SAM
https://sam.ensam.eu:443
The DSpace digital repository system captures, stores, indexes, preserves, and distributes digital research material.Fri, 10 Jul 2020 21:41:08 GMT2020-07-10T21:41:08ZCharacterization of the local Electrical Properties of Electrical Machine Parts with non-Trivial Geometry
http://hdl.handle.net/10985/9861
Characterization of the local Electrical Properties of Electrical Machine Parts with non-Trivial Geometry
ARBENZ, Laure; BENABOU, Abdelkader; CLENET, Stéphane; MIPO, Jean-Claude; FAVEROLLE, Pierre
In electrical machines, knowing the electrical conductivity is of importance for the eddy current calculation, especially when massive iron parts are involved. Generally the conductivity is measured on samples of raw materials with simple geometries. Indeed, a simple geometry is suitable for applying an analytical approach to deduce the electrical conductivity from the measured electrical quantities. Nevertheless, when a non destructive measurement is required, the measurement of the electrical conductivity can become rather difficult on parts with complex geometry. To that end, with the help of the Finite Element Modeling approach (FEM), a strategy is developed to characterize the local electrical properties of parts with a non-trivial geometry.
Thu, 01 Jan 2015 00:00:00 GMThttp://hdl.handle.net/10985/98612015-01-01T00:00:00ZARBENZ, LaureBENABOU, AbdelkaderCLENET, StéphaneMIPO, Jean-ClaudeFAVEROLLE, PierreIn electrical machines, knowing the electrical conductivity is of importance for the eddy current calculation, especially when massive iron parts are involved. Generally the conductivity is measured on samples of raw materials with simple geometries. Indeed, a simple geometry is suitable for applying an analytical approach to deduce the electrical conductivity from the measured electrical quantities. Nevertheless, when a non destructive measurement is required, the measurement of the electrical conductivity can become rather difficult on parts with complex geometry. To that end, with the help of the Finite Element Modeling approach (FEM), a strategy is developed to characterize the local electrical properties of parts with a non-trivial geometry.Characterization of the local incremental permeability of a ferromagnetic plate based on a four needles technique
http://hdl.handle.net/10985/11754
Characterization of the local incremental permeability of a ferromagnetic plate based on a four needles technique
ARBENZ, Laure; BENABOU, Abdelkader; CLÉNET, Stéphane; FAVEROLLE, Pierre; MIPO, Jean-Claude
The performances of electrical machines depend highly on the behavior of ferromagnetic materials. In some applications, these materials operate under DC polarization, i.e. when the magnetic field oscillates around a DC bias. In that condition, it is required to know the incremental permeability which characterizes the magnetic behavior of the material around the operating point. In this paper, a non-destructive approach, involving a combination of experiment and Finite Element (FE) technique, is presented in order to determine the incremental permeability. The proposed sensor is based on the four-needles method. With this sensor, Bowler et al. have proposed a method to determine the initial permeability of homogeneous metal plates based on an analytical model. Here we propose to use the same kind of sensor to determine the incremental permeability. The measurement process is analyzed using a FE model. It is shown that the analytical approach reaches its limits if the permeability of the plate and its thickness become too high. A combination between the measurements and a FE model is introduced to overcome this
Fri, 01 Jan 2016 00:00:00 GMThttp://hdl.handle.net/10985/117542016-01-01T00:00:00ZARBENZ, LaureBENABOU, AbdelkaderCLÉNET, StéphaneFAVEROLLE, PierreMIPO, Jean-ClaudeThe performances of electrical machines depend highly on the behavior of ferromagnetic materials. In some applications, these materials operate under DC polarization, i.e. when the magnetic field oscillates around a DC bias. In that condition, it is required to know the incremental permeability which characterizes the magnetic behavior of the material around the operating point. In this paper, a non-destructive approach, involving a combination of experiment and Finite Element (FE) technique, is presented in order to determine the incremental permeability. The proposed sensor is based on the four-needles method. With this sensor, Bowler et al. have proposed a method to determine the initial permeability of homogeneous metal plates based on an analytical model. Here we propose to use the same kind of sensor to determine the incremental permeability. The measurement process is analyzed using a FE model. It is shown that the analytical approach reaches its limits if the permeability of the plate and its thickness become too high. A combination between the measurements and a FE model is introduced to overcome thisCharacterization of the Local Incremental Permeability of a Ferromagnetic Plate Based on a Four Needles Technique
http://hdl.handle.net/10985/16569
Characterization of the Local Incremental Permeability of a Ferromagnetic Plate Based on a Four Needles Technique
ARBENZ, Laure; BENABOU, Abdelkader; CLENET, Stéphane; MIPO, Jean-Claude; FAVEROLLE, Pierre
The performances of electrical machines depend highly on the behavior of ferromagnetic materials. In some applications, these materials operate under DC polarization, i.e. when the magnetic field oscillates around a DC bias. In that condition, it is required to know the incremental permeability which characterizes the magnetic behavior of the material around the operating point. In this paper, a non-destructive approach, involving a combination of experiment and Finite Element (FE) technique, is presented in order to determine the incremental permeability. The proposed sensor is based on the four-needles method. With this sensor, Bowler et al. have proposed a method to determine the initial permeability of homogeneous metal plates based on an analytical model. Here we propose to use the same kind of sensor to determine the incremental permeability. The measurement process is analyzed using a FE model. It is shown that the analytical approach reaches its limits if the permeability of the plate and its thickness become too high. A combination between the measurements and a FE model is introduced to overcome this difficulty to determine the incremental permeability. The study of two magnetic steel samples illustrates the interest of this method.
Fri, 01 Jan 2016 00:00:00 GMThttp://hdl.handle.net/10985/165692016-01-01T00:00:00ZARBENZ, LaureBENABOU, AbdelkaderCLENET, StéphaneMIPO, Jean-ClaudeFAVEROLLE, PierreThe performances of electrical machines depend highly on the behavior of ferromagnetic materials. In some applications, these materials operate under DC polarization, i.e. when the magnetic field oscillates around a DC bias. In that condition, it is required to know the incremental permeability which characterizes the magnetic behavior of the material around the operating point. In this paper, a non-destructive approach, involving a combination of experiment and Finite Element (FE) technique, is presented in order to determine the incremental permeability. The proposed sensor is based on the four-needles method. With this sensor, Bowler et al. have proposed a method to determine the initial permeability of homogeneous metal plates based on an analytical model. Here we propose to use the same kind of sensor to determine the incremental permeability. The measurement process is analyzed using a FE model. It is shown that the analytical approach reaches its limits if the permeability of the plate and its thickness become too high. A combination between the measurements and a FE model is introduced to overcome this difficulty to determine the incremental permeability. The study of two magnetic steel samples illustrates the interest of this method.