SAM
https://sam.ensam.eu:443
The DSpace digital repository system captures, stores, indexes, preserves, and distributes digital research material.Sun, 26 Sep 2021 19:34:03 GMT2021-09-26T19:34:03ZParametric Electromagnetic Analysis of Radar-Based Advanced Driver Assistant Systems
http://hdl.handle.net/10985/19416
Parametric Electromagnetic Analysis of Radar-Based Advanced Driver Assistant Systems
VERMIGLIO, Simona; CHAMPANEY, Victor; SANCARLOS, Abel; DAIM, Fatima; KEDZIA, Jean Claude; DUVAL, Jean Louis; DIEZ, Pedro; CHINESTA, Francisco
Efficient and optimal design of radar-based Advanced Driver Assistant Systems (ADAS) needs the evaluation of many different electromagnetic solutions for evaluating the impact of the radome on the electromagnetic wave propagation. Because of the very high frequency at which these devices operate, with the associated extremely small wavelength, very fine meshes are needed to accurately discretize the electromagnetic equations. Thus, the computational cost of each numerical solution for a given choice of the design or operation parameters, is high (CPU time consuming and needing significant computational resources) compromising the efficiency of standard optimization algorithms. In order to alleviate the just referred difficulties the present paper proposes an approach based on the use of reduced order modeling, in particular the construction of a parametric solution by employing a non-intrusive formulation of the Proper Generalized Decomposition, combined with a powerful phase-angle unwrapping strategy for accurately addressing the electric and magnetic fields interpolation, contributing to improve the design, the calibration and the operational use of those systems.
Wed, 01 Jan 2020 00:00:00 GMThttp://hdl.handle.net/10985/194162020-01-01T00:00:00ZVERMIGLIO, SimonaCHAMPANEY, VictorSANCARLOS, AbelDAIM, FatimaKEDZIA, Jean ClaudeDUVAL, Jean LouisDIEZ, PedroCHINESTA, FranciscoEfficient and optimal design of radar-based Advanced Driver Assistant Systems (ADAS) needs the evaluation of many different electromagnetic solutions for evaluating the impact of the radome on the electromagnetic wave propagation. Because of the very high frequency at which these devices operate, with the associated extremely small wavelength, very fine meshes are needed to accurately discretize the electromagnetic equations. Thus, the computational cost of each numerical solution for a given choice of the design or operation parameters, is high (CPU time consuming and needing significant computational resources) compromising the efficiency of standard optimization algorithms. In order to alleviate the just referred difficulties the present paper proposes an approach based on the use of reduced order modeling, in particular the construction of a parametric solution by employing a non-intrusive formulation of the Proper Generalized Decomposition, combined with a powerful phase-angle unwrapping strategy for accurately addressing the electric and magnetic fields interpolation, contributing to improve the design, the calibration and the operational use of those systems.Learning data-driven reduced elastic and inelastic models of spot-welded patches
http://hdl.handle.net/10985/20416
Learning data-driven reduced elastic and inelastic models of spot-welded patches
REILLE, Agathe; CHAMPANEY, Victor; DAIM, Fatima; TOURBIER, Yves; HASCOET, Nicolas; GONZALEZ, David; CUETO, Elias; DUVAL, Jean Louis; CHINESTA, Francisco
Solving mechanical problems in large structures with rich localized behaviors remains a challenging issue despite the enormous advances in numerical procedures and computational performance. In particular, these localized behaviors need for extremely fine descriptions, and this has an associated impact in the number of degrees of freedom from one side, and the decrease of the time step employed in usual explicit time integrations, whose stability scales with the size of the smallest element involved in the mesh. In the present work we propose a data-driven technique for learning the rich behavior of a local patch and integrate it into a standard coarser description at the structure level. Thus, localized behaviors impact the global structural response without needing an explicit description of that fine scale behaviors.
Fri, 01 Jan 2021 00:00:00 GMThttp://hdl.handle.net/10985/204162021-01-01T00:00:00ZREILLE, AgatheCHAMPANEY, VictorDAIM, FatimaTOURBIER, YvesHASCOET, NicolasGONZALEZ, DavidCUETO, EliasDUVAL, Jean LouisCHINESTA, FranciscoSolving mechanical problems in large structures with rich localized behaviors remains a challenging issue despite the enormous advances in numerical procedures and computational performance. In particular, these localized behaviors need for extremely fine descriptions, and this has an associated impact in the number of degrees of freedom from one side, and the decrease of the time step employed in usual explicit time integrations, whose stability scales with the size of the smallest element involved in the mesh. In the present work we propose a data-driven technique for learning the rich behavior of a local patch and integrate it into a standard coarser description at the structure level. Thus, localized behaviors impact the global structural response without needing an explicit description of that fine scale behaviors.Data-Driven Modeling for Multiphysics Parametrized Problems-Application to Induction Hardening Process
http://hdl.handle.net/10985/20595
Data-Driven Modeling for Multiphysics Parametrized Problems-Application to Induction Hardening Process
DEROUICHE, Khouloud; GAROIS, Sevan; CHAMPANEY, Victor; DAOUD, Monzer; TRAIDI, Khalil; CHINESTA, Francisco
Data-driven modeling provides an efficient approach to compute approximate solutions for complex multiphysics parametrized problems such as induction hardening (IH) process. Basically, some physical quantities of interest (QoI) related to the IH process will be evaluated under real-time constraint, without any explicit knowledge of the physical behavior of the system. Hence, computationally expensive finite element models will be replaced by a parametric solution, called metamodel. Two data-driven models for temporal evolution of temperature and austenite phase transformation, during induction heating, were first developed by using the proper orthogonal decomposition based reduced-order model followed by a nonlinear regression method for temperature field and a classification combined with regression for austenite evolution. Then, data-driven and hybrid models were created to predict hardness, after quenching. It is shown that the results of artificial intelligence models are promising and provide good approximations in the low-data limit case.
Fri, 01 Jan 2021 00:00:00 GMThttp://hdl.handle.net/10985/205952021-01-01T00:00:00ZDEROUICHE, KhouloudGAROIS, SevanCHAMPANEY, VictorDAOUD, MonzerTRAIDI, KhalilCHINESTA, FranciscoData-driven modeling provides an efficient approach to compute approximate solutions for complex multiphysics parametrized problems such as induction hardening (IH) process. Basically, some physical quantities of interest (QoI) related to the IH process will be evaluated under real-time constraint, without any explicit knowledge of the physical behavior of the system. Hence, computationally expensive finite element models will be replaced by a parametric solution, called metamodel. Two data-driven models for temporal evolution of temperature and austenite phase transformation, during induction heating, were first developed by using the proper orthogonal decomposition based reduced-order model followed by a nonlinear regression method for temperature field and a classification combined with regression for austenite evolution. Then, data-driven and hybrid models were created to predict hardness, after quenching. It is shown that the results of artificial intelligence models are promising and provide good approximations in the low-data limit case.Learning the Parametric Transfer Function of Unitary Operations for Real-Time Evaluation of Manufacturing Processes Involving Operations Sequencing
http://hdl.handle.net/10985/20468
Learning the Parametric Transfer Function of Unitary Operations for Real-Time Evaluation of Manufacturing Processes Involving Operations Sequencing
LOREAU, Tanguy; CHAMPANEY, Victor; HASCOËT, Nicolas; MOURGUE, Philippe; DUVAL, Jean-Louis; CHINESTA, Francisco
For better designing manufacturing processes, surrogate models were widely considered in the past, where the effect of different material and process parameters was considered from the use of a parametric solution. The last contains the solution of the model describing the system under study, for any choice of the selected parameters. These surrogate models, also known as meta-models, virtual charts or computational vademecum, in the context of model order reduction, were successfully employed in a variety of industrial applications. However, they remain confronted to a major difficulty when the number of parameters grows exponentially. Thus, processes involving trajectories or sequencing entail a combinatorial exposition (curse of dimensionality) not only due to the number of possible combinations, but due to the number of parameters needed to describe the process. The present paper proposes a promising route for circumventing, or at least alleviating that difficulty. The proposed technique consists of a parametric transfer function that, as soon as it is learned, allows for, from a given state, inferring the new state after the application of a unitary operation, defined as a step in the sequenced process. Thus, any sequencing can be evaluated almost in real time by chaining that unitary transfer function, whose output becomes the input of the next operation. The benefits and potential of such a technique are illustrated on a problem of industrial relevance, the one concerning the induced deformation on a structural part when printing on it a series of stiffeners.
Fri, 01 Jan 2021 00:00:00 GMThttp://hdl.handle.net/10985/204682021-01-01T00:00:00ZLOREAU, TanguyCHAMPANEY, VictorHASCOËT, NicolasMOURGUE, PhilippeDUVAL, Jean-LouisCHINESTA, FranciscoFor better designing manufacturing processes, surrogate models were widely considered in the past, where the effect of different material and process parameters was considered from the use of a parametric solution. The last contains the solution of the model describing the system under study, for any choice of the selected parameters. These surrogate models, also known as meta-models, virtual charts or computational vademecum, in the context of model order reduction, were successfully employed in a variety of industrial applications. However, they remain confronted to a major difficulty when the number of parameters grows exponentially. Thus, processes involving trajectories or sequencing entail a combinatorial exposition (curse of dimensionality) not only due to the number of possible combinations, but due to the number of parameters needed to describe the process. The present paper proposes a promising route for circumventing, or at least alleviating that difficulty. The proposed technique consists of a parametric transfer function that, as soon as it is learned, allows for, from a given state, inferring the new state after the application of a unitary operation, defined as a step in the sequenced process. Thus, any sequencing can be evaluated almost in real time by chaining that unitary transfer function, whose output becomes the input of the next operation. The benefits and potential of such a technique are illustrated on a problem of industrial relevance, the one concerning the induced deformation on a structural part when printing on it a series of stiffeners.