SAM
https://sam.ensam.eu:443
The DSpace digital repository system captures, stores, indexes, preserves, and distributes digital research material.Mon, 04 Mar 2024 12:15:00 GMT2024-03-04T12:15:00ZA space–time approach in digital image correlation: Movie-DIC
http://hdl.handle.net/10985/7334
A space–time approach in digital image correlation: Movie-DIC
BESNARD, Gilles; GUERARD, Sandra; ROUX, Stéphane; HILD, François
A new method is proposed to estimate arbitrary velocity fields from a time series of images acquired by a single camera. This approach, here focused on a single spatial plus a time dimension, is specialized to the decomposition of the velocity field over rectangular shaped (finite-element) bilinear shape functions. It is therefore assumed that the velocity field is essentially aligned along one direction. The use of a time sequence over which the velocity is assumed to have a smooth temporal change allows one to use elements whose spatial extension is much smaller than in traditional digital image correlation based on successive image pairs. This method is first qualified by using synthetic numerical test cases, and then applied to a dynamic tensile test performed on a tantalum specimen. Improvements with respect to classical digital image correlation techniques are observed in terms of spatial resolution.
Sat, 01 Jan 2011 00:00:00 GMThttp://hdl.handle.net/10985/73342011-01-01T00:00:00ZBESNARD, GillesGUERARD, SandraROUX, StéphaneHILD, FrançoisA new method is proposed to estimate arbitrary velocity fields from a time series of images acquired by a single camera. This approach, here focused on a single spatial plus a time dimension, is specialized to the decomposition of the velocity field over rectangular shaped (finite-element) bilinear shape functions. It is therefore assumed that the velocity field is essentially aligned along one direction. The use of a time sequence over which the velocity is assumed to have a smooth temporal change allows one to use elements whose spatial extension is much smaller than in traditional digital image correlation based on successive image pairs. This method is first qualified by using synthetic numerical test cases, and then applied to a dynamic tensile test performed on a tantalum specimen. Improvements with respect to classical digital image correlation techniques are observed in terms of spatial resolution.Volume changes in a filled elastomer studied via digital image correlation
http://hdl.handle.net/10985/6521
Volume changes in a filled elastomer studied via digital image correlation
DE CREVOISIER, Jordan; BESNARD, Gilles; MERCKEL, Yannick; ZHANG, Huan; CAILLARD, Julien; VION-LOISEL, Fabien; BERGHEZAN, Daniel; CRETON, Costantino; DIANI, Julie; BRIEU, Mathias; HILD, François; ROUX, Stéphane
Volumetric strains in a filled SBR specimen subjected to cyclic uniaxial tension with increasing extensions are studied. Digital image correlation is used to follow the kinematics of two orthogonal free faces. A volume expansion is observed past a critical elongation, which can be interpreted as the onset of cavitation. Under unloading, the volume returns to its original value and remains constant upon reloading. Increasing the elongation to higher values than the previous cycle leads again to a volumetric expansion.
Sun, 01 Jan 2012 00:00:00 GMThttp://hdl.handle.net/10985/65212012-01-01T00:00:00ZDE CREVOISIER, JordanBESNARD, GillesMERCKEL, YannickZHANG, HuanCAILLARD, JulienVION-LOISEL, FabienBERGHEZAN, DanielCRETON, CostantinoDIANI, JulieBRIEU, MathiasHILD, FrançoisROUX, StéphaneVolumetric strains in a filled SBR specimen subjected to cyclic uniaxial tension with increasing extensions are studied. Digital image correlation is used to follow the kinematics of two orthogonal free faces. A volume expansion is observed past a critical elongation, which can be interpreted as the onset of cavitation. Under unloading, the volume returns to its original value and remains constant upon reloading. Increasing the elongation to higher values than the previous cycle leads again to a volumetric expansion.