Science Arts & Métiers (SAM) is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/9620

To cite this version:
Alexis RUSINEK, José A. RODRIGUEZ-MARTINEZ, Raphaël PESCI, Julien CAPELLE - Experimental characterisation and modelling of the thermo-viscoplastic behaviour of steel AISI 304 within wide ranges of strain rate at room temperature - Journal of Theoretical and applied mechanics - Vol. 48, n°4, p.1027-1042 - 2010

Any correspondence concerning this service should be sent to the repository Administrator: archiveouverte@ensam.eu
EXPERIMENTAL CHARACTERISATION AND MODELLING
OF THE THERMO-VISCOPLASTIC BEHAVIOUR OF STEEL
AISI 304 WITHIN WIDE RANGES OF STRAIN RATE AT
ROOM TEMPERATURE

ALEXIS RUSINEK
National Engineering School of Metz (ENIM), Laboratory of Mechanics, Biomechanics,
Polymers and Structures, Metz cedex, France; e-mail: rusinek@enim.fr

JOSÉ A. RODRÍGUEZ-MARTÍNEZ
University Carlos III of Madrid, Department of Continuum Mechanics and Structural Analysis,
Madrid, Spain

RAPHAËL PESCI
ENSAM – Laboratory of Physics and Mechanics of Materials, FRE CNRS 3236, Metz cedex, France

JULIEN CAPELLE
National Engineering School of Metz (ENIM), Laboratory of Mechanics, Biomechanics,
Polymers and Structures, Metz cedex, France

This paper is dedicated to our friend
and colleague Prof. W.K. Nowacki who
passed away on August 14, 2009.

Thank you for your kindness, humility,
advice and our long French-Polish
collaboration.

A thought to Alicja

Prof. W.K. Nowacki, Solmech/2006

In this investigation, thermo-viscoplastic behaviour of austenitic steel
AISI 304 has been characterised in tension under wide ranges of strain rate at
room temperature. This metal possesses an elevated strain hardening rate and
ductility which enhance its capability for absorbing energy under mechanical
loading. It has been observed that the rate sensitivity of the material is independent of plastic strain. Moreover, it has been noticed that beyond a certain level of loading rate the flow stress of the material sharply increases. In agreement with experimental evidences reported in the literature, this behaviour is assumed to be caused by the drag deformation mode taking place at high strain rates. Based on such considerations, the thermo-viscoplastic behaviour of the material has been macroscopically modelled by means of the extended Rusinek-Klepaczko model to viscous drag effects. Satisfactory matching has been found between the experiments and analytical predictions provided by the constitutive relation.

Key words: steel AISI 304, extended RK model, strain rate sensitivity, constitutive relation, thermal imaging

1. Introduction

Understanding dynamic behaviour of metallic alloys has gathered the efforts of many researchers during the last decades (Kumar et al., 1968; Clifton et al., 1984; Follansbee, 1986; Regazzoni et al., 1987; Follansbee and Kocks, 1988; Zerilli and Armstrong, 1992; Huang et al., 2009). Development of testing techniques which enable one to determine the deformation modes taking place in metallic materials at high strain rates has been a challenge approached by the most relevant experimentalists over the years (Mann, 1936; Clark and Wood, 1957; Klepaczko, 1994; Nemat-Nasser et al., 2001; Nguyen and Nowacki, 1997). Thus, supported by those experimental investigations, important advances on constitutive modelling of metallic alloys have been carried out (Johnson and Cook, 1983; Zerilli and Armstrong, 1987; Nemat-Nasser and Li, 1998; Molinari and Ravichandran, 2005; Voyiadjis and Almasri, 2008; Durrenberger et al., 2007-2008; Rusinek et al., 2008). Derivation of constitutive descriptions capable of predicting the thermo-viscoplastic response of materials is of fundamental interest to analyse the loading processes. Important industrial sectors like automotive and naval industries are nowadays becoming more interested in replacing the traditionally used phenomenological hardening laws (Cowper and Symonds, 1952; Johnson and Cook, 1983) by more advanced physical-based constitutive descriptions (Zerilli and Armstrong, 1987; Nemat-Nasser and Li, 1998; Rusinek and Klepaczko, 2001). The latter provides a more accurate description of the material behaviour under wide ranges of loading conditions. Such an advantage allows optimization of materials used for building mechanical elements with elevated structural responsibility.
For example, experimental testing and theoretical modelling of the metallic alloys applied for construction of crash-box structures has focussed the efforts of many investigators. Among the materials specifically developed for such an application field, the TRIP (Transformation Induced Plasticity) steels have particularly attracted the interest of the scientific community (Fischer et al., 2000; Delannay et al., 2008; Rodríguez-Martínez et al., 2010).

Thus, in this work, the mechanical behaviour of the high-alloy TRIP steel AISI 304 has been investigated. The material has been characterised in tension under wide ranges of strain rate at room temperature. Its deformation modes have been determined. Based on such understanding of the material behaviour, AISI 304 has been macroscopically modelled using the extended Rusinek-Klepaczko model to viscous drag effects (Rusinek and Rodríguez-Martínez, 2009). It has been proven that this physical-based constitutive relation provides an accurate description of the plastic response of the material for all the loading conditions considered.

2. Experimental characterisation of the tensile behaviour of steel AISI 304 at room temperature

Steel AISI 304 is the most versatile and most widely used stainless steel. It has excellent forming and welding characteristics. Extensively used in a variety of industries, its typical applications include pipelines, heat exchanger railings, springs or threaded fasteners.

AISI 304 is an austenitic steel (in the undeformed state, the microstructure of AISI 304 is constituted by 100% of austenite) containing large amount of alloying elements as Cr and Ni improving pitting and corrosion resistance, Table 1.

Table 1. Chemical composition of steel AISI 304 [% weight] (De et al., 2006)

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Cr</th>
<th>Ni</th>
<th>Mo</th>
<th>Cu</th>
<th>Si</th>
<th>Nb</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>1.54</td>
<td>18.47</td>
<td>8.3</td>
<td>0.30</td>
<td>0.37</td>
<td>0.48</td>
<td>0.027</td>
</tr>
</tbody>
</table>

Next, the thermo-viscoplastic behaviour of this material is examined. Tensile experiments have been performed within wide ranges of strain rate, \(10^{-4}\, \text{s}^{-1} \leq \dot{\varepsilon}^p \leq 10^3\, \text{s}^{-1}\), at room temperature. The geometry and dimensions of the tensile specimens used in the characterisation are depicted in Fig. 1. The thickness of the samples is \(t = 1\, \text{mm}\).
It has to be highlighted that this specimen design allows for avoiding geometrical disturbances that frequently take place when small samples are used to reach very high strain rates during testing (Rusinek et al., 2005).

2.1. Thermo-viscoplastic characterisation at low strain rates

In this section, results from the low strain rate tests performed are presented; the macroscopic behaviour of the material is illustrated in different graphs, see Figs. 2 to 3. Large ductility and an elevated strain hardening rate first characterise the mechanical behaviour of this steel, Fig. 2. Let us analyse the case of testing at $\dot{\varepsilon}^p = 0.002 \text{s}^{-1}$; AISI 304 reaches plasticity for $\sigma \approx 310 \text{ MPa}$, from this point on the flow stress level starts to increase until the saturation condition is reached, $\sigma\left|_{d\sigma/d\varepsilon=0} \right. \approx 975 \text{ MPa}$.

Fig. 2. (a) Flow stress evolution as a function of strain and (b) strain hardening evolution as a function of strain and stress at low strain rate and room temperature

Moreover, the low strain rate tests were filmed using a high speed infrared camera. That procedure allowed measuring the temperature increase ΔT
in the material during mechanical loading. Knowledge of the temperature increase ΔT leads to better understanding of dissipative effects taking place during material straining. These are, for example, adiabatic heating, martensitic transformation or damage mechanics as discussed in Rusinek et al. (2002, 2003), Nowacki et al. (2004).

In the following graphs, Fig. 3, the maximum increase of temperature ΔT during plastic deformation for a strain rate of $\dot{\varepsilon}^p = 0.01 \text{s}^{-1}$ is reported. The material temperature is continuously increasing with stress and strain, Fig. 3a. It has to be noted that a non-linear relation between the temperature increase and plastic deformation is found, Fig. 3.

![Graphs showing temperature increase and flow stress versus strain and time](image)

Fig. 3. (a) Maximum temperature increase and flow stress versus strain at low strain rate; (b) maximum temperature increase versus time at low strain rate

It is detected that this non-linearity is coming from two different sources:

- Dependence of the inelastic heat fraction β with plastic strain
- Dissipative effects of the martensitic transformation which takes place in this material during straining at low strain rates (Rusinek and Klepaczko, 2009).

The maximum temperature recorded during the test is close to $\Delta T_{\text{max}} \approx 110 \text{ K}$, Fig. 3b. The drastic increase of temperature taking place close to the saturation stress condition has to be analysed, Fig. 3b. Such a sharp augment of the temperature occurs when necking is formed. The heat generated in the instability is hardly spread to the rest of the sample. The strong elevation of the strain rate level in the necking zone leads to local adiabatic conditions of deformation.

Next, the results obtained from the high strain rate tests are shown in order to offer a comprehensive analysis of the material rate sensitivity.
2.2. Thermo-viscoplastic characterisation at high strain rates

Flow stress evolution versus plastic strain for high loading rates is depicted in Fig. 4. Under such loading conditions the material keeps the elevated work hardening rate enhancing its ductility.

![Fig. 4. Flow stress evolution as a function of strain for different high strain rate levels at room temperature](image)

It has been noticed that the material strain hardening is kept rather constant with the loading rate variations, Fig. 4. Thus, the Volume Thermally Activated (VTA) of the material is assumed independent of the plastic strain (Taylor, 1992), Eq. (2.1)

\[
V^* \approx kT \frac{\partial \ln(\dot{\varepsilon}^p)}{\partial \sigma^*} |_{T,\varepsilon^p}
\]

(2.1)

In the previous expression, Eq. (2.1), \(k \) is the Boltzmann constant and \(T \) is the absolute temperature.

It has to be noticed that beyond a certain level of loading rate, \(\dot{\varepsilon}^p \geq 500 \text{s}^{-1} \), the flow stress of the material sharply increases, Fig. 5. Such observation is in agreement with the experimental results reported by Follansbee (1986), Fig. 5. According to several authors (Campbell and Fergusson, 1970; Nemat-Nasser et al., 2001; Rusinek and Rodríguez-Martínez, 2009) let us assume this behaviour caused by drag deformation mechanisms taking place at high strain rates (Kapoor and Nemat-Nasser, 1999).

Based on the previous considerations, the macroscopic behaviour of the **AISI 304** is modelled using the extended RK (Rusinek-Klepaczko) model to viscous drag effects (Rusinek and Rodríguez-Martínez, 2009). This constitutive description takes into account the independence of the material rate sensitivity with the plastic strain.
Fig. 5. Flow stress evolution as a function of the strain rate at room temperature for a strain level imposed of $\varepsilon_p = 0.1$. Comparison with the results reported by Follansbee (1986)

3. Macroscopic modelling of the thermo-viscoplastic behaviour of steel AISI 304 under wide ranges of strain rate

Next, the formulation of the extended RK model to viscous drag effects and the comparison of its analytical predictions with experimental results are reported.

3.1. The extended RK model to viscous drag effects

The constitutive description is based on the additive decomposition of the equivalent stress (Seeger, 1957; Zerilli and Armstrong, 1987; Nemat-Nasser and Guo, 2003; Abed and Voyiadjis, 2005; Kocks, 2001), Eq. (3.1)

$$
\sigma(\varepsilon^p, \dot{\varepsilon}^p, T) = \frac{E(T)}{E_0} \left[\sigma_\mu(\varepsilon^p, \dot{\varepsilon}^p, T) + \sigma^*(\dot{\varepsilon}^p, T) \right] + \sigma_{vs}(\dot{\varepsilon}^p)
$$

(3.1)

where each term of the previous expression, Eq. (3.1), is defined below.

The multiplicative factor $E(T)/E_0$ defines Young’s modulus evolution with temperature (Klepaczko, 1998), Eq. (3.2)

$$
E(T) = E_0 \left\{ 1 - \frac{T}{T_m} \exp \left[\theta^* \left(1 - \frac{T_m}{T} \right) \right] \right\} \quad \forall T > 0
$$

(3.2)

where E_0, T_m and θ^* denote respectively Young’s modulus at $T = 0$ K, the melting temperature and the characteristic homologous temperature. This expression allows for defining the material thermal softening depending on its crystal lattice (Rusinek et al., 2009). In the case of FCC metals like the steel AISI 304, $\theta^* \approx 0.9$, as discussed in Rusinek et al. (2009).
The athermal stress reads as follows, Eq. (3.3)

$$\sigma_{\mu}(\varepsilon^p, \dot{\varepsilon}^p, T) = B(\dot{\varepsilon}^p, T)(\varepsilon_0 + \varepsilon^p)^n(\dot{\varepsilon}^p, T) \quad (3.3)$$

It macroscopically defines dislocation interactions with long-range obstacles which determine the strain hardening rate of the material. The explicit formulas describing the modulus of plasticity $B(\dot{\varepsilon}^p, T)$ and the strain hardening exponent $n(\varepsilon^p, T)$ are given by Eqs. (3.4)

$$n(\dot{\varepsilon}^p, T) = n_0 \langle 1 - D_2 \left(\frac{T}{T_m} \right) \log \left(\frac{\dot{\varepsilon}^p}{\dot{\varepsilon}_{\text{min}}} \right) \rangle$$

$$B(\dot{\varepsilon}^p, T) = B_0 \langle \left(\frac{T}{T_m} \right) \log \left(\frac{\dot{\varepsilon}_{\text{max}}}{\varepsilon^p} \right) \rangle^{-\nu} \quad \forall T > 0 \quad (3.4)$$

where B_0 is the material constant, ν is proportional to temperature sensitivity, n_0 is the strain hardening exponent at $T = 0$ K, D_2 is the material constant, $\dot{\varepsilon}_{\text{min}}$ is the lower strain rate limit of the model and $\dot{\varepsilon}_{\text{max}}$ is the maximum strain rate level accepted for a particular material. The McCauley operator is defined as follows

$$\langle \bullet \rangle = \begin{cases}
\bullet & \text{if } \langle \bullet \rangle \geq 0 \\
0 & \text{if } \langle \bullet \rangle < 0
\end{cases}$$

In the following graphs, the evolution of both the modulus of plasticity $B(\dot{\varepsilon}^p, T)$ and the strain hardening coefficient $n(\varepsilon^p, T)$ with temperature and strain rate, Fig. 6 is depicted. It can be observed that increasing temperature leads to diminution of the material flow stress level and strain hardening rate. It allows a proper definition of the characteristic thermal softening taking place in metallic materials subjected to high loading rates.

The thermal stress is the flow stress component defining macroscopically the rate dependent interactions with short range obstacles for the dislocation motion. It denotes the rate controlling the deformation mechanism from thermal activation. Based on the theory of thermodynamics and kinetics of slip (Kocks et al., 1975), Rusinek and Klepaczko derived the following expression (Rusinek and Klepaczko, 2001), Eq. (3.5)

$$\sigma^*(\dot{\varepsilon}^p, T) = \sigma_0^* \langle 1 - D_1 \left(\frac{T}{T_m} \right) \log \left(\frac{\dot{\varepsilon}_{\text{max}}}{\varepsilon^p} \right) \rangle^{m^*} \quad (3.5)$$

where σ_0^* is the effective stress at $T = 0$ K, D_1 is the material constant and m^* is the constant defining the reciprocity strain rate-temperature (Klepaczko, 1987).
Fig. 6. Evolution of (a) modulus of plasticity and (b) strain hardening coefficient with strain rate and temperature

The formulation used for defining the viscous drag stress component is coming from the investigations due to Kapoor and Nemat-Nasser (1999). Based on theoretical considerations and supported by experimental evidences for a certain number of metals, they proposed the following relation, Eq. (3.6)

$$\sigma_{vs}(\dot{\varepsilon}^p) = \chi [1 - \exp(-\alpha\dot{\varepsilon}^p)]$$ \hspace{1cm} (3.6)

where χ is a material constant and α represents an effective damping coefficient affecting the dislocation motion (Nemat-Nasser et al., 2001).

In the following graphs, the evolution of the viscous drag stress term within wide ranges of strain rate as a function of the material constants χ and α, Fig. 7 is depicted. For a strain rate $\dot{\varepsilon}^p \leq 100\,\text{s}^{-1}$, the viscous drag component is negligible no matter the value of previous material parameters. Moreover, it can be observed that this formulation enables one to define the two stages of the drag regime experimentally observed (Kapoor and Nemat-Nasser, 2000); the first stage of flow stress linearly increasing with the strain rate and the subsequent stage of the rate sensitivity no longer active.

In the case of adiabatic conditions of deformation, the constitutive relation is combined with the energy balance principle, Eq. (3.7). Such a relation allows for approximation of the thermal softening of the material by means of the adiabatic heating

$$\Delta T(\varepsilon^p, \sigma) = \frac{\beta}{\rho C_p} \varepsilon^p_{max} \int_0^{\varepsilon^p} \sigma(\varepsilon^p, \dot{\varepsilon}^p, T) \, d\varepsilon^p$$ \hspace{1cm} (3.7)
where β is the Taylor-Quinney coefficient assumed as constant, ρ is the material density and C_p is the specific heat at constant pressure. Transition from isothermal to adiabatic conditions of deformation is assumed at $\dot{\varepsilon}^P = 10\;\text{s}^{-1}$ in agreement with experimental observations reported for example in Oussouaddi and Klepaczko (1991), Berbenni et al. (2004).

Next, the extended RK model to viscous drag effects is applied to describe the thermo-viscoplastic behaviour of steel AISI 304.

3.2. Application of the extended Rusinek-Klepaczko model to viscous drag effects for description of the thermo-viscoplastic behaviour of steel AISI 304

Following the procedure reported by Rusinek and Rodríguez-Martínez (2009), the following material constants for calibration of the extended RK model are obtained, see Table 2.

Table 2. Material constants for calibration of the extended RK model to viscous drag effects for steel AISI 304 Eqs. (3-1)-(3.7)

<table>
<thead>
<tr>
<th>B_0 [MPa]</th>
<th>ν [-]</th>
<th>n_0 [-]</th>
<th>D_2 [-]</th>
<th>ε_0 [-]</th>
<th>σ_0^* [MPa]</th>
<th>m^* [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1243.6</td>
<td>0.001</td>
<td>0.36</td>
<td>0.035</td>
<td>0.0118</td>
<td>117.72</td>
<td>1.29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D_1 [-]</th>
<th>χ [MPa]</th>
<th>α [-]</th>
<th>θ^* [-]</th>
<th>$\dot{\varepsilon}_{\text{min}}$ [s$^{-1}$]</th>
<th>$\dot{\varepsilon}_{\text{max}}$ [s$^{-1}$]</th>
<th>T_m [K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.55</td>
<td>200.83</td>
<td>0.9</td>
<td>10^{-5}</td>
<td>10^7</td>
<td>1800</td>
<td></td>
</tr>
</tbody>
</table>

![Fig. 7. Evolution of the viscous drag stress component as a function of strain rate (a) as a function of χ and (b) as a function of α](image)
Conventional physical constants of the steel can be obtained from material handbooks, Table 3.

Table 3. Physical constants for steel

<table>
<thead>
<tr>
<th></th>
<th>E_0 [GPa]</th>
<th>C_p [JkgK$^{-1}$]</th>
<th>β [-]</th>
<th>ρ [kgm$^{-3}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200</td>
<td>470</td>
<td>0.9</td>
<td>7800</td>
</tr>
</tbody>
</table>

In Fig. 8, the comparison between the experiments and analytical predictions of the model within wide ranges of strain rate $10^{-3} \leq \dot{\varepsilon}^{p} \leq 500$ s$^{-1}$ is illustrated. It has to be highlighted that the constitutive description enables accurate determination of the material flow stress and strain hardening for all the loading rates considered, Fig. 8.

Fig. 8. Comparison between experiments and analytical predictions of the constitutive description within wide ranges of strain rate

Thus, in this investigation a predictive tool which allows proper description of the thermo-viscoplastic behaviour of steel **AISI 304** within wide ranges of loading conditions has been developed. It has to be highlighted that the constitutive description defines accurately the strain hardening and thermal softening effects observed in this material at high strain rates and large deformation.
4. Conclusions

In this work, the thermo-viscoplastic behaviour of steel AISI 304 has been characterised in tension under wide ranges of strain rates at room temperature. The material shows high strain hardening and ductility for the whole range of loading conditions tested. It has been found that the rate sensitivity of the material is independent of plastic strain. Moreover, based on the experiments reported by Follansbee (1986), it has been observed that AISI 304 shows viscous drag effects at high strain rates. Thus, the material response under loading has been modelled using the extended RK model to viscous drag effects. It provides an accurate description of the material behaviour for all the loading conditions analysed. Thus, in this investigation a predictive tool for a proper definition of the thermo-mechanical response of steel AISI 304 within wide ranges of strain rates has been developed.

Acknowledgements

The authors express their thanks to Mr. Philippe and Mr. Tobisch from the company Zwick for the facilities conferred to perform the tests at high strain rates.

References

1. Abed F.H., Voyiadjis G.Z., 2005, Plastic deformation modeling of AL-6XN stainless steel at low and high strain rates and temperatures using a combination of BCC and FCC mechanisms of metals, Int. J. Plasticity, 21, 1618-1639

Modelowanie i doświadczalna weryfikacja termo-lepkosprężystych właściwości stali AISI 304 w szerokim zakresie prędkości odkształceń w temperaturze pokojowej

Streszczenie