SAM
https://sam.ensam.eu:443
The DSpace digital repository system captures, stores, indexes, preserves, and distributes digital research material.Thu, 18 Aug 2022 23:12:17 GMT2022-08-18T23:12:17ZInnovative design method and experimental investigation of a small-scale and very low tip-speed ratio wind turbine
http://hdl.handle.net/10985/21360
Innovative design method and experimental investigation of a small-scale and very low tip-speed ratio wind turbine
BOURHIS, Martin; PEREIRA, Michael; RAVELET, Florent; DOBREV, Ivan
Small horizontal axis wind turbines operating at low wind speeds face the issue of low performance compared to large wind turbines. A high amount of torque is required to start producing power at low wind speed to overtake friction of mechanical parts. A low design tip-speed ratio (λ) is suitable for low power applications. The relevance of the classical blade-element/ momentum theory, traditionally used for the design of large wind turbines operating at high tip-speed ratio, is controversial at low tip-speed ratio. This paper presents a new design methodology for a 300 mm horizontal axis wind turbine operating at very low tip-speed ratio. Chord and blade angle distributions were computed by applying the Euler’s turbomachinery theorem. The new wind turbine has multiple fan-type blades and a high solidity. The rotor was tested in wind tunnel. The power and torque coefficients have been measured, and the velocities in the wake have been explored by stereoscopic particle image velocimetry. The results are compared to a conventional 3-bladed horizontal axis wind turbine operating at higher tip-speed ratio λ = 3. The new wind turbine achieves a maximum power coefficient of 0.31 for λ = 1. The conventional wind turbine achieves similar performance. At low tip-speed ratio, the torque coefficient (Cτ) is higher for the new wind turbine than for the conventional one and decreases linearly with the tip-speed ratio. The high magnitude of torque at low tip-speed ratio allows it to have lower instantaneous cut-in wind speed (2.4 m.s−1) than the conventional wind turbine (7.9 m.s−1). The order of magnitude of the axial and tangential velocities in the near wake are closed to the design requirements. The current method could still be improved in order to better predict the profiles. The analysis of the wake shows that the new wind turbine induces a highly stable and rotating wake, with lower wake expansion and deceleration than the conventional one. This could be useful to drive a contra-rotating rotor.
Fri, 01 Jan 2021 00:00:00 GMThttp://hdl.handle.net/10985/213602021-01-01T00:00:00ZBOURHIS, MartinPEREIRA, MichaelRAVELET, FlorentDOBREV, IvanSmall horizontal axis wind turbines operating at low wind speeds face the issue of low performance compared to large wind turbines. A high amount of torque is required to start producing power at low wind speed to overtake friction of mechanical parts. A low design tip-speed ratio (λ) is suitable for low power applications. The relevance of the classical blade-element/ momentum theory, traditionally used for the design of large wind turbines operating at high tip-speed ratio, is controversial at low tip-speed ratio. This paper presents a new design methodology for a 300 mm horizontal axis wind turbine operating at very low tip-speed ratio. Chord and blade angle distributions were computed by applying the Euler’s turbomachinery theorem. The new wind turbine has multiple fan-type blades and a high solidity. The rotor was tested in wind tunnel. The power and torque coefficients have been measured, and the velocities in the wake have been explored by stereoscopic particle image velocimetry. The results are compared to a conventional 3-bladed horizontal axis wind turbine operating at higher tip-speed ratio λ = 3. The new wind turbine achieves a maximum power coefficient of 0.31 for λ = 1. The conventional wind turbine achieves similar performance. At low tip-speed ratio, the torque coefficient (Cτ) is higher for the new wind turbine than for the conventional one and decreases linearly with the tip-speed ratio. The high magnitude of torque at low tip-speed ratio allows it to have lower instantaneous cut-in wind speed (2.4 m.s−1) than the conventional wind turbine (7.9 m.s−1). The order of magnitude of the axial and tangential velocities in the near wake are closed to the design requirements. The current method could still be improved in order to better predict the profiles. The analysis of the wake shows that the new wind turbine induces a highly stable and rotating wake, with lower wake expansion and deceleration than the conventional one. This could be useful to drive a contra-rotating rotor.Numerical Assesment of a Small-Scale and Very Low Tip Speed Ratio Wind Turbine
http://hdl.handle.net/10985/21379
Numerical Assesment of a Small-Scale and Very Low Tip Speed Ratio Wind Turbine
BOURHIS, Martin; PEREIRA, Michaël; RAVELET, Florent; DOBREV, Ivan
The aim of this paper is to study by CFD the performance and to characterize the velocity fields in the wake of an horizontal axis wind turbine. The design of this wind turbine is far from classical as it has been designed to work at very low angular velocity to promote torque. The 8 blades are not isolated but form a high solidity blade cascade. The numerical simulation compares well to experimental data regarding the power coefficients. The analysis of the wake does show that high tangential velocities, close to the order of magnitude that was used as a design requirement, are generated and form a stable rotating wake. This rotating kinetic energy in the wake may be used to rotate a second rotor in a counter-rotating arrangment.
Fri, 01 Jan 2021 00:00:00 GMThttp://hdl.handle.net/10985/213792021-01-01T00:00:00ZBOURHIS, MartinPEREIRA, MichaëlRAVELET, FlorentDOBREV, IvanThe aim of this paper is to study by CFD the performance and to characterize the velocity fields in the wake of an horizontal axis wind turbine. The design of this wind turbine is far from classical as it has been designed to work at very low angular velocity to promote torque. The 8 blades are not isolated but form a high solidity blade cascade. The numerical simulation compares well to experimental data regarding the power coefficients. The analysis of the wake does show that high tangential velocities, close to the order of magnitude that was used as a design requirement, are generated and form a stable rotating wake. This rotating kinetic energy in the wake may be used to rotate a second rotor in a counter-rotating arrangment.