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Abstract. In numerical approaches for high speed machining, the rheological behavior of 

machined materials is usually described by a Johnson Cook law. However, studies have shown that 

dynamic recrystallization phenomena appear during machining in the tool/chip interface. The 

Johnson Cook constitutive law does not include such phenomena. Thus, specific rheological models 

based on metallurgy are introduced to consider these dynamic recrystallization phenomena. Two 

empirical models proposed by Kim et al. (2003) and Lurdos (2008) are investigated in machining 

modeling.  

A two-dimensional finite element model of orthogonal cutting, using an Arbitrary Lagrangian-

Eulerian (ALE) formulation, is developed with the Abaqus/explicit software. Specific rheological 

models are implemented in the calculation code thanks to a subroutine. This finite element model 

can then predict chip formation, interfacial temperatures, chip-tool contact length, cutting forces 

and chip thickness with also and especially the recrystallized area. 

New specific experiments on an orthogonal cutting test bench are conducted on AISI 1045 steel 

specimens with an uncoated carbide tool. Many tests are performed and results are focused on total 

chip thicknesses and recrystallized chip thicknesses.  

Finally, compared to numerical results got with a Johnson Cook law, numerical results obtained 

using specific rheological models to take into account dynamic recrystallization phenomena are 

very close to experimental results. This work shows also the influence of rheological behavior laws 

on predicted results in the modeling of high speed modeling. 

Introduction 

The high-speed machining is subject to economic and ecological constraints. The improvement 

of the productivity, the reduction of the tool wear and the control of residual stresses of workpieces 

can be achieved by optimization of cutting process. The development of numerical approaches to 

accurately simulate phenomena occurring during high-speed machining is needed. 

Very high pressures combined with sliding localized at the tool tip and on the cutting face speeds 

activate specific physical phenomena. Most studies on machining modeling as works of Watremez 

et Al in 2012 [1], Brocail et Al in 2010 [2] or Rech et al in 2009 [3] are conducted with a 

rheological Johnson-Cook model determined by Jaspers and Dautzenberg in 2002 [4]. However, 

this rheological model doesn’t include microstructural phenomena which can occur in the tool-chip 

interface. In fact, the material can be subject to the dynamic recrystallization during machining 
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because of strain rates higher than 10
5
s

-1
 and Johnson Cook law is in that case no longer 

appropriated. 

Some authors have established rheological models to consider dynamic recrystallization in 

modeling. Kim et al (2003) [5] or Lurdos (2008) [6] have recently suggested more appropriated 

numerical models for machining. Both models provide two sets of parameters: one for a non-

recrystallized material and another for a recrystallized material. A softening due to recrystallization 

is clearly visible on the rheological behavior of curves. Through a routine, these laws can be 

implemented in computer code. Some authors as Courbon et Al (2013) [7] have implemented the 

model of Kim et al [5] in Abaqus to predict the percentage of recrystallized material. Other authors 

such as Arrazola and Al (2014) [8] have changed the Johnson-Cook model to include a softening on 

behavior law. In addition to deformation, strain rate and temperature, a fourth term appears in the 

modified equation of Johnson-Cook to consider the softening. This method which consists to adjust 

the Johnson-Cook law is really appropriated when the entire studied area undergoes dynamic 

recrystallization phenomena. Contrary to the rheological models of Kim and Al [5] or Lurdos [6], 

this modified law does not include a parameter to check the recrystallization or not of the material. 

For models of Kim and Al [5] or Lurdos [6], a single set of parameters is assigned to the numerical 

model regardless of the dynamic recrystallization rate. 

Rotella and Umbrello (2014) [9] have also used a modified Johnson-Cook law. In their work, 

they have combined this law with another law to determine with a numerical model the final grain 

size in chip area. However, the right use of this method needs to be ensured that the rheological 

model of Johnson-Cook is really identified for strain rates equivalent to those occurred during high-

speed machining. 

The dynamic recrystallization phenomena observed at the tool-chip interface are not the only 

target to hang into account to describe more carefully the contact in numerical simulations. Several 

studies focus on the development of advanced friction laws. Some authors consider the interface 

friction coefficient depending only on sliding velocity without consider influences of pressure and 

temperature. Rech et Al [3] have determined a friction model to describe the friction coefficient at 

the interface during machining of annealed AISI 1045 steel using TiN coated carbide tool. Recent 

works of Ben Abdelali et Al [10] (based on those of Rech [3]) allow to express again the friction 

coefficient as a function of sliding velocity. Brocail et Al [2] have conducted their study with the 

same antagonists as Rech [3] for low sliding velocities and high temperatures. These authors use an 

experimental device that simulates the behavior of tool-chip interface friction in the primary shear 

zone. Advanced friction law (Eq. 1) is defined by these authors from data collected by experimental 

and numerical simulations where σn is the normal pressure, vg local slipping velocity and Tint local 

interface temperature. 

𝜇 = 𝐶1𝜎𝑛
𝐶2𝑣𝑔

𝐶3𝑇𝑖𝑛𝑡
𝐶4                                                                                                                           (1) 

Watremez and al [1] have also led study of the sensitivity of input parameters on predicted 

output parameters in numerical machining modeling. This analysis shows a significant effect of 

input friction coefficient on predicted cutting process parameters. They finaly insist on the 

importance of precisely define the friction coefficient in finite element models of machining. 

For the present work, an experimental test enables to simulate orthogonal cutting. Several tests 

are then performed to provide experimental data in terms of chip thicknesses and recrystallized chip 

thicknesses. The following work is intended to compare the experimental results with the numerical 

results and highlight the use of rheological laws taking into account the dynamic recrystallization. 

Experimental results 

Tests of orthogonal cutting (Figure 1) are carried out for two cutting speeds (40m.min
-1

 and 

64m.min
-1

) and four cutting depths (0.1, 0.2, 0.3 and 0.4 mm). The results in terms of chip 

thicknesses are shown in Table 1. 



 

 

Figure 1 Orthogonal cutting test for a cutting speed of 64m.min-1 and a cutting depth of 0.2mm 

Table 1. Experimental results in terms of total and recrystallized chip thicknesses  

  Chip Thickness (ThTot) 
Recrystallized Chip Thickness 

(Thr) 

Cutting Speed (Vc) 40 m.min-1 64 m.min-1 40 m.min-1 64 m.min-1 

Cutting Depth (mm) 

0.1 0.33 0.27 0.08 0.089 

0.1 0.33 0.28 0.083 0.072 

0.1 0.33 0.28 0.083 0.073 

0.1 0.35 0.28 0.083 0.07 

0.1 0.35 0.3 0.086 0.075 

0.1 0.4 0.3 0.088 0.075 

0.2 0.48 0.44 0.096 0.08 

0.2 0.49 0.47 0.098 0.085 

0.2 0.57 0.48 0.11 0.09 

0.3 0.67 0.68 0.10 0.09 

0.3 0.75 0.7 0.12 0.11 

0.3 0.76 0.74 0.13 0.12 

0.4 0.9 0.88 0.11 0.12 

0.4 0.95 0.91 0.14 0.13 

0.4 0.96 0.94 0.15 0.14 

 

The geometry of these specific specimens is shown in Figure 2. A chamfer is used at the 

beginning of the sample in order to avoid the impact of the tool on the workpiece. Forces generated 

by the tool are reduced by the means of a cutting width equal to 3 mm. The sample, made of AISI 

1045 steel, measures 175mm in the longitudinal direction to get a steady-state zone during the test. 

Before test, samples are subjected to a graphite annealing in order to reduce residual stresses due to 

machining during manufacture and to homogenize their microstructures of ferrite and pearlite.  

 

Figure 2 Geometry of the sample [mm] 

A gooseneck tool is used to reduce the vibrations caused by the test bench. By its form, the tool is in 

abutment and fixed against the hydraulic ram. The uncoated cutting tool have a rake angle of 0 ° 

and a 4 ° clearance angle. The real speed of the tool is retrieved by using a high speed camera which 

captures 7000 frames per second fixed on the test bench. After the test, the chip is collected and 

coated with resin in an appropriate position. This coated sample is then cut to observe 

a chip section. This section is polished, attacked with a Nital 3% solution during 10s and finally 

observed with an optical microscope. 

Finite element model for orthogonal cutting analysis 

A two-dimensional finite element model of the orthogonal cutting with an ALE formulation 

(Arbitrary Lagrangian-Eulerian) is developed on the Abaqus software. Only the chip formation 

zone is meshed (Figure 3). Quadrilaterals CPE4RT elements coupling movement in the work plan 

and the temperature are used in Abaqus explicit. For a depth of cut equal to 0.1mm, all elements of 

the chip formation zone are smaller than 10µm. The rest of the mesh is composed of elements 

whose size ranging from 10 to 100µm. The mesh is composed of elements 4247 for the sample and 



 

1665 for the tool. The tool with has an edge radius of 50µm and is modeled as a rigid body with a 

thermal conductivity. 

In an orthogonal cutting, plastic deformations of the specimen in the primary and secondary 

shear zone and frictions at the tool/chip interface are two sources of heat. The Taylor Quinney 

coefficient converts mechanical energy into heat due to plastic deformations. In accordance with the 

work of Rosakis et al [11], the coefficient of Taylor-Quinney is set to 0.9. The heat flux produced at 

the interface is shared between the tool and the chip and 60% of the produced heat flow is assigned 

to the chip. 
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Figure 3 initial mesh and boundary conditions in displacement and temperature of the model 

For this study and according to Brocail’s work [2], friction at the tool/chip interface is modeled 

by a constant friction coefficient of Coulomb type equal to 0.4. Tool and the specimen temperatures 

are numerically initialized to 20°C. The contact between the workpiece and the tool is considered as 

thermally perfect. A high thermal conductivity of 10
6
°CW

-1
m

-2
 is applied in the contact.  

The input parameters used for numerical models are given in Table 2. The thermo-physical 

properties of the tool (uncoated carbide H13A) are taken from the work of Kalhori (2001) [12]. The 

thermo-physical properties of the workpiece are extracted from work of Grzesik and Nieslony 

(2004) [13]. 

Table 2. Input parameters for numerical models 
Worpiece material AISI 1045 

Tool material Uncoated carbide 

Cutting speeds 40 and 64 m.min-1 

Cutting depths 0.1, 0.2, 0.3 and 0.4 mm 

Cutting width 3 mm 

Rake angle 0° 

Clearance angle 4° 

Coulomb friction coefficient 0.4 

The rheological behavior law proposed by Lurdos [6] (Eq. 2) is used to take into account the 

dynamic recrystallization phenomenon in the interface and to describe the thermo-visco-plastic 

behavior of AISI 1045 steel. Each parameter of this model is described by its strain rate sensitivity 

𝑚𝑖 and its normalization constant 𝐾𝑖. For this steel, these constants have been got by Courbon [14]. 

𝜎𝑦 =  𝜎𝑠 +  (𝜎0 − 𝜎𝑠 + 𝐴𝜀𝑝
𝑛) exp(−𝑟𝜀𝑝)            𝑤𝑖𝑡ℎ 𝜎𝑖 = 𝐾𝑖. 𝑍𝑚𝑖

                                                                    (2) 

Two sets of parameters reported in table 3 have to be determined for this law with reference to 

the variable Z which is the number of Zenner-Hollomon. The first parameter deals with a value of 

Log(Z) less than or equal to 23 whereas the second parameter is related to a value of Log(Z) greater 

than 23. The value of Log (Z) allows to switch between recrystallized and non-recrystallized 

material. When this value falls below 23, the first set of parameters is used and the recrystallization 

is counted. 

Table 3. Lurdos parameters of AISI 1045 by Courbon (2011) [14] 
 Log (Z) Kσ0 mσ0 Kσs mσs Kr 

C45 
≤ 23 223.87 2.521.10-3 24.95 6.487.10-2 0.652 

> 23 250.03 -2.928.10-4 699.84 1.940.10-3 9.931 

 Log (Z) mr KA mA Kn mn 

C45 
≤ 23 5.090.10-2 2070.14 -1.343.10-2 4.682 -4.877.10-2 

> 23 1.731.10-3 - - 0.452 -5.043.10-3 



 

Results analysis  

As an example, the results got for a configuration with a depth of cut of 0.1 mm combined with a 

cutting speed of 64m.min
-1

 is shown by Figure 4. The numerical results are compared with 

experimental results. Three areas with different microstructures can be distinguished.  The first 

region is partially recrystallized and defined by a log (Z) between 32 and 23. The second area is the 

hybrid area where Log (Z) is between 23 and 21. Finally, if the value of Log (Z) is less than 21 and 

more than 18, the area is totally recrystallized. The results show also that the recrystallization 

phenomenon can’t be perfectly predicted with the single value of Log (Z) as indicator and the use of 

different ranges seem more judicious. 

            

  

 
Figure 4 Experimental and numerical results (depth of cut = 0.1 mm, cutting speed = 64m.min

-1
) 

Numerical results are very close to the experimental values. As illustrated on Figure 4, for a total 

experimental chip thickness equal to 0.28mm, a value of 0.268mm is given by numerical simulation 

give and for a recrystallized experimental chip thickness of 0.07mm, the numerical model leads to a 

value of 0.089mm. In addition, on Figure 5 and Figure 6, the curves in terms of thicknesses for the 

numerical results appear to be similar to the experimental results. 

 

 
Figure 5 Results for a cutting speed of 40m/min 

 
Figure 6 Results for a cutting speed of 64m/min 

Conclusion 

Several experimental tests have been carried out on an orthogonal cutting test bench to simulate 

specific physical phenomena at the tool-chip interface for high-speed machining conditions. A 3D 

finite element model is also implemented in Abaqus Explicit. An ALE remeshing is used to 

eliminate elements distortions and crashed calculations. Experimental and numerical analysis of 

data showed the importance of using a specific rheological behavior law incorporating dynamic 
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recrystallization phenomena. Indeed, the trend curves for numerical results appear to be similar to 

the experimental results curves in terms of total and recrystallized chip thicknesses. This work 

shows also that is more judicious to use different ranges of values for log(Z) rather than a defined 

value to predict recrystallized areas in chip thicknesses..  
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