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Abstract 

The present study focuses on the turbulent flow with separated boundary layers 

in a rotor-stator cavity with a low aspect ratio subjected to a weak centripetal 

radial inflow. One of the major results is to show, with the help of numerous 

experimental data, that the core swirl ratio always evolves according to a power 

law of the dimensionless radius. Starting from this simple behaviour law, new 

original flow properties are highlighted and particularly the existence of an 

invariant quantity in the core region. 
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Nomenclature 

 

qp
C  peripheral dimensionless coefficient of flow rate, 1 5

Ro G Re=   

qr
C  dimensionless coefficient of flow rate, ( )1 5 * 13 5 32= Re q r R− πΩ  

Ek  Ekman number, 21= ReG  

G  gap ratio, H R=  

h  peripheral opening of the cavity 

H  axial gap of the cavity 

K  core swirl ratio, * *
V rθ= at *

z 0=  

B
K   core swirl ratio in case of solid body rotation 

pK  pre-swirl ratio, K=  at 
*r 1=  

p  static pressure on the stator 

atmp  atmospheric pressure 

*
P  dimensionless static pressure on the stator, ( )2 21

atm 2 Rp p= − ρΩ  

q  volume flow rate 

*Q  dimensionless flow rate coefficient, q rν=   

r  radial coordinate 

*
r  dimensionless radial coordinate, r R=  

0

*
r  dimensionless radial location where *

P is equal to zero 



R  radius of the rotor 

HR  outer radius of the hub 

Re  Reynolds number, 2
R= Ω ν  

Ro  Rossby number, 2
q 2 R HπΩ=  

r z, ,v v vθ   radial, tangential and axial mean velocity components 

* *
r ,V Vθ  dimensionless radial and tangential velocity components, 

r ,v R v Rθ= Ω  Ω  

*
zV  dimensionless axial velocity, zv G R= Ω  

2

i i j
v' , v' v'   turbulent correlations ( i, j r , ,z ; i j )θ=   ≠  

* *
2

i i j
v' v' v',  

dimensionless turbulent correlations 

( ) ( )
* *2 22

i i j
G R v' G R v' v'Ω Ω= ,   =   ( i, j r , ,z ; i j )θ=   ≠  

 
z  axial coordinate 

*
z  dimensionless axial coordinate, z H=  

α  constant in the present theoretical model 

�α  value of the constant α computed from empirical relationships 

�
0α  value of the constant �α in the case of an isolated cavity 

ε  function of *z in the present theoretical model 

Ψ  dimensionless parameter 

K∆  error in the calculation of K  

Ω  angular speed of the rotor 

ν  kinematic viscosity of fluid 

 



1 Introduction 

 

The knowledge of the behaviour of rotating flow has been the main objective 

of many experimental, numerical and theoretical studies over the past decades. 

Natural and oceanic movements, atmospheric phenomena, as well as flow inside 

hard disk data storage, numerous examples are linked to this kind of flow. In 

such a range of possible aspects, the present paper deals with the domain of 

operating conditions of rotating machineries. Often, in turbomachinery 

applications, the flow between the rotating parts such as impeller and disks is 

subjected to a forced rotation. In gas turbines, turbojets, centrifugal multistage 

compressors, severe operating conditions expose the moving walls to high level 

of stress and excitation. These phenomena can lead to reliability problems and 

even to destruction if they are not correctly controlled. Therefore, the knowledge 

of the dynamic fluid properties in the inter-disk spacing is of major interest for 

the pump and gas turbine designers in order to improve performances as well as 

security and working life. In the cooling systems of actual machines, the moving 

walls rotate near to a fixed shroud or to others co or contra-rotating walls. 

Although these geometries are complex, they are often addressed through 

simplified rotating disk systems, which are of great interest both from 

mathematical and practical point of view. Indeed, theoretical solutions can be 

found starting from the Navier-Stokes equations entering in the domain of 

classical differential equations’ integration. Many reference books have been 



devoted to the question, among which those of Dorfman [1], Owen and Rogers 

[2, 3] and more recently Poncet [4]. 

In the present paper, attention is focused to the turbulent flow in a rotor-

stator system with a low aspect ratio, where the flow exhibits three domains: two 

boundary layers near the disks separated by a core region. The prediction of the 

core swirl ratio K , defined by the ratio between the tangential velocity of the 

fluid in the central core and the local velocity of the rotating wall, is a great 

challenge for the designers because this dimensionless quantity is linked to the 

pressure coefficients inside the cavity. It is the reason why numerous theoretical, 

experimental and numerical studies have been devoted to this question. We can 

quote the studies by Kurokawa and Toyokura [5], Poncet et al. [6, 7] as well as 

Innocenti et al. [8]. In these studies, it was assumed that there is no fluid 

exchange outside the boundary layer, which seems to be inconsistent with 

experimental observations. This point has been improved by Abdel Nour et al. 

[9, 10]. Note that Debuchy et al. [11, 12] have also led to analytical solutions 

including the three components of velocity and the radial distribution of the 

static pressure in a rotor stator system opened to the atmosphere at the 

periphery, without any radial superimposed flow or subjected to a centripetal 

inflow rate. The common feature of all the theoretical works mentioned above is 

that the analytical solutions were obtained under the assumption that turbulence 

has no significant effect in the core region despite the flow is turbulent. 

The present work is based mainly on the analysis of numerous experimental 

results, one the one hand data obtained in the studies we have conducted on the 



subject [9-12, 16], on the other hand results extracted from the literature [6, 7]. 

Our contribution is to provide the simplest possible modelling of the radial 

distribution of the core swirl ratio and therefore of the static pressure inside the 

cavity. New typical properties of the central core that arise directly from this 

behaviour law are also highlighted. From a theoretical point of view, these 

results are consistent with the Navier-Stokes equations only under certain 

assumptions and conditions. This theoretical approach of the problem, which is 

not the main issue of this paper, is appended to the paper. 

Thus, the remaining of the paper is organized as follows. The scope of the 

present study is specified in section 2. This section also includes a description of 

the experimental apparatus and test conditions. The overall results, the original 

flow properties as well as a new behaviour law for the central core swirl ratio 

are discussed in Section 3. The main conclusions and perspectives of this work 

are given in section 4. 

 

2 Scope of the study – Experimental apparatus 

 
The study focuses on the flow in an annular cavity between two parallel and 

coaxial disks (Figure 1). The disk located at z = - H 2   rotates at a constant speed 

Ω  (rotor). It is equipped with a central hub of radius HR which represents the axis 

of an actual machine. From a theoretical point of view, this hub avoids the 

singularity at 0r =  . The disk located at z = H 2   is fixed (stator). The cavity is 



opened to the atmosphere at the periphery. The fluid is assumed to be 

incompressible and isothermal. This problem has been addressed in [11].  

The main dimensionless parameters are the gap ratio of the cavityG and 

the Reynolds number defined by: 

 

2G H R ; Re RΩ ν= =              (1) 

 

The structure of the flow in an annular rotor-stator cavity has been often studied in 

the past. In particular, the classification established by Daily & Nece [13] revealed 

four distinct flow regimes, laminar or turbulent and with separated or merged 

boundary layers (Figure 2). The main characteristics are depicted as it follows: 

• both laminar flow regimes are separated by a curve fitting 11/ 5
ReG 2.9≈  ; 

• the transition from laminar to turbulent when the boundary layers are 

separated by a core region occurs when the Reynolds number is around 

5
Re 1.58 10≈ ×  ; 

• the common limit between the turbulent flow regimes satisfies the equation 

16 / 3 3
ReG 7.8 10

−≈ ×   whereas the common limit between the flow regimes 

with merged boundary layers corresponds to the following  

condition 10 / 9
ReG 366≈  ; 

• the common limit between the flow regimes II and III fits the curve  

16 / 15 6
ReG 4.6 10≈ × . 



In the present work, attention is focused on the region IV of this classification. 

The authors assume that The Ekman number defined by ( )
1

2Ek Re G
−

=  remains 

small with regards to unity so that the flow is turbulent and the boundary layers 

are separated by a central core region according to Dyment [14]. 

In addition, the rotor-stator cavity is connected near the axis to a vacuum 

system generating a weak superimposed centripetal volume flow rate q , as in 

[12]. The dimensionless flow rate parameter is the Rossby number defined by: 

 

( ) ( )Ro U R U q 2 RHΩ π= ;   =             (2) 

 

In the present work, the centrifugal effects remain predominant with respect to the 

radial inlet effects so that Ro 1<<  . The flow structure properties depicted in 

Figure 2, valid in the case of an isolated cavity i.e. without any superimposed 

flow, are not affected by a weak radial superimposed inflow. 

Let us summarize the assumptions relating to the different dimensionless 

parameters: 

 

 Re 1 G 1 Ek 1 Ro 1>>    ;    <<    ;    <<    ;    <<           (3) 

 

The experimental apparatus has already been described in several studies [9-

12]. The annular cavity is delimited by two parallel and coaxial discs separated by 

an axial gap H  adjustable up to 0 0375. m . The lower disc with a radius R equal 



to 0 375. m , rotates with an angular velocity which can be varied up to 2000 rpm  

2000 rpm. It is situated at z H 2= − . It was equipped with a central hub the 

radius of which being 0 09
H

R . m=  . The upper disk situated at z H 2= was fixed. 

Note that the mid-height of the cavity corresponds to z 0= . At the periphery, the 

cavity was opened to the atmosphere.  

Velocity measurements between the discs were performed in ambient air 

conditions with the help of a specific hot-wire probe made of two perpendicular 

mµ5  wires situated in the same plane. Each sensor was connected to a DANTEC 

55M25 anemometry device.  

During the experiments, the probe was introduced inside the cavity through the 

stator and moved in the axial direction. The angular position of the probe was 

remained fixed, with the two wires positioned at ± 45°  regarding to the tangential 

direction. This technique was used in order to provide the radial and tangential 

mean velocity components. Additional details about the experimental apparatus 

can be found in [9]. 

The accuracy of the circumferential velocity measurement is related to several 

factors: 

- the calibration of the probe. In the present work, it was performed in a specific 

wind tunnel.  For each sensor, the coefficients of the King’s law were computed in 

order to provide the best fit between the flow velocity measured by a pitot tube 

and the anemometer voltage output. During this step, the uncertainty for each 

sensor effective velocity was estimated to be ± 2%.  



- The initial position of the probe between the disks. The calculation of tangential 

mean velocity in the post-processing of the data requires the initial position of the 

sensors to be exactly ± 45° regarding to the tangential direction. This setting is 

difficult to achieve exactly, with the consequence that the uncertainty for the 

calculation of the tangential mean velocity is ± 2%. 

- The assumption in the post-processing of the data. The tangential velocity 

component was deduced from the effective velocities of the two sensors with the 

help of analytical relationships using the assumption that the axial velocity is zero. 

We consider that this assumption leads to a negligible error. 

Finally, the overall measurement uncertainty for the circumferential velocity 

component is estimated to be ± 4%.   

The experimental conditions and the values of the dimensionless parameters are 

detailed in Table 1.  

 

3 Results and discussion 

 

In the remainder of the paper, all results will be presented using the 

dimensionless quantities (with superscript *) defined by Eq. (A1) in the appendix. 

 

In a first step, the attention is drawn to the modelling of the core swirl ratio K , 

defined by * *
K V r= θ at *

z 0= , which is significant physical quantity for turbine 

designers [2, 3].  



Indeed, in the case of a turbulent flow with separated boundary layers, the axial 

pressure gradient is zero so that the dimensionless static pressure and the core 

swirl ratio are related by the radial equilibrium equation * * 2 *dP dr 2K r=  (see 

Appendix). Then, the objective is to provide a physical law for the radial 

distribution of core swirl ratio, which should allow quantifying the axial thrust 

inside the cavity and highlighting new physical properties for the core region, 

which is an important issue to our opinion. Our approach is based on numerous 

experimental observations to support our conclusions. In addition, for the reader 

interested in the theoretical aspect of the problem, the results are always enhanced 

by an analysis based on an asymptotic development. However, as this is not the 

main objective of this work, this theoretical part is given in the appendix. 

The first significant observation in this paper is that all experimental results 

outlined in Table 1 fit a simple behaviour law of the form: 

 

*

pK K r
α−=                       (4) 

 

This relationship reveals two quantities to be determined, the peripheral core swirl 

ratio
p

K  which is defined by *
Vθ at *

z 0= and *r 1=  as well as the value of the 

powerα  which depends on the experimental conditions and requires to be 

adjusted for each test case. 

 In the present analysis, the pre-swirl ratio had to be estimated by extrapolation 

because no measurement could be performed at *
r 1.0= . To overcome this 

drawback, we verified that all experimental results follow the relationship 



( )* *

1 1
K K r r

α−

= , where *

1
r  corresponds to the largest value of *r  where 

measurements have been performed and where 
1

K  is the core swirl ratio at *

1
r . 

For the experimental results extracted from [9], *

1
r 0.88= . Figure 3 provides a 

double logarithmic representation of ( )1Log K K versus ( )* *

1
Log r r , 

corresponding to a linear evolution.  For each test case, the slope of the curve 

gives the value of the power α  and the pre-swirl ratio 
p

K  is deduced from the 

following relationship *

p 1 1K K r
α=  . The values are given in Table 2. 

A major consequence of this result arises because Eq. (4) can also be written on 

the following form: 

5

13
qr

p qp

CK

K C

α
 

=   
 

                     (5) 

where
qr

C is the dimensionless flow rate coefficient introduced by Poncet [6, 7] 

and 
qp

C  the peripheral value of
qr

C . These parameters are defined as it follows: 

 

1
5 13*

5
qr 3

Re
C q r

2 Rπ Ω

−
=   ,  1 5

qpC Re G Ro=             (6) 

 

Eq. (5) is of particular interest because it implies that the following quantity 

remains constant: 

5 5

13 13
qr p qp

K C K C cons tant
α α

− −

= =              (7) 



The values of 
5

13
qr

K C
α

−

 were computed for each radial location and the line 

corresponding to the peripheral value
5

13
p qp

K C
α

−

  were plotted in Fig. 4 for the test 

cases corresponding toG 0.053= . The results clearly highlight that the 

dimensionless quantity defined in Eq. (7) remains constant. Even if the results are 

not presented, Eq. (7) has been checked to be valid for all test cases depicted in 

Table 1. 

At the periphery of the cavity, the value of the quantity
5

13
p qp

K C
α

−

depends on both 

the pre-swirl ratio and the dimensionless parameter 
qp

C  which have a physical 

signification. It also depends on α which is unknown a priori. Therefore, a 

correlation between the values of α  reported in Table 2 and the dimensionless 

parameters of the problem has been established. This is going to be presented in 

the following part of this paper. 

 

At this stage of the discussion, our attempt is to find an empirical relationship 

between the adjusted values of α  reported in Table 2 and the parameters of the 

problem (the Reynolds number, the gap ratio, the Rossby number as well as the 

pre-swirl ratio). Subsequently in the paper, the values computed from this 

relationship will be denoted �α . Index 0 will be added in the case of a rotor-stator 

cavity without any superimposed flow. This particular case will be called 

“isolated cavity”. 



For the isolated cavity ( )Ro=0 , the recent work [16] showed that the flow 

behavior can be modeled by the relationship (4), at least in a peripheral region, 

provided that the pre-swirl ratio
p

K is low. In this work, the value of the power in 

the solution (4) was computed from the following empirical relationship: 

� 0.52
0 B p2.31 ( K K )α = × − . The core swirl ratio

B
K corresponding to the solid body 

rotation was fixed to 0.38 , which correspond to the theoretical value mentioned 

in [3]. For fixed values of the gap ratio and Reynolds number, the value of the 

powerα must vary very slightly and continuously as soon as the cavity is 

subjected to a very weak superimposed flow rate ( )Ro 0→ . Consequently, we 

proposed an empirical law of the form � �
0 pf (Re,G,Ro, K )α α= +   . The f function 

depends on the main dimensionless parameters defined in Eqs (1) and (2), but also 

likely to geometrical parameters related to the layout of the cavity. With regard to 

the geometrical parameters relating to the periphery of the cavity, they were taken 

into account by means of the pre-swirl ratio
p

K . Other parameters related to the 

geometrical shape of the cavity close to the hub or to the discs roughness, among 

others, may also interfere with the flow behavior and therefore in the f function. 

They were not considered in the present paper. 

Based on the values reported in Table 2, it can be observed that α increases 

as Ro increases for a fixed value of the Reynolds number. As an example among 

other, we can compare the adjusted values of tests 1 and 2. Instead, α  is a 

decreasing function of the gap ratio for fixed values of the Rossby and Reynolds 



numbers (see test cases 1 and 7). Thus, in order to provide adequate results with 

theα values listed in Table 2, we proposed the following empirical law: 

  

� 0.52 3

p p2.31( 0.38 K ) 1.67 10 Kα Ψ−≈  − + ×     ,   1/ 2 3/ 2 3/ 4Re G RoΨ −=         (8) 

 

For each test case, the difference between �α andα is reported in Table 2. It is at 

most equal to 0.06 , which means that the values of the powerα in Eq. (4) can be 

computed with the help of the empirical relationship (8) with an accuracy better 

than 5%, for all the experimental conditions depicted in Table 1.  

 

In Figures 5 and 6, we compared the radial distributions of the experimental core-

swirl ratio to that computed from the combination of Eq. (4) and Eq. (8), with the 

value of the pre-swirl coefficient
p

K  indicated in Table 2. The adequacy between 

experiment and theory is very good both for G 0.053= andG 0.08= . Using Eqs 

(4) and (8), the error in the calculation of K  is mainly related to the error in the 

pre-swirl ratio
p

K . When the cavity is opened to the atmosphere, recirculation 

phenomenon can be observed in a peripheral area where the flow is not 

established, so that it remains difficult to estimate the 
p

K value with a good 

accuracy.  

Starting from Eqs (4) and (8), the estimation of the error K∆ in the computed 

value of K  is pK A K∆ ∆= ×  , 

with
� ( ){ }* 0.48

Ln( r ) 3 *

p p
A e 1 K 1.20 0.38 K 1.65 10 Ln( r )

α Ψ
−−  − = − − × − + ×  

. For 



each test case, this error depends on the level of the pre-swirl ratio, the main 

dimensionless parameters defined in (1) and (2) and the dimensionless radial 

position. The computed values of K∆ are indicated in Table 2 (last column) for 

*
r 0.43= , which corresponds to the lowest radial position where the 

measurements were carried out, and for 
p

K 0.01∆ = .  

 

Up to now, the discussion focused on the modeling of the core swirl ratio. 

However, numerous studies have shown that the axial gradient of the tangential 

velocity component is not zero, especially when the cavity is subjected to a 

superimposed radial inflow. As an example, this is the case of the experimental 

results in [12]. Thus, in a next part of the discussion, it seemed interesting to test 

an analytical solution providing the axial profile of the tangential velocity 

component *
Vθ of the form: 

 

�* * *

pV r K r g
α

θ
−=         (9)  

 

where g is a function of *z satisfying ( )g 0 1= , so that, at mid-height of the cavity 

Eq. (9) is consistent with the analytical solution (4). 

If considering that the axial gradient of *
Vθ  is small compared to unity, this latter 

equation can be written in the following form: 

 

� ( )* * * *

p
V r K r 1 b zα

θ
−=  +  ,       (10) 



where b  is a constant.  

 

This simple analytical solution provides an explanation to major experimental 

findings in [12].  

For the isolated cavity ( Ro 0= ), it was assumed that the axial gradient of the 

tangential velocity is sufficiently low to consider that b 0= . It was also showed in 

[16] that a balancing process of the flow inside the boundary layers occurs when 

the pre-swirl ratio is low, which implies that the central core swirl ratio is a 

decreasing function of *r , at least in a peripheral region. This behavior ends as 

soon as the flow rates inside the boundary layers balance each other. Then, the 

core rotates as a solid body. The authors in [16] showed that two behavior laws 

coexist provided that the radial extension of the cavity is sufficiently large: 

 

�

( )
�

0
0

1/
** * * * * * * * *

B B p B p
r r :V r 0.38 r r :V r K r r K 0.38

αα
θ θ

−≤  =  ;   ≥  =   ;   =   (11) 

 

This last relationship is valid in the case of an isolated cavity ( )Ro 0= , so that the 

values of � 0α is obtained with the help of Eq. (8) with 0Ψ = .  

When there is a weak superposed radial inflow so that Ro 0→ ,  the axial 

gradient of the tangential velocity is no longer zero so that b 0≠ in Eq. (10). The 

analytical solution (10) is consistent with the following observation made by 

Debuchy et al [12]: the weakest superimposed flow does not lead to major 



changes near the periphery of the rotor-stator system, but becomes predominant 

when approaching to the axis. 

Figure 7 provides a validation of Eq. (10) and Eq. (11) with the help of 

experimental results extracted from [12] for 6
Re 1.47 10= × and G 0.08= . We 

compared two test cases corresponding to the isolated cavity ( Ro 0= ) and 

Ro 0.0167≈ . In both cases, the pre-swirl ratio was estimated to be approximately 

equal to 0.20 and the value of b  was fixed to 0.12−  . For the isolated cavity, Eq. 

(8) gives � 0 0.94α = which allows to predict that the solid body rotation of the core 

appears for *
r 0.51≤ . When a superimposed inflow corresponding to 

Ro 0.0167≈ is assigned, Eq. (8) gives � 1.78α = . The difference between the core 

swirl ratio with and without superimposed throughflow is about 11% at 

*
r 0.88= (Fig. 7a), 37% at *

r 0.69= (Fig. 7b) and reaches 70% at *
r 0.53=  (Fig. 

7c). This difference becomes much higher for *
r 0.51≤ , because K  remains 

constant when Ro 0=  whereas it always increases as *r decreases for 

Ro 0.0167≈ . The present theory is consistent with the results extracted from [12].  

We also compared the present theory to experimental results extracted from 

[12] obtained in a rotor-stator cavity with a partial peripheral opening (Fig. 8). As 

h / H  decreases, the peripheral inlet area is shifted towards the rotor, with the 

consequence that the pre-swirl ratio 
p

K  increases. In Figure 8, we focused on the 

experimental results for two values of the peripheral opening coefficients 

h / H 1.00=  and h / H 0.25= , 0 08G .=  ,  6
Re 1.47 10= ×  and Ro 0.0167≈ . 

For h / H 0.25= , the pre-swirl coefficient is approximately equal to 0.28 , which 



gives� 1.85α =  according to Eq. (8). The results presented in Figure 8 show that 

the theoretical model corresponding to Eq. (10) is realistic. 

 

The combination of the simple behaviour law (4) and the empirical 

relationship (8) represents to our opinion a significant advance as the radial 

distribution of the core swirl ratio can be computed with a good accuracy on one 

test rig and over a wide range of variation of the main dimensionless parameters, 

provided that the pre-swirl ratio
p

K  is known. Of course, we do not expect that 

this theory is universal because, as mentioned above in the paper, all 

dimensionless parameters have not been considered. However, in this last step of 

the discussion, our aim is to check that the same approach can be used for other 

configurations extracted from the literature. For this purpose, we selected the 

results obtained by Poncet et al. [6, 7]. The major difference is the high level of 

the pre-swirl ratio
p

K , which is linked to the peripheral geometry of the cavity. 

Especially, the level of the pre-swirl ratio 
p

K  is higher than that of the theoretical 

core swirl coefficient in the case of solid body rotation 

( )BK 0.38= .Consequently, when the cavity is isolated, we can predict that the 

core swirl ratio is an increasing function of *r in a peripheral region, which 

indicates that the value of � 0α  is necessarily negative. We argue subsequently that 

this value can be determined by the relationship: �
0.52

0 B p
2.31 K Kα = − × − . The 

experiments extracted from the work performed by Poncet et al. [6] were used in 

order to find an empirical law of the form � �
0 pf (Re, Ro,G,K )α α= +   . The best fit 



for the radial distribution of the core swirl ratio was obtained with the 

combination of Eq. (4) and the following empirical relationship: 

 

�
p

0.52
4 1.4

p
2.31 0.38 K 1.18 10 Kα Ψ−≈ − × − + ×     ,       1/ 2 1Re GΨ −=          (12) 

 

The experimental conditions and the values of 
p

K and �α are summarized 

in Table 3. Note that the dimensionless flow rate coefficient *Q which was used by 

Poncet et al. in [6] is defined by *Q q rν=  , so that *Q 2 Ro Re Gπ= ⋅ ⋅ ⋅ . Figure 

9(a) shows a very good agreement between the theoretical and experimental radial 

distributions of the core swirl ratio. 

We have also verified that the radial equilibrium equation 

* * 2 *dP dr 2K r= combined with Eq. (4) remains available to provide an analytical 

law for the radial pressure distribution. The corresponding solution can be written 

as it follows: 

 

�

� �

( )2( 1 ) 2( 1 )

0

2

p* * *
K

P r r
( 1 )

α α

α

− −

= −
−

           (13) 

where
0

*
r is the radial location corresponding to a dimensionless static pressure 

equal to zero. 

 

Figure 9(b) shows a comparison between the radial distribution of the 

dimensionless static pressure measured by Poncet et al. [6] and the theoretical 



data computed with the help of Eqs (12) and (13). In both cases, the pressure level 

is adjusted to 0 at the dimensionless radial location *

0
r 0.92= . The agreement of 

the results is very good, which means that the axial gradient of the tangential 

velocity component included in the function g  in Eq. (9) has no major influence 

on the pressure distribution.  

 

4 Conclusions 

 

The object of the present study was to investigate the turbulent flow in a 

rotor-stator cavity with a low aspect ratio subjected to a centripetal radial inflow. 

All results are valid in the core region of the flow existing between the two 

separated boundary layers (flow regime IV according to the classification by 

Daily and Nece [13]) 

Starting from numerous experimental data, a simple behaviour law for the 

radial distribution of the central core swirl ratio has been highlighted: K varies 

according to a power law of the dimensionless radius. This solution requires the 

knowledge of two quantities: the pre-swirl ratio of the fluid at the periphery of the 

rotor-stator system which is a boundary condition and the value of the power. For 

this latter quantity, the authors have found an empirical relationship that provides 

good results for one test rig and over a wide range of the significant dimensionless 

parameters. For now, this relationship can not be generalized to all test rigs, 

probably because geometrical parameters related to the inner part of the cavity 

have not yet been taken into account. This is one of the future works. 



Nevertheless, the present behaviour law is in excellent agreement with numerous 

experiments from the literature. It also leads to the radial distribution of the static 

pressure and highlights the existence of an invariant quantity in the core region. 

This experimental analysis has been complemented by a theoretical work. 

The aim was to specify the assumptions which ensure that the present analytical 

solution remains consistent with the Navier-Stokes equations. Nevertheless, as 

this part was not the main interest of this study, it is presented in the Appendix. In 

particular, it is shown that turbulence cannot be totally neglected in the central 

core of the flow. It results that additional data are needed to support these 

assumptions. Thus, one of the perspectives of the present work is to analyse 

numerical results including all components of the Reynolds tensor, which may be 

useful to propose a simple modelling of the Reynolds tensor effects for 

engineering applications. Then, the present results could be extended to the case 

of complex peripheral conditions such as small radial turbomachinery components 

and could be developed for the optimising of the modern turbo-compressors in 

automotive field.  
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Table 

 

Test Symbol G  610 Re
− ×  

310 Ro×  
310

qp
C×  

1  0.053 1.03 5.69 4.84 

2  0.053 1.03 8.54 7.26 

3  0.053 1.47 3.98 3.63 

4  0.053 1.47 5.97 5.45 

5  0.053 1.95 4.51 4.36 

6  0.053 1.95 5.64 5.44 

7  0.08 1.03 5.69 7.26 

8  0.08 1.03 7.59 9.68 

9  0.08 1.47 3.98 5.45 

10  0.08 1.47 5.30 7.27 

11  0.08 1.95 4.01 5.81 

12  0.08 1.95 5.01 7.26 

Table 1: experimental conditions 

 

 

 

 

 



Test pK  α  �α   K∆  

1 0.14 1.50 1.50 0.04 

2 0.14 1.64 1.64 0.05 

3 0.13 1.47 1.46 0.04 

4 0.13 1.59 1.58 0.05 

5 0.12 1.57 1.54 0.04 

6 0.12 1.61 1.61 0.05 

7 0.10 1.30 1.35 0.03 

8 0.10 1.35 1.38 0.03 

9 0.09 1.28 1.34 0.03 

10 0.09 1.32 1.37 0.03 

11 0.08 1.38 1.37 0.03 

12 0.08 1.42 1.39 0.03 

Table 2: values of the constants in the model 

 

 

 



 

G  610 Re
− ×  

*
Q  pK  �α  

0.024 1.04 2579 0.46 1.07 

0.024 1.04 5159 0.54 1.23 

0.024 1.04 10317 0.62 1.47 

0.036 2.08 10317 0.54 1.10 

0.048 4.15 10317 0.46 1.07 

Table 3: experimental conditions in [6] 

 

 



 
Figures 

 
 
 

 

Figure 1: Schematic diagram of the cavity. 

 



 

 

Figure 2: Flow regimes according to the classification by Daily and Nece [13]. 
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Figure 3: experimental validation of the behaviour law ( )* *

1 1
K K r r

α−

= . 

Present experimental results extracted from [9] : see the symbols in Table 1 

 



 

Figure 4: experimental validation of the behaviour law (7). 

Present experimental results extracted from [9]: see the symbols in Table 1 
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Figure 5: radial distribution of the core swirl ratio - 0 053G .=  

Experimental results extracted from [16]: see the symbols in Table 1 ;   

: Eq. (4) with the computed values of�α according to Eq. (8) 



 

Figure 6: radial distribution of the core swirl ratio - 0 08G .=  

Experimental results extracted from [16]: see the symbols in Table 1 ;   

: Eq. (4) with the computed values of�α  according to Eq.  (8) 



 

Figure 7: Validation of Eqs (10) and (11) 

Dimensionless tangential velocity profiles 

0 08G .=  ,  6
Re 1.47 10= × , 

p
K 0.20=  

Experimental results extracted from [12]:  isolated cavity,   Ro 0.0167≈    

   : Eq. (10) with � 1.78α = and b 0.12= −  ;    : Eq.(11) with � 0 0.94α =  



 

Figure 8: Validation of Eqs (10) and (11) 

Dimensionless tangential velocity profiles 

0 08G .= ,  6
Re 1.47 10= × , Ro 0.0167≈  

Experimental results extracted from [12]:  h / H 1.00=  ;   h / H 0.25=  

 : Eq. (10) with 
p

K 0.20= , � 1.78α = and b 0.12= −   

 : Eq. (10) with 
p

K 0.28= , � 1.85α = and b 0.08= −  

 
 
 



 

Figure 9: Validation of the present behaviour law with the experiments by Poncet 

et al. [6] 

: results from Eqs (4) and (13) with the computed values of�α  with Eq.  (12) 

 

 



APPENDIX 

 

In the appendix, all equations and results will be presented using the 

dimensionless quantities (with superscript *) defined by: 

( )

( )

( )

* *

* * *

r r z z

2 *1
atm 2

*22 2

i i

*2

i j i j

r Rr ; z GRz ;

v RV ; v RV ; v G RV

p p R P

v' G R v' ( i r , ,z )

v' v' G R v' v' ( i, j r , , z ; i j )

θ θΩ Ω Ω

ρ Ω

Ω θ

Ω θ

= =

= = =

− =

=   =

=   =   ≠

     (A1) 

It was assumed that all turbulent correlations have the same order of 

magnitude. Using the dimensionless quantities defined in Eq. (A1) with the 

assumptions (3), the conservation of mass and Navier-Stokes equations become: 

 

( ) ( )* * * *

r z

* *

**2* * *
* *r r r z
r z* * * * *

*
* * * *

* * r z
r z* * * *

*

*

r V r V
0;

r z

VV V v' v'1 dP
V V ;

r z r 2 dr z

V V V V v' v'
V V ;

r z r z

P
0

z

θ

θ θ θ θ

∂ ∂
+ =

∂ ∂

∂ ∂ ∂
+ − = − −

∂ ∂ ∂

∂ ∂ ∂
+ + = −

∂ ∂ ∂

∂
=

∂

    (A2) 

 

Thus, the last relation in Eq. (A2) shows that the axial pressure gradient inside 

the cavity is zero.  



One particular solution was given by Batchelor [15] in the case of infinite 

disks. In the central core region, when assuming that the turbulence is null, the 

flow rotates as a solid body, which corresponds to the following solution: 

 

*

r
V 0= , * *

B
V K  rθ = , *

z
V 0= ,        (A3) 

 

The axial gradient of the tangential velocity component is null. The core swirl 

ratio K  defined by * *
K V r  θ= remains a constant

B
K . The radial pressure 

distribution can be easily deduced with respect to a constant from the radial 

equilibrium equation * * 2 *

B
dP dr 2K  r= which comes from the second relation of 

Eqs (A2). 

 

When the radial extension of the discs is finite and the annular cavity opened to 

the atmosphere at the periphery, the radial velocity component is no longer equal 

to zero, moreover when a radial inflow is superimposed. 

Then, let us focused on the third relation in Eq. (A2) which was always 

neglected in the studies [5-11] quoted in the introduction.  

When it is assumed that the axial gradient of the tangential velocity component is 

insignificant so that *
Vθ  is only a function of *r  and also that the turbulence is 

negligible in the core region, this equation becomes * * * *
dV dr V r 0θ θ+ = , which 

leads to the solution * * 1

pV K  rθ
−= . The constant

p
K , which is called the peripheral 

swirl ratio or pre-swirl ratio, comes from the boundary condition
p

K K= at *r 1= . 



Consequently, the core swirl ratio evolves as a power law in *r of the form 

* 2

pK K  r
−= . This solution indicates that the core swirl ratio increases as *r  

decreases, which is consistent with all experimental observations [9-12] in the 

case of a cavity subjected to a weak centripetal flow. Nevertheless, the value of 

the power can not always be set to -2 because it has already been observed in [12] 

that K  increases as Ro increases for a fixed value of the pre-swirl ratio
p

K . It is 

the reason why the authors suggested the solution (4) for the radial distribution of 

core swirl ratio. In addition, numerous experimental results in [12] have shown 

that the axial gradient of the tangential velocity is not always equal to zero, 

especially when there is a superimposed radial inflow rate. Consequently, solution 

(9) was also tested in the paper. 

Therefore, the question was whether this solution can remain compatible with 

the Navier-Stokes equations. 

It is easy to find that Eq. (9) is the solution of the differential equation 

( )* * * *
V r 1 V r 0θ θα∂ ∂ + − = , which appears in the third relation of Eqs (A2) if it 

is written in the following form: 

 

( ) ( )
*

* * * * *
* *r z
r z* * * * *

V V V V V v' v'
V 1 2 + V

r r r z z

θ θ θ θ θα α
 ∂ ∂ ∂

+ − + − = − 
∂ ∂ ∂ 

    (A5) 

 

Consequently, as the solution corresponding to Eq. (9) is valid, it implies that 

( )* * * *
V r 1 V rθ θα∂ ∂ + −  must necessarily be null, so that the axial gradient of the 



turbulent correlation
*

z
v' v'θ is linked to the mean velocity components according to 

the following relationship: 

( )
*

* * *
*z r
z* * *

v' v' V V V
2   V

z r z

θ θ θα
∂ ∂

= − −
∂ ∂

       (A6) 

 

This last relation cannot be verified within the framework of this experimental 

study since the hot-wire anemometry technique described in section 2 of the 

present paper does not allow to access to the 
*

z
v' v'θ turbulent correlation 

measurements. The validation of Eq. (A6) will be the subject of a forthcoming 

study based on numerical simulations. 

 

Let us focus now on the radial distribution of the pressure. To our knowledge, all 

numerical and experimental studies have shown that the radial equilibrium 

equation *2 * * *
2V r dP drθ =  is in good agreement with the theoretical and 

numerical results. However, the solution (9) in the present study shows that the 

tangential velocity components is also a function of *z , whereas the 

dimensionless static pressure depends only on the radial location *r . It is the 

reason why we have tested a solution of the form: 

 

( ) ( )* 1*

pV K r 1
α

θ ε−
=  + ,      (A7) 

whereε  is a function of *z satisfying 1ε <<  and ( )0 0ε = .  



In the paper, ε  was replaced by *
b z  for simplicity, so that ( )*1 b z+  in Eq. (10) 

represents the first terms of a Taylor series to approximate the function g  in Eq. 

(9). 

 

Replacing (A7) in the second relation of Eqs. (A2) gives: 

 

( )
*

* * *
* * 2 *( 1 2 ) 2r r r z
r z p* * * *

V V v' v'1 dP
V V K  r 1 2

r z 2 dr z

α ε ε−∂ ∂ ∂
+ − + + = − −

∂ ∂ ∂
     (A8) 

 

Identifying the terms that are only functions of *r  give the following relationship: 

 

*
2 *( 1 2 )

p*

dP
2K  r

dr

α−=      (A9) 

 

Integration of Eq. (A9) leads to the simple theoretical solution for the radial 

distribution of the dimensionless static pressure proposed in Eq. (13). 

As the analytical solution corresponding to Eq. (13) is in good agreement with the  

data extracted from the literature, we can deduce from Eq. (A8) that the turbulent 

correlation
*

r z
v' v' must necessarily satisfy the following relationship: 

 

*
* *

* * 2 *( 1 2 )r z r r
r z p* * *

v' v' V V
V V 2K r

z r z

α ε−∂ ∂ ∂
≈ − − +

∂ ∂ ∂
    (A10) 

 



In the latter relationship, the term 2ε  were neglected with regard to ε in Eq. (A8). 

Again, Eq. (A10) needs to be validated with the help of additional numerical 

simulations in a future work. 


