceouverte@ensam.eu et Métiers

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/9375
mailto:scienceouverte@ensam.eu
https://artsetmetiers.fr/

The GranOO workbench, a new tool for developing discrete element
simulations, and its application to tribological problems

Damien André **, Jean-luc Charles?, Ivan lordanoff?, Jérome Néauport”

2 Arts & Métiers ParisTech, I2M-DuMAS-MPI, UMR 5295 CNRS, F-33405 Talence, France
b Commissariat d I'Energie Atomique, Centre d’Etudes Scientifiques et Techniques d’Aquitaine, BP 2, 33114 Le Barp, France

Keywords:

Software

C++

Object-oriented
Mechanics

Discrete element method
Tribology

Fracture

ABSTRACT

Discrete models are based on the descriptions of the physical states (e.g., velocity, position, temperature,
magnetic momenta and electric potential) of a large number of discrete elements that form the media
under study. These models are not based on a continuous description of the media. Thus, the models
are particularly well adapted to describe the evolution of media driven by discontinuous phenomena
such as multi-fracturation followed by debris flow as occurs in wear studies.

Recently, the use of discrete models has been widened to face problems of complex rheological behav-
iors and/or multi-physical behaviors. Multi-physical problems involves complex mathematical formula-
tions because of the combination of different families of differential equations when a continuous
approach is chosen. These formulas are often much simpler to express in discrete models, in which each
particle has a physical state and the evolution of that state is due to local physical interactions among
particles. Since the year 2000, this method has been widely applied to the study of tribological problems
including wear (Fillot et al., 2007) [1], the thermo-mechanical behavior of a contact (Richard et al., 2008)
[2] and subsurface damage due to surface polishing (lordanoff et al., 2008) [3]. Recent works have shown
how this method can be used to obtain quantitative results (André et al., 2012) [4]. To assist and promote
research in this area, a free platform GranOO has been developed under a C++ environment and is distrib-
uted under a free GPL license. The primary features of this platform are presented in this paper. In addi-
tion, a series of examples that illustrate the main steps to construct a reliable tribological numerical
simulation are detailed. The details of this platform can be found at http://www.granoo.org.

Introduction

Molecular dynamic methods are increasingly applied to the
study of tribological problems [5-7]. Free software exists in that

Tribological phenomena involve a wide range of scales, typically
from the nanometer (at the surface scale) to the meter scale (at the
mechanism scale). From the physical point of view, mechanics
must be coupled with thermal, material and physico-chemical
behavior to understand these phenomena. To study such complex
problems, adapted numerical tools must be used to understand
and predict the contact behavior. The finite element method is
often used for these problems, presenting advantages such as
broadly available commercial software that is easy to use.
However, it is difficult for the finite element method to
describe multi-fracturation followed by debris, as occurs in wear
studies [3].

* Corresponding author. Tel.: +33 (0) 5 56 84 53 91; fax: +33 (0) 5 56 84 53 66.
E-mail address: damien.andre@u-bordeaux.fr (D. André).

field that can be used by a large number of scientists. However,
the simulated time and space scales are often small compared to
the scales of tribological phenomena. Over the past ten years, dis-
crete element models have been shown to be interesting tools that
can take contact into account at the right scale and solve multi-
physical problems. Unfortunately, discrete element commercial
software is often restricted to a single application and is difficult
to deal with complex problems. The consequence is that tribolog-
ical studies using discrete element models are limited by software
difficulties. The GranOO workbench has been developed to offer the
scientific community in general and the tribological community in
particular a free and rather easy-to-use discrete element software.
This paper briefly outlines the main aspects of the discrete element
model developed in GranOO and the primary features of the Gra-
n0O software. The final section illustrates the methodology used
to construct a reliable tribological DEM simulation by describing
a series of examples.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2014.04.003&domain=pdf
http://www.granoo.org
http://dx.doi.org/10.1016/j.advengsoft.2014.04.003
mailto:damien.andre@u-bordeaux.fr
http://dx.doi.org/10.1016/j.advengsoft.2014.04.003
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft

The explicit discrete element model

Discrete element methods describe the media as an assembly of
a great number of interacting elements. The simplest approach, the
lattice method, involves in the connection of a set of nodes by a
joint with a given stiffness. Schlangen and Garboczi [8], Van Mier
et al. [9] and Cusatis et al. [10] use this method to study cracks
in concrete structures. The nodes have no mass and this method
is not adapted to dynamic problems. The cracks do not generate
surfaces and the method is not adapted to wear problems. Another
type of discrete element method consists of the connection of a set
of particles by joints and/or contact laws. These discrete elements
are spherical [11,12] or polyhedral [13,14]. The contact laws can be
derived from regular laws [11,13,14,12] or non-regular laws [15].

To enable the discrete elements to move, Newton’s law can be
solved using an explicit or implicit algorithm. The explicit
approach was preferred to solve dynamic problems at small time
scales. So, the implicit resolution and the non-regular mechanic
are not available in the GranOO project. GranOO deals with spher-
ical particles, regular contact laws and different types of cohesive
joints (e.g., springs and beams) to link the discrete elements that
belong to the same media in a three dimensional model. The model
involves the explicit integration algorithm shown as Algorithm 1,
where:

e tis the current time and dt is the integration time step,

e p(t),p(t) and p(t) are the linear position, velocity and acceler-
ation of the discrete element, respectively,

e q(t),q(t) and g(t) are the angular position, velocity and accel-
eration of the discrete element, respectively. The concept of
quaternions is used to describe these quantities [16,
Section 2.5].

Algorithm 1. Explicit dynamic resolution

Requige: B(0) B(0) H(0) 4(0) 4(0) G(0)
t «—
for all iteration n do
for all discrete element i do
pi(t + dt) — Explicit integration
f,-(t + dt) « Sum of force acting on i
5,»(t + dt) «— Newton second law

Bi(t + dt) — Explicit integration

)
)
q;(t + dt) — Explicit integration
T;(t + dt) — Sum of torque acting on i
qi(t + dt) — Angular momentum law
q;(t + dt) — Explicit integration

end for

t— t+dt
end for

This algorithm is particularly well adapted to tribological prob-
lems, presenting the following advantages:

dynamic effects can be taken into account,

easy and fast contact detection (between spheres),
quantitative simulation of material behavior [4] and

effects at small time scale can be considered by the explicit
algorithm.

This method has proven to be an efficient way to face tribolog-
ical problems such as wear or thermo-mechanical contact behavior

<Gran00 Version="1.0">

<ComputeProblem TotIteration="20000"/>
<SampleFile File="cylinder.gdd" />

<PreProcessing>
<PlugIn Id="ConvertBondToBeam3D"
YoungModulus="109e9"
RadiusRatio="0.6386"/>

<PlugIn Id="SetDensity3D" Value="3000"/>

<PlugIn Id="ComputeOptimalTimeStep3D"/>

<PlugIn Id="InitSensor"/>
</PreProcessing>

<Processing>
<PlugIn Id="Check3D" />
<PlugIn Id="ResetLoad3D" />
<PlugIn Id="ApplyLoad3D" />
<PlugIn Id="ApplyBondLoad3D" ThreadNumber="2"/>
<PlugIn Id="IntegrateAccelerationLinear3D" />
<PlugIn Id="IntegrateAccelerationAngular3D"/>
<PlugIn Id="ApplyBoundaryCondition3D" />
<PlugIn Id="SaveDomain3D" IterLoop="1000"/>
<PlugIn Id="WriteSensorData3D"/>
</Processing>

<PostProcessing>
</PostProcessing>

<MathFunction Id="Load">
<RampAndConstant Limit="10000" Constant="50e3"
VariableRef="Iteration"/>
</MathFunction>

<Load Id="Tension" DiscreteElement3DSet="Right">
<TotalForce>
<Vector3D X="Load" Y="0." Z="0."/>
</TotalForce>
</Load>

<BoundaryCondition Id="Fix" DiscreteElement3DSet="Left">
<Displacement>
<Vector3D X="0." Y="0." Z="0."/>
</Displacement>
</BoundaryCondition>

</Gran00>

Listing 3. The input XML file for the tension test.

[1,2,17]. An implementation of this algorithm is given in the
processing time loop in Listing 3. The default integration scheme
used by GranOO is the velocity Verlet scheme [18]. However, user
can easily switch with another schemes thanks to custom plug-
ins (see Section ‘The plug-ins and the input XML file’). In addition,
to increase the performance of this sequential algorithm many
parallelisation strategies can be used: force decomposition, parti-
cle decomposition or domain decomposition [19]. At this time,
GranOO uses particle decomposition method associated to mul-
tithreading techniques. User can choose, for the most time-con-
suming processes, the number of threads to execute in parallel.
It is done through the input file thanks to the keyword Thread-
Number (see Listing 3 and Section ‘The plug-ins and the input
XML file").

The discrete element method developed in GranOO is based on
the following physical description:

o the discrete element stores the mass, volume, acceleration,
velocity and position and is able to store other physical prop-
erties such as magnetic moment, electric potential or
temperature,

o the joint stores the rheological behavior,

o the contact stores the interface behavior.

The next section will show how this physical description has
been translated into the C++ platform GranOO.

The Gran00 C++ workbench architecture

The aim of this workbench is to provide an Application Pro-
gramming Interface (API) and associated tools to build at DEM sim-
ulation adapted to each specific problem. However, it is not easy to
develop a model than can be adapted for particular scientific appli-
cations. For example, it is not safe to store specific values associ-
ated with a numerical experiment inside the source code. A safer
approach is to extract all the values that characterize the simula-
tion and write them in a separate file. Thus, the GranOO workbench
provides several mechanisms to enable easy and safe development
of a specific simulation. The goal is to provide a coherent frame-
work in which user focuses on the physical description of the
numerical experiment and delegates the technical aspects to the
workbench.

A GranOO simulation is constructed as a sequence of specific
treatments. Each treatment is described by a specific plug-in. These
plug-ins could be provided by the GranOO workbench or developed
by user. The order in which these plug-ins are called during the
execution of a simulation is specified in a separate eXtensible
Markup Language (XML) file called the input file.

Finally, GranOO provides some useful tools to build discrete
samples, visualize them and post-treat numerical data arising from
a simulation.

The next subsections will introduce the GranOO workbench by
presenting the API, the input file and the associated plug-in mech-
anism along with a brief description of the main post and pre-pro-
cessing tools.

The GranOO'’s API

The GranOO API consists of three libraries: the geometrical,
DEM and utility libraries. The utility library provides some techni-
cal and specific computer engineering tools and will not be
described in detail here.

The Oriented Object (OO) programming paradigm [20] is a fre-
quently used method that allows for the modeling of various con-
cepts in a high level programming language based on classes. The
main advantages of the OO architecture are its inheritance and
encapsulation. Inheritance provides a simple way to aggregate
the common behaviors of a concept in a base class. Encapsulation
allows for the control of sensitive data, including tools to check
access to that data.

The geometrical library

The geometrical library provides the classes needed to model
geometrical 3D Euclidean concepts including vectors, frames and
quaternions. This library is the core of the GranOO workbench.
A DEM computation involves massive geometrical calculations.
A great deal of effort was dedicated to the development of
this library to ensure excellent performance and easy-to-use
interfaces.

To guarantee the performance of this library programming
techniques including the inline function, generic programming, static
array and friend classes are used. The performance of fundamental
operations of the geometrical library was compared to the Blitz++
library. The Blitz++ library is a high performance linear algebra
library that uses the programming technique of expression
templates [21]. This library is difficult to use to solve geometrical
problems. It is not specifically designed to address 3D spatial prob-
lems. The benchmark, plotted in Fig. 1, shows that the performance
of the GranOO geometrical library is on the same order of
magnitude as the Blitz++ library. This result allows the accuracy
of the geometrical library and of the GranOO workbench to be
verified.

— @ libGeometrical
S 6 O blitz++
X
2 |
= 1
o -
04
1 2 3 4 5 6 7 8 9 10 11 12
Operation number
1 1 =mXv 7: mxV
2: V=V + V3 8 Vi+w
3: vi=axw 9: axv
& o=l 10 |
5: a=vi 11: vis
6: vi=wvAv; 12: ViAW

Fig. 1. Comparison of the GranOO geometrical library and blitz++ performances on
elementary operations. The elapsed time corresponds to cpu time (clock ticks). Each
operation was repeated one million times.

// declaration

Vector3D x(1, 0, 0);
Vector3D y(0, 1, 0);
Vector3D z(0, 0, 1);

Vector3D vi
Vector3D v2
double d
Vector3D v3

X +y+z; // addition
Xy // cross product
x // dot product

* 3
2%((x "y)*z)*x; // combination

Listing 1. Example of basic vector operations expressed in C++ in the GranOO
geometrical library.

The geometrical library also provides a simple user interface:

o the unit quaternion was implemented to allow for easy and fast
computation of rigid body rotational transformations [22],

the operator overloading programming technique was used to
enable an intuitive writing of arithmetic operations (see Listing
1 for examples) and

the changing frame operation was implemented. This operation
defines a frame by a point corresponding to its center and by a
quaternion corresponding to its orientation. All the classes that
use a coordinate representation (vectors, points, quaternions,
inertia matrix) are specified within a given frame. Therefore,
these entities can be easily expressed in an another frame.

The last feature is a powerful tool that highly simplifies geomet-
rical expressions by using a local frame approach when necessary.
The detailed list of the geometrical library class operators and
methods is available in the API documentation.’

The DEM library

The DEM library provides classes that model the various concepts
used in the discrete element method. The Unified Modeling Language
(UML) class diagram in Fig. 2 describes the oriented object concept. It
allows to draw the interactions between classes, particularly:

the inheritance that is symbolized by an arrow. An inheritance
relation can be translated by the to be verb. For example, a Bond
is an Interaction,

the aggregation that is symbolized by a diamond and a line. An
aggregation relation can be translated by the to own verb. For
example, a DiscreteElement own a PhysicalProperty.

1 In the project’s repository and in the official website.

VolumeShape < DiscreteElementShaped
PhysicalProperty o DiscreteElement
1..%
? T 0..% 0..%
Thermal . Interaction
Bond Contact C...)
—
Beam Spring Coood

Fig. 2. Simplified class diagram of the GranOO DEM library.

On this diagram, the:

DiscreteElement class is the base class that models the discrete
element concept. This class contains the attributes that define a
rigid body moving in 3D space with a given position, kinetic and
mass parameters.

DiscreteElementShaped class defines a shape associated with a
discrete element. Currently, only the spherical shape is fully
supported.

PhysicalProperty class is the base class of different physical
behaviors. To add a new physical behavior, users can imple-
ment a new child class of PhysicalProperty. Currently, only the
Thermal property, proposed by [17], is available.

Interaction class is the base class for physical interactions
between discrete elements including contacts or bonds.

(...) class is a custom class. User can custom define classes to
model specific behaviors.

This architecture based on the oriented object programming
paradigm allows for the easy development of new features. For
example, a new type of bond can be developed by writing a new
class derived from the Bond class where the common behaviors
of the bonds have already been implemented. This system enables
user to focus on the physical description of the bond without being
concerned by technical details. This architecture was also designed
to support multi-physical simulations. The base class PhysicalProp-
erty allows for the flexible integration of new physical behaviors.

Another feature provided by the DEM library is the SetOf con-
cept. The SetOf are the smart containers of the DEM library. The
SetOf are based on the Standard Template Library (STL) high perfor-
mance containers with the following additional features:

e each SetOf possesses a unique string identifier,

e a default container is available for each DEM class. This ensures
that all existing objects are indexed to prevent memory leaks,

e the guarantee that a SetOf does not index the same object two
times or more,

e smart and secure deletion of an indexed object,

e bilateral connections: an object “knows” the SetOfs that register
it.

// create an alias for DiscreteElement class
typedef DiscreteElement DE;
// the criterion
const double xMax = 1.;
// create a new empty set
new Set0f<DE>("xMax");
// get the set that contains all the discrete elements
SetOf<DE>& global = SetOf<DE>::Get("Global");
// parse the global set
for (unsigned int i = 0; i < global.Size(); ++i)
{

// Get the discrete element of rank i

DE& de = global(i);

// Get the position along the x axis

const double x = de.GetGravityCenter().X();

// Check if x is superior to the xMax criterion

if (x > xMax)

{
// Add it to the "xMax" set
Set0f<DE>: :Get ("xMax") .AddItem(de) ;
¥
}

// Destroy all the discrete elements in the xMax set
Set0f<DE>: :Get ("xMax") .ClearAndDelete();

Listing 2. Example of C++ SetOf usage.

The Listing 2 shows how to destroy the discrete elements that
reach a given criterion thanks to SetOf. In the given example, the
criterion is defined as a (¥,Z) plane placed at x = 1 m. All the dis-
crete elements situated behind this plane are registered in a SetOf
named xMax and then destroyed.

The SetOf concept is one of the foundations of the DEM library.
This approach allows some objects to be marked to apply further
treatments including boundary conditions, loadings and measures.
These treatments are generally specified inside a plug-in.

The plug-ins and the input XML file

A GranOO's application is considered as a sequence of specific
treatments. These treatments are specified inside a C++ plug-in.
These plug-ins could be provided by the GranOO workbench or
developed by user. The exhaustive list of standard plug-ins pro-
vided by GranOO is available in the documentation. Examples of
standard plug-ins are provided below:

e instantiation of beams between selected discrete elements with
given micromechanical parameters,

e computation of resultant force and torque applied on discrete
elements,

o performing the numerical integration to compute discrete ele-
ment linear and angular velocities and positions,

e applying boundary conditions and loadings,

e saving the domain state in an output file. ..

The order in which these plug-ins are called during the execu-
tion of a simulation is specified in a separate XML file called the
input file. This input file allows for parameters to be defined in a
standard manner in a numerical experiment. This file lists, in a
human readable format, all the treatments processed during the
execution of a simulation. Section ‘The elastic tensile test’, which
details an example of a tensile test, describes the associated input
XML file.

Overview of associated tools

The GranOO distribution also includes some useful tools.

The cooker program can be used to create the discrete domains
required for the DEM modeling of continuous media. Cooker itself
is an application created with the GranOO workbench. This pro-
gram is designed to guarantee that the created discrete domains

4 N
C++ SOURCES GrANOO LIBRARIES (API)
QP AP Y
(| “M \
Cooker. Plugins. Main. (J U
ooker. exe ugins.cpp - fain-cpp 1ibUtil libGeometrical
DISCRETE DOMAINS COMPILATION
l OUTPUT FILES POST-TREATMENTS
ball.gdd plate.gdd Makefile Plots
INPUT FILE RunniNGg .
Sensors.txt Script.py
—
SN
5 =
Input.inp Executable.exe > ix, ;
001000.gdd GddViewer.exe
. 5

Fig. 3. General view of the GranOO architecture.

have the right coordination number to ensure that isotropic and
homogeneous properties are satisfied. Ensuring these geometrical
conditions allows for the construction of DEM models of isotropic
and homogeneous media such as silica glass.

The gddviewer program is a graphical application that can be
used to draw the discrete domain at different simulation time
steps. This program plots colored drawings of the discrete domain,
shows selected physical quantities, and provides information on a
selected object.

Some Python? scripts have been developed that help users to cal-
ibrate the microscopic properties of the discrete domains, build dis-
crete domains and post-treat the data given by a simulation.

The discrete domain file

Most applications need to load or save a discrete domain. This
feature is provided by the GranOO Discrete Domain file (GDD). A
GDD file is a complete snapshot of a discrete domain. The geomet-
rical, physical and other properties are included in this file. For
example, the result of cooker processing (see Section ‘Overview of
associated tools’) is a GDD file that represents the compacted dis-
crete domain. This domain could be visualized with the gddViewer
program (see Section ‘Overview of associated tools’) and used as
the initial configuration for further simulations (see Section ‘The
elastic tensile test’).

Standard GranOO usage

Fig. 3 shows a general view of the GranOO usage. It follows the
main steps described above where a user should:

1. build the initial domain with the cooker program (Section ‘Over-
view of associated tools’),

2. describe the simulation though the XML input file (Section ‘The
plug-ins and the input XML file’),

2 Python is a programming interpreted language, see http://www.python.org.

3. optionally code C++ plug-ins to process specific treatments that
are not given by the standard ones (Section ‘The plug-ins and
the input XML file’),

4, post-treat the results thanks to the gddviewer program or the
python plotting script (Section ‘Overview of associated tools’).

To illustrate this usage and the discrete element method, the
next section will describe a set of examples that follow the main
steps outlined above to construct valid numerical DEM simulations
to address tribological problems.

Examples

The reference material used in these examples is silica glass.
First, the scientific background of the discrete element model is
described. A simple tensile test that validates the elastic properties
of the simulated material is then detailed as the first example. The
input XML file associated with this first example is described. Then,
a failure torsion test that checks the brittle behavior of the simu-
lated media is described. Finally, a tribological problem is
addressed: the study of the subsurface damage due to loose abra-
sive grinding. These examples were processed on a Intel Core i5-
2300 cpu cadenced at 2.80 GHz.

The discrete element model

The discrete element model used in the followed examples
allows for a quantitative description of the studied phenomena
[4]. The material simulated in these examples is silica glass. The
Young’s modulus, Poisson’s ratio, and tensile failure stress values
are respectively 72.5 GPa, 0.17 and 50 MPa respectively.

The discrete domains are bonded by cohesive beams that con-
trol the elastic and failure properties of the media. In the DEM con-
cept, the material behaviors emerge at the global scale from the
elementary interactions between discrete elements. The scale of
the discrete elements and their interactions is called microscopic,
and the scale of the discrete sample is called macroscopic.

http://www.python.org

A preliminary step is necessary to retrieve cohesive beam and
discrete element properties that fit the macroscopic properties:
the silica glass Young’s modulus, Poisson’s ratio, and tensile failure
stress. The microscopic properties, related to the cohesive beams
and discrete elements are:

o the discrete element density,

e the cohesive beam radius,

e the cohesive beam Young’s modulus,

o the cohesive beam tensile failure stress.

The discrete element density is simply chosen to equalize the
total mass of the discrete specimen with the equivalent continuous
domain. The continuous domain is defined as the bounding volume
of the discrete sample. The other properties determined by a cali-
bration procedure to establish transition laws between the micro-
scopic and macroscopic scales. Numerical quasi-static tensile tests
are applied to determine these laws.

The elastic tensile test

Fig. 4 shows the initial discrete domain used to perform the ten-
sile test. The specimen length and radius are 10 and 2 cm respec-
tively. The discrete element average radius is 1.2mm. A
progressive loading is applied on the right face while the left face
remains fixed. The computational characteristics are resumed in
Table 1.

Detailed description of the XML input file
Listing 3 shows the XML input file associated with the tensile
test. The XML input file is organized in three sections:

1. a header, which defines the computing problem and the initial
discrete domain,

2. the list of pre-processing, processing and post-processing plug-
ins and

3. a footer, which defines the loadings and boundary conditions.

left face

Fig. 4. The discrete cylindrical specimen used for the tensile and torsion tests.

Table 1

The tensile test computational characteristics.
Discrete element number 10,000
Bond number 30,400
Bond type Cohesive beams [4]
Iteration number 100,000
Cpu time 1h and 20 min
Thread number 2

In this example, the header of the input file is composed of the
ComputeProblem and SampleFile XML tags. The ComputeProblem tag
defines several global properties: the total iteration number, the
time step, and the directory of results. The SampleFile tag loads a
GDD file (see Section ‘The discrete domain file’) that defines the
initial domain (see Fig. 4). This tag could be called several times
to load many discrete domains with given positions and orienta-
tions in a single simulation.

Then, the lists of pre-processing, processing and post-process-
ing plug-ins are defined. The processing plug-ins correspond to
the time loop. These plug-ins are called at each iteration following
the order specified in the input XML file. Table 2 describes the
plug-ins used to perform the simulation.

Finally, the footer of the input file defines the loads and the
boundary conditions. The XML tags MathFunction and RampAnd-
Constant define a mathematical function that depends on the iter-
ation number. This function increases linearly and is followed by a
constant value. Then, the XML tag Load is used to apply this math-
ematical function as a loading applied along the X axis on the left
face of the sample. GranOO supports different types of mathemat-
ical functions including ramp, cosine, sine and piecewise. These
functions can also be used to define a variable boundary condition
as, for instance, displacement driven and velocity driven.

To resume, the input XML file allows for explicit definition of a
simulation. The header and footer parts support a given list of pre-
defined tags. This list cannot be customized by user. However, a
specific treatment could be added by a user-defined plug-in. In
addition, the Gran0O API enables the plug-ins to read the attributes
from the XML input file. This allows for the values of the simulation
to be removed from the source code and placed into the XML input
file, allowing for the full parametrization of a simulation with a sin-
gle XML input file.

Results

To demonstrate the capabilities of the method, the evolution of
the macroscopic normal strain €y versus the macroscopic normal
stress oy is studied. These parameters are computed as the
following:

1 &
M= di-X 1
M LN,;' (1)
Fi-%
g 2
M aR? @

where N; is the number of discrete elements belonging to the right
face, d; is the displacement vector of the discrete element i, F; is the
loading force applied to the right face and R and L are the initial
sample radius and length, respectively (see Fig. 4).

Fig. 5 shows the results. The blue curve Numerical results repre-
sents the numerical data, while the dashed green curve Fitting cor-
responds to the fitted data obtained by the least squares method.
In accordance with theory, the evolution of the normal stress is
almost linear. The slope corresponds to the numerically measured
Young’s modulus and is in agreement with the modulus for silica
glass.

The failure torsion problem

This problem uses the same numerical specimen as the previ-
ous section (Section ‘The elastic tensile test’ and Fig. 4). The torsion
failure test is displacement driven. For each discrete element
belonging to the two opposite faces (left and right faces), the
displacements and rotations are computed to simulate a torsion
condition. These conditions are applied progressively. The macro-
scopic shear stress inside the specimen is stored during the test
by numerical sensors. The specimen is considered to be broken

Table 2
Description of the plug-in jobs used by the elastic tensile test.

Pre-processing plug-ins

ConvertBondToBeam3D affects the microscopic mechanical properties of the discrete sample

SetDensity3D affects the desired density of the discrete elements

ComputeOptimalTimeStep3D computes the critical time step and affects the computational problem
InitSensor defines the numerical sensors used in the simulation. This is a user-defined plug-in developed only for this simulation

Processing plug-ins

Check3D checks the validity of the results. If an error is detected the simulation is stopped

ResetLoad3D sets the loads acting on the discrete elements to null values

ApplyLoad3D compute the external loads acting on the discrete elements. These loadings are specified in the footer of the input XML file

ApplyBondLoad3D computes the loads due to the bond interactions

IntegrateAccelerationLinear3D computes the linear discrete element velocities and positions using the Verlet velocity scheme

IntegrateAccelerationAngular3D computes the angular discrete element velocities and positions using the Verlet velocity scheme

ApplyBoundaryCondition3D apply the boundary conditions specified in the footer of the input XML file

SaveDomain3D saves the current state of the simulation. The attribute IterLoop, available for all the processing plug-ins, activates the back-up each one thousand

iterations

WriteSensorData3D saves in a separate file the data given by the numerical sensors. These sensors were initialized thanks to the pre-processing plug-in InitSensor

S
(e

— Numerical results
-- Fitting

(%)
(=)

N
124

—
(=]

Normal stress o7y, (MPa)
V)
(=)

(=)

(=]

100 200 300 400 500 600
Deformation &y, (udef)

Fig. 5. Evolution of the macroscopic normal strain &y versus the macroscopic
normal stress ay.

when a sudden decrease in the macroscopic shear stress occurs.
This procedure allows for the macroscopic failure shear stress to
be determined by cross sectional rotations. The computational
characteristics are resumed in Table 3.

Table 4 reports the results. This test was repeated with four dif-
ferent discrete samples. Theoretically, the samples will break when
the shear stress reach 50 MPa. Table 4 reports the average value of
the measured failure shear stresses, which is in good agreement
with this theoretical value. The standard deviation is less than
3%. In addition, Fig. 6 shows the crack path. The path is clearly well
oriented following the maximal normal stress oriented at 45°. In
conclusion, these results demonstrate qualitative and quantitative
agreement with the material strength theory of a Euler-Bernoulli
beam submitted to a torsion loading.

Subsurface damage due to loose abrasive grinding

This numerical tool can also be used to investigate tribological
problems such as subsurface damages (SSD) generated during the
grinding of silica optics [23]. The grinding processes of optics
involves placing abrasive grains in contact with the surface optic
with a given pressure and a relative velocity to remove material

Table 3

The failure torsion test computational characteristics.
Discrete element number 10,000
Bond number 30,400
Bond type Cohesive beams [4]
Iteration number 100,000
Cpu time 1h and 23 min
Thread number 2

Table 4
The macroscopic failure shear stresses computed in torsion tests.

Failure shear stresses (MPa)

Theoretical 50
Numerical samples

No. 1 51.5
No. 2 47.6
No. 3 50.9
No. 4 47.7
Average 49.4
Std. deviation 1.8

Crack path

Fig. 6. Illustration of the failure torsion test.

in a brittle mode [24]. The cracks generated in this way can then
extend far below the surface and produce a thin crack layer called
the subsurface damage layer. For loose abrasive grinding processes,
the grains are placed in an aqueous media.

Fig. 7 shows the configuration of this simulation. The silica glass
is reduced to a cube of 150 pm on each side. This size is considered
to be sufficient to describe the behavior of the problem. This cube
contains 5000 discrete elements. The mechanical behaviors are
determined by the a calibration procedure described in [4] and val-
idated through the tests described in the previous sections (see
Sections ‘The elastic tensile test’ and ‘The failure torsion problem’).
The computational characteristics are resumed in Table 5.

An uniform pressure is applied on the upper wall. The domain is
bounded by periodic conditions along the X and Z axes. The abra-
sive particles are velocity driven along the X axis and are intro-
duced at the interface between the silica sample and the tool.
The tool is modeled by a perfect elastic plane.

The model considers that a broken bond represents of an SSD
inside the silica sample. The SSD length is computed as the

A Periodi 11
Periodic wall i eripaic wi

Tool

Contact interface

Recirculation
~ 15 um

Fig. 7. Overview of the loose abrasive grinding simulation.

Table 5
The grinding computational characteristics.
Discrete element number 5000
Bond number 15,200
Bond type Cohesive beams [4]
Iteration number 1,000,000
Cpu time 15h
Thread number 1

distance along the Y axis between the SSD spot and the abraded
surface. This allows for the subsurface damage distribution to be
studied as a function of lengths. The distribution obtained could
be approximated by a decreasing exponential function (see
Fig. 8) and is in qualitatively good agreement with previously
reported experimental results [25].

In addition, parametric studies have been performed to study
the influences of the abrasive concentration and the abrasive size.
These results are compared to those reported by [26]. Figs. 9 and
10 present the following results:

e Fig. 9 plots the influence of the abrasive concentration on the
maximal SSD length for different abrasive sizes.

e Fig. 10 plots the influence of the abrasive radius on the max-
imal SSD length for different abrasive concentrations.

50

Decreasing exponential fonction

SSD number

0
0

5 10 15 20 25 30
SSD length (um)

Fig. 8. Subsurface damage distribution versus length approximated by a decreasing
exponential function.

25

T
5 e o - -0 Experimental data
< 20 \\ v—v Numerical data
)
=
=
A 15
0}
%]
g 10
=
<
= 5
5 10 15 20 25 30

Concentration (%)

Fig. 9. Maximal SSD length versus the abrasive concentration for different abrasive
radii.

30

o - o Experimental data
25| v Numerical data 20 %
2

Maximal SSD length (um)

4 6 8 10 12 14 16
Abrasive radius (um)

Fig. 10. Maximal SSD length versus average abrasive radius for different abrasive
concentrations.

The results obtained in these cases exhibit qualitative and
quantitative agreement with the experimental observations.

In conclusion, this section reports the development of an origi-
nal numerical method to characterize the subsurface damage layer.
The preliminary numerical results studying the influence of the
process parameters demonstrate a good degree of agreement with
the experimental observations.

However, additional effort is required to more precisely model
the abrasion interface, and more particularly, the fluid interactions.
Recent research related to the discrete element modeling of the
behavior of silica glass [27,28] should be incorporated to improve
the predictions of these simulations.

Conclusions

The workbench can be used now to develop DEM simulations.
The GranOO project was conducted to develop a free software pro-
gram for discrete element simulation. The numerical method cho-
sen here is well-suited for tribological problems because it is a
dynamic solver capable of performing easy contact detection. A
methodology has been proposed to quantitatively solve tribologi-
cal problems. The GranOO workbench proposes a validated model
to use DEM to simulate the thermal, elastic and brittle behaviors
of continuous media quantitatively. Of course, most of the work
required to obtain predictive results concerning friction and wear
remains to be undertaken.

On a technical point of view, two main tasks remain to be done.
The first one is the porting of the workbench on operating system
other than GNU/Linux. The second one is the parallelisation of the
code. A first step was reached by implementing a multi-threaded
version of the most time consuming plug-in processes.

The goal of the GranOO software is to increase the number of
scientists able to use DEM simulations to generate fruitful collabo-
rations and accelerate and improve innovations in the area of tri-
bology and material failure. More details of this platform can be
found at http://www.granoo.org.

Acknowledgments

This work was supported by the Conseil Régional d’Aquitaine
and was conducted under the auspices of the Etude et Formation
en Surfacage Optique (EFESO 2) project.

References

[1] Fillot N, lordanoff I, Berthier Y. Modelling third body flows with a discrete
element method - a tool for understanding wear with adhesive particles.

Tribol Int 2007;40(6):973-81. http://dx.doi.org/10.1016
j.triboint.2006.02.056. Numerical simulation methods in tribology:

possibilities and limitations.

Richard D, lordanoff I, Renouf M, Berthier Y. Thermal study of the dry sliding

contact with third body presence.] Tribol 2008;130(3). http://dx.doi.org/

10.1115/1.2913540.

Iordanoff I, Battentier A, Neauport], Charles]. A discrete element model to

investigate sub-surface damage due to surface polishing. Tribol Int

2008;41(11):957-64. http://dx.doi.org/10.1016/j.triboint.2008.02.018.

André D, lordanoff I, luc Charles], Néauport J. Discrete element method to

simulate continuous material by using the cohesive beam model. Comput

Methods Appl Mech Eng 2012;213-216(0):113-25. http://dx.doi.org/10.1016/

j.cma.2011.12.002.

[5] Komanduri R, Chandrasekaran N, Raff L. Molecular dynamics simulation of
atomic-scale friction. Phys Rev B 2000;61(20):14007.

[6] Yang P, Liao N. Surface sliding simulation in micro-gear train for adhesion
problem and tribology design by using molecular dynamics model. Comput
Mater Sci 2007;38(4):678-84.

[7] Sodeifian G, Nikooamal H, Yousefi A. Molecular dynamics study of epoxy/clay
nanocomposites: rheology and molecular confinement.] Polym Res
2012;19(6).

[8] Schlangen E, Garboczi E. Fracture simulations of concrete using lattice models:
computational aspects. Eng Fract Mech 1997;57(2-3):319-32. http:
dx.doi.org/10.1016/S0013-7944(97)00010-6.

[9] van Mier]G, van Vliet MR, Wang TK. Fracture mechanisms in particle
composites: statistical aspects in lattice type analysis. Mech Mater
2002;34(11):705-24. h dx.doi.org/10.1016/S0167-6636(02)00170-9

[10] Cusatis G, BaZant Z, Cedolm L. Confinement-shear lattice model for concrete
damage in tension and compression: I. Computation and validation.] Eng

2

3

[4

Mech 2003;129(12):1449-58.
9399(2003)129:12(1449).

[11] Cundall PA, Strack ODL. A discrete numerical model for granular assemblies.
Geotechnique 1979;29:47-65. http://dx.doi.org/10.1680/geot.1979.29.1.47.

[12] Carmona HA, Wittel FK, Kun F, Herrmann H]J. Fragmentation processes in
impact of spheres. Phys Rev 2008;77(5):051302. http://dx.doi.org/10.1103/
PhysRevE.77.051302.

[13] Kun F, Herrmann HJ. A study of fragmentation processes using a discrete
element method. Comput Methods Appl Mech Eng 1996;138(1-4):3-18.
http://dx.doi.org/10.1016/S0045-7825(96)01012-2.

[14] Delaplace A, Desmorat R. Discrete 3d model as complimentary numerical
testing for anisotropic damage. Int J Fract 2007;148:115-28. http://dx.doi.org/
10.1007/s10704-008-9183-9.

[15] Jean M. The non-smooth contact dynamics method. Comput Methods Appl
Mech Eng 1999;177(3-4):235-57. http://dx.doi.org/10.1016/S0045-
7825(98)00383-1.

[16] Poschel T, Schwager T. Computational granular dynamics. Springer; 2005.

[17] Terreros I, lordanoff I, Charles J. Simulation of continuum heat conduction
using DEM domains. Comput Mater Sci 2013;69(0):46-52. http://dx.doi.org/
10.1016/j.commatsci.2012.11.021.

[18] Rougier E, Munjiza A, John NWM. Numerical comparison of some explicit time
integration schemes used in DEM, FEM/DEM and molecular dynamics. Int]
Numer Methods Eng 2004;61(6):856-79. http://dx.doi.org/10.1002/
nme.1092.

[19] Plimpton S. Fast parallel algorithms for short-range molecular dynamics.]
Comput Phys 1995;117(1):1-19. http://dx.doi.org/10.1006/jcph.1995.1039.

[20] Stroustrup B. The C++ programming language. Addison-Wesley; 2000.

[21] Veldhuizen T. In: Expression templates. New York, NY, USA: SIGS Publications,
Inc.; 1996. p. 475-87.

[22] Evans DJ. On the representatation of orientation space. Mol Phys
1977;34(2):317-25. http://dx.doi.org/10.1080/00268977700101751.

[23] Rayleigh L. Polish. Nature 1901;64:385-8.

[24] Karow HH. Fabrication methods for precision optics. Wiley Interscience; 2004.
ISBN 0-471-70379-6.

[25] Suratwala T, Davis P, Wong L, Miller P, Feit M, Menapace], et al. Sub-surface
mechanical damage distributions durmg grlndmg of fused snllca] Non-Cryst
Solids 2006;352:5601-17. http: i

[26] Neauport], Destribats J, Maunier C, Ambard C, Cormont P, Pintault B, et al.
Loose abrasive slurries for optical glass lapping. Appl Opt
2010;49(30):5736-45. http://dx.doi.org/10.1364/A0.49.005736.

[27] Jebahi M, luc Charles], Dau F, Illoul L, lordanoff I. 3d coupling approach
between discrete and continuum models for dynamic simulations (DEM-
CNEM). Comput Methods Appl Mech Eng 2013;255(0):196-209. http://
dx.doi.org/10.1016/j.cma.2012.11.021.

[28] André D, Jebahi M, lordanoff I, luc Charles], Néauport]. Using the discrete
element method to simulate brittle fracture in the indentation of a silica glass
with a blunt indenter. Comput Methods Appl Mech Eng 2013(0). http://
dx.doi.org/10.1016/j.cma.2013.06.008.

http://dx.doi.org/10.1061/(ASCE)0733-

http://www.granoo.org
http://dx.doi.org/10.1016/j.triboint.2006.02.056
http://dx.doi.org/10.1016/j.triboint.2006.02.056
http://dx.doi.org/10.1115/1.2913540
http://dx.doi.org/10.1115/1.2913540
http://dx.doi.org/10.1016/j.triboint.2008.02.018
http://dx.doi.org/10.1016/j.cma.2011.12.002
http://dx.doi.org/10.1016/j.cma.2011.12.002
http://refhub.elsevier.com/S0965-9978(14)00067-2/h0025
http://refhub.elsevier.com/S0965-9978(14)00067-2/h0025
http://refhub.elsevier.com/S0965-9978(14)00067-2/h0030
http://refhub.elsevier.com/S0965-9978(14)00067-2/h0030
http://refhub.elsevier.com/S0965-9978(14)00067-2/h0030
http://refhub.elsevier.com/S0965-9978(14)00067-2/h0035
http://refhub.elsevier.com/S0965-9978(14)00067-2/h0035
http://refhub.elsevier.com/S0965-9978(14)00067-2/h0035
http://dx.doi.org/10.1016/S0013-7944(97)00010-6
http://dx.doi.org/10.1016/S0013-7944(97)00010-6
http://dx.doi.org/10.1016/S0167-6636(02)00170-9
http://dx.doi.org/10.1061/(ASCE)0733-9399(2003)129:12(1449)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2003)129:12(1449)
http://dx.doi.org/10.1680/geot.1979.29.1.47
http://dx.doi.org/10.1103/PhysRevE.77.051302
http://dx.doi.org/10.1103/PhysRevE.77.051302
http://dx.doi.org/10.1016/S0045-7825(96)01012-2
http://dx.doi.org/10.1007/s10704-008-9183-9
http://dx.doi.org/10.1007/s10704-008-9183-9
http://dx.doi.org/10.1016/S0045-7825(98)00383-1
http://dx.doi.org/10.1016/S0045-7825(98)00383-1
http://refhub.elsevier.com/S0965-9978(14)00067-2/h0080
http://dx.doi.org/10.1016/j.commatsci.2012.11.021
http://dx.doi.org/10.1016/j.commatsci.2012.11.021
http://dx.doi.org/10.1002/nme.1092
http://dx.doi.org/10.1002/nme.1092
http://dx.doi.org/10.1006/jcph.1995.1039
http://refhub.elsevier.com/S0965-9978(14)00067-2/h0100
http://refhub.elsevier.com/S0965-9978(14)00067-2/h0105
http://refhub.elsevier.com/S0965-9978(14)00067-2/h0105
http://dx.doi.org/10.1080/00268977700101751
http://refhub.elsevier.com/S0965-9978(14)00067-2/h0115
http://refhub.elsevier.com/S0965-9978(14)00067-2/h0120
http://refhub.elsevier.com/S0965-9978(14)00067-2/h0120
http://dx.doi.org/10.1016/j.jnoncrysol.2006.09.012
http://dx.doi.org/10.1364/AO.49.005736
http://dx.doi.org/10.1016/j.cma.2012.11.021
http://dx.doi.org/10.1016/j.cma.2012.11.021
http://dx.doi.org/10.1016/j.cma.2013.06.008
http://dx.doi.org/10.1016/j.cma.2013.06.008

	The GranOO workbench, a new tool for developing discrete element simulations, and its application to tribological problems
	Introduction
	The explicit discrete element model
	The GranOO C++ workbench architecture
	The GranOO’s API
	The geometrical library
	The DEM library

	The plug-ins and the input XML file
	Overview of associated tools
	The discrete domain file
	Standard GranOO usage

	Examples
	The discrete element model
	The elastic tensile test
	Detailed description of the XML input file
	Results

	The failure torsion problem
	Subsurface damage due to loose abrasive grinding

	Conclusions
	Acknowledgments
	References

