Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers ParisTech
researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: http://hdl.handle.net/10985/9957

To cite this version:
Francisco CHINESTA, Serge CESCOTTO, Elias CUETO, Philippe LORONG - Natural Element
Method for the Simulation of Structures and Processes - 2011

Any correspondence concerning this service should be sent to the repository
Administrator: archiveouverte@ensam.eu
Natural Element Method for the Simulation of Structures and Processes

Francisco Chinesta
Serge Cescotto
Elías Cueto
Philippe Lorong
Contents

Foreword ... ix

Acknowledgements .. xi

Chapter 1. Introduction .. 1
 1.1. SPH method ... 3
 1.2. RKPM method .. 5
 1.2.1. Conditions of reproduction 6
 1.2.2. Correction of the kernel 7
 1.2.3. Discrete form of the approximation 9
 1.3. MLS based approximations 10
 1.4. Final note ... 11

Chapter 2. Basics of the Natural Element Method 13
 2.1. Introduction .. 13
 2.2. Natural neighbor Galerkin methods 14
 2.2.1. Interpolation of natural neighbors 14
 2.2.2. Discretization ... 18
 2.2.3. Properties of the interpolant based on natural neighbors .. 19
 2.3. Exact imposition of the essential boundary conditions 22
 2.3.1. Introduction to alpha shapes 23
 2.3.2. CNEM approaches 25
 2.4. Mixed approximations of natural neighbor type 27
 2.4.1. Considering the restriction of incompressibility 28
 2.4.2. Mixed approximations in the Galerkin method 32
 2.4.3. Natural neighbor partition of unity 33
 2.4.3.1. Partition of unity method 33
 2.4.3.2. Enrichment of the natural neighbor interpolants 35
2.5. High order natural neighbor interpolants

2.5.1. Hiyoshi–Sugihara interpolant

2.5.2. The De Boor algorithm for B-splines

2.5.3. B-spline surfaces and natural neighboring

2.5.3.1. Some definitions

2.5.3.2. Surface properties

2.5.3.3. The case of repeated nodes

Chapter 3. Numerical Aspects

3.1. Searching for natural neighbors

3.2. Calculation of NEM shape functions of the Sibson type

3.2.1. Stage-1: insertion of point x in the existing constrained Voronoi diagram (CVD)

3.2.1.1. Look for a tetrahedron which contains point x

3.2.1.2. Note concerning the problem of flat tetrahedrons

3.2.2. Stage-2: calculation of the volume measurement common to \hat{c}_x and c_0

3.2.2.1. By the recursive Lasserre algorithm

3.2.2.2. By means of a complementary volume

3.2.2.3. By topological approach based on the CVD

3.2.2.4. By topological approach based on the Constrained Delaunay tetrahedization (CDT)

3.2.2.5. Using the Watson algorithm

3.2.3. Comparative test of the various algorithms

3.3. Numerical integration

3.3.1. Decomposition of shape function supports

3.3.2. Stabilized nodal integration

3.3.3. Discussion in connection with various quadratures

3.3.3.1. 2D patch test with a technique of decomposition of shape function supports

3.3.3.2. 2D patch test with stabilized nodal integration

3.3.3.3. 3D patch tests

3.4. NEM on an octree structure

3.4.1. Structure of the data

3.4.1.1. Description of the geometry

3.4.1.2. Interpolation on a quadtree

3.4.1.3. Numerical integration

3.4.2. Application of the boundary conditions – interface conditions

3.4.2.1. Dirichlet-type boundary conditions: use of \hat{R}-functions

3.4.2.2. Neumann-type boundary conditions

3.4.2.3. Partition of unity method
Chapter 4. Applications in the Mechanics of Structures and Processes 93

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.</td>
<td>Two- and three-dimensional elasticity</td>
<td>93</td>
</tr>
<tr>
<td>4.2.</td>
<td>Indicators and estimators of error: adaptivity</td>
<td>96</td>
</tr>
<tr>
<td>4.2.1.</td>
<td>Meshless methods and adaptation</td>
<td>96</td>
</tr>
<tr>
<td>4.2.2.</td>
<td>Methodology of adaptive refinement for linear elasticity in statics</td>
<td>98</td>
</tr>
<tr>
<td>4.2.2.1.</td>
<td>Formulation in static linear elasticity</td>
<td>99</td>
</tr>
<tr>
<td>4.2.2.2.</td>
<td>The first indicator based on the rebuilding of discontinuous stress fields</td>
<td>102</td>
</tr>
<tr>
<td>4.2.2.3.</td>
<td>The second indicator based on the rebuilding of continuous fields of strain</td>
<td>103</td>
</tr>
<tr>
<td>4.2.2.4.</td>
<td>Refinement strategy based on Voronoi cells</td>
<td>105</td>
</tr>
<tr>
<td>4.3.</td>
<td>Metal extrusion</td>
<td>107</td>
</tr>
<tr>
<td>4.3.1.</td>
<td>Viscoplastic model for the extrusion of aluminum</td>
<td>108</td>
</tr>
<tr>
<td>4.3.2.</td>
<td>3D simulation of the extrusion of a cross-shaped profile</td>
<td>111</td>
</tr>
<tr>
<td>4.4.</td>
<td>Friction stir welding</td>
<td>113</td>
</tr>
<tr>
<td>4.4.1.</td>
<td>Constitutive equation</td>
<td>117</td>
</tr>
<tr>
<td>4.4.1.1.</td>
<td>Mechanical model</td>
<td>118</td>
</tr>
<tr>
<td>4.4.2.</td>
<td>Numerical results</td>
<td>120</td>
</tr>
<tr>
<td>4.5.</td>
<td>Models and numerical treatment of the phase transition: foundry and treatment of surfaces</td>
<td>123</td>
</tr>
<tr>
<td>4.5.1.</td>
<td>Introducing motion discontinuity</td>
<td>123</td>
</tr>
<tr>
<td>4.5.1.1.</td>
<td>Formulation of the thermal problem with phase transition</td>
<td>124</td>
</tr>
<tr>
<td>4.5.1.2.</td>
<td>CNEM discretization</td>
<td>126</td>
</tr>
<tr>
<td>4.6.</td>
<td>Adiabatic shearing, cutting, and high speed blanking</td>
<td>136</td>
</tr>
<tr>
<td>4.6.1.</td>
<td>General context of the implementation of the large transformations</td>
<td>140</td>
</tr>
<tr>
<td>4.6.1.1.</td>
<td>Updated Lagrangian formulation</td>
<td>141</td>
</tr>
<tr>
<td>4.6.1.2.</td>
<td>Processing the additional points</td>
<td>141</td>
</tr>
<tr>
<td>4.6.1.3.</td>
<td>Time integration scheme</td>
<td>142</td>
</tr>
<tr>
<td>4.6.1.4.</td>
<td>Processing of the contact</td>
<td>142</td>
</tr>
<tr>
<td>4.6.1.5.</td>
<td>Integration of the constitutive equation</td>
<td>142</td>
</tr>
<tr>
<td>4.6.2.</td>
<td>Applications</td>
<td>145</td>
</tr>
<tr>
<td>4.6.2.1.</td>
<td>Taylor’s bar</td>
<td>145</td>
</tr>
<tr>
<td>4.6.2.2.</td>
<td>Adiabatic shearing</td>
<td>148</td>
</tr>
<tr>
<td>4.6.3.</td>
<td>Conclusions on the numerical simulation of shearing</td>
<td>158</td>
</tr>
</tbody>
</table>

Chapter 5. A Mixed Approach to the Natural Elements 159

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.</td>
<td>Introduction</td>
<td>159</td>
</tr>
<tr>
<td>5.2.</td>
<td>The Fraeijs de Veubeke variational principle for linear elastic problems</td>
<td>161</td>
</tr>
<tr>
<td>5.3.</td>
<td>Field decomposition</td>
<td>164</td>
</tr>
</tbody>
</table>
5.4. Discretization .. 166
5.5. Discretized equations ... 170
5.6. Matrix solution for linear elastic problems 172
5.7. Numerical integration ... 176
5.8. Linear elastic patch tests .. 178
5.9. Application 1: pure bending of a linear elastic beam 182
5.10. Application 2: square domain with circular hole 185
5.11. Mixed approach to nonlinear problems 187
5.12. Step-by-step solution of the discretized nonlinear equations 192
5.13. Example of an elastoplastic material 195
5.15. Conclusion .. 199

Chapter 6. Flow Models .. 201
6.1. Natural element method in fluid mechanics: updated Lagrangian approach .. 201
 6.1.1. Mechanical model of a Newtonian fluid flow 201
6.2. Free and moving surfaces ... 202
 6.2.1. Use of the characteristics method 204
6.3. Short-fiber suspensions flow 206
 6.3.1. Flow kinematics .. 207
 6.3.2. Coupling of a particle method with α-NEM 208
6.4. Breaking dam problem .. 208
6.5. Multi-scale approaches ... 209
 6.5.1. Mechanical model ... 214
 6.5.1.1. FENE model .. 216
 6.5.1.2. Doi–Edwards model 217
 6.5.2. Integration of the model 218
 6.5.2.1. Functional approximation 218
 6.5.2.2. Discretization of the model 218
 6.5.2.3. Resolution algorithm 219
 6.5.3. Some results .. 220
 6.5.3.1. Startup of a simple shear flow of an FENE fluid model 220
 6.5.3.2. Flow from an extrusion die and FENE-fluid 220
 6.5.3.3. Startup of a simple shear flow of a Doi–Edwards fluid model .. 223

Chapter 7. Conclusion ... 225

Bibliography .. 227

Index ... 239