SAM
https://sam.ensam.eu:443
The DSpace digital repository system captures, stores, indexes, preserves, and distributes digital research material.Fri, 19 Jul 2019 07:58:15 GMT2019-07-19T07:58:15ZA Simple Carrier-Based Modulation for the SVM of the Matrix Converter
http://hdl.handle.net/10985/6748
A Simple Carrier-Based Modulation for the SVM of the Matrix Converter
GRUSON, François; LE MOIGNE, Philippe; DELARUE, Philippe; VIDET, Arnaud; CIMETIERE, Xavier; ARPILLIERE, Michel
Today, industry has not fully embraced the matrix converter solution. One important reason is its high control complexity. It is therefore relevant to propose a simpler but efficient modulation scheme, similar as three phase voltage source inverter modulators with the well-known symmetrical carrier-based ones. The modulation presented in this paper is equivalent to a particular space vector modulation (SVM) and takes into account harmonics and unbalanced input voltages, with the same maximum voltage transfer ratio (86%). The aim of this work is to propose a simple and general pulse width-modulation method using carrier-based modulator for an easier matrix converter control. Furthermore, a simple duty cycle calculation method is used, based on a virtual matrix converter. Finally, simulations and experimentations are presented to validate this simple, original and efficient modulation concept equivalent to matrix converter SVM.
Tue, 01 Jan 2013 00:00:00 GMThttp://hdl.handle.net/10985/67482013-01-01T00:00:00ZGRUSON, FrançoisLE MOIGNE, PhilippeDELARUE, PhilippeVIDET, ArnaudCIMETIERE, XavierARPILLIERE, MichelToday, industry has not fully embraced the matrix converter solution. One important reason is its high control complexity. It is therefore relevant to propose a simpler but efficient modulation scheme, similar as three phase voltage source inverter modulators with the well-known symmetrical carrier-based ones. The modulation presented in this paper is equivalent to a particular space vector modulation (SVM) and takes into account harmonics and unbalanced input voltages, with the same maximum voltage transfer ratio (86%). The aim of this work is to propose a simple and general pulse width-modulation method using carrier-based modulator for an easier matrix converter control. Furthermore, a simple duty cycle calculation method is used, based on a virtual matrix converter. Finally, simulations and experimentations are presented to validate this simple, original and efficient modulation concept equivalent to matrix converter SVM.