SAM
https://sam.ensam.eu:443
The DSpace digital repository system captures, stores, indexes, preserves, and distributes digital research material.Mon, 25 May 2020 07:54:55 GMT2020-05-25T07:54:55ZA coupled electromagnetic / hydrodynamic model for the design of an integrated rim - driven naval propulsion system
http://hdl.handle.net/10985/9258
A coupled electromagnetic / hydrodynamic model for the design of an integrated rim - driven naval propulsion system
DROUEN, Laurent; CHARPENTIER, Jean-Frederic; HAUVILLE, Frédéric; SEMAIL, Eric; CLENET, Stéphane
This paper presents an analytical multi-physic modeling tool for the design optimization of a new kind of naval propulsion system. This innovative technology consists in an electrical permanent magnet motor that is integrated into a duct and surrounds a propeller. Compared with more conventional systems such as pods, the electrical machine and the propeller have the same diameter. Thus, their geometries, in addition to speed and torque, are closely related and a multidisciplinary design approach is relevant. Two disciplines are considered in this analytical model: electromagnetism and hydrodynamics. An example of systematic design for a typical application (a rim-driven thruster for a patrol boat) is then presented for a set of different design objectives (efficiency, mass, etc). The effects of each model are commented
Tue, 01 Jan 2008 00:00:00 GMThttp://hdl.handle.net/10985/92582008-01-01T00:00:00ZDROUEN, LaurentCHARPENTIER, Jean-FredericHAUVILLE, FrédéricSEMAIL, EricCLENET, StéphaneThis paper presents an analytical multi-physic modeling tool for the design optimization of a new kind of naval propulsion system. This innovative technology consists in an electrical permanent magnet motor that is integrated into a duct and surrounds a propeller. Compared with more conventional systems such as pods, the electrical machine and the propeller have the same diameter. Thus, their geometries, in addition to speed and torque, are closely related and a multidisciplinary design approach is relevant. Two disciplines are considered in this analytical model: electromagnetism and hydrodynamics. An example of systematic design for a typical application (a rim-driven thruster for a patrol boat) is then presented for a set of different design objectives (efficiency, mass, etc). The effects of each model are commentedUncertainty quantification and sensitivity analysis in electrical machines with stochastically varying machine parameters
http://hdl.handle.net/10985/9556
Uncertainty quantification and sensitivity analysis in electrical machines with stochastically varying machine parameters
OFFERMANN, Peter; MAC, Hung; NGUYEN, Thu Trang; CLENET, Stéphane; DE GERSEM, Herbert; HAMEYER, Kay
Electrical machines that are produced in mass production suffer from stochastic deviations introduced during the production process. These variations can cause undesired and unanticipated side-effects. Until now, only worst case analysis and Monte-Carlo simulation have been used to predict such stochastic effects and reduce their influence on the machine behavior. However, these methods have proven to be either inaccurate or very slow. This paper presents the application of a polynomialchaos meta-modeling at the example of stochastically varying stator deformations in a permanent-magnet synchronous machine. The applied methodology allows a faster or more accurate uncertainty propagation with the benefit of a zero-cost calculation of sensitivity indices, eventually enabling an easier creation of stochastic insensitive, hence robust designs.
Thu, 01 Jan 2015 00:00:00 GMThttp://hdl.handle.net/10985/95562015-01-01T00:00:00ZOFFERMANN, PeterMAC, HungNGUYEN, Thu TrangCLENET, StéphaneDE GERSEM, HerbertHAMEYER, KayElectrical machines that are produced in mass production suffer from stochastic deviations introduced during the production process. These variations can cause undesired and unanticipated side-effects. Until now, only worst case analysis and Monte-Carlo simulation have been used to predict such stochastic effects and reduce their influence on the machine behavior. However, these methods have proven to be either inaccurate or very slow. This paper presents the application of a polynomialchaos meta-modeling at the example of stochastically varying stator deformations in a permanent-magnet synchronous machine. The applied methodology allows a faster or more accurate uncertainty propagation with the benefit of a zero-cost calculation of sensitivity indices, eventually enabling an easier creation of stochastic insensitive, hence robust designs.Influence of uncertainties on the B(H) curves on the flux linkage of a turboalternator
http://hdl.handle.net/10985/7482
Influence of uncertainties on the B(H) curves on the flux linkage of a turboalternator
MAC, Hung; CLENET, Stéphane; BEDDEK, Karim; KORECKI, Julien; MOREAU, Olivier; CHEVALLIER, Loic; THOMAS, Pierre
In this paper, we analyze the influence of the uncertainties on the behavior constitutive laws of ferromagnetic materials on the behavior of a turboalternator. A simple stochastic model of anhysteretic nonlinear B(H) curve is proposed for the ferromagnetic yokes of the stator and the rotor. The B(H) curve is defined by five random parameters. We quantify the influence of the variability of these five parameters on the flux linkage of one phase of the stator winding depending on the excitation current I. The influence of each parameter is analyzed via the Sobol indices. With this analysis, we can determine the most influential parameters for each state of magnetization (according to the level of I) and investigate where the characterization process of the B(H) curve should focus to improve the accuracy of the computed flux linkage.
Tue, 01 Jan 2013 00:00:00 GMThttp://hdl.handle.net/10985/74822013-01-01T00:00:00ZMAC, HungCLENET, StéphaneBEDDEK, KarimKORECKI, JulienMOREAU, OlivierCHEVALLIER, LoicTHOMAS, PierreIn this paper, we analyze the influence of the uncertainties on the behavior constitutive laws of ferromagnetic materials on the behavior of a turboalternator. A simple stochastic model of anhysteretic nonlinear B(H) curve is proposed for the ferromagnetic yokes of the stator and the rotor. The B(H) curve is defined by five random parameters. We quantify the influence of the variability of these five parameters on the flux linkage of one phase of the stator winding depending on the excitation current I. The influence of each parameter is analyzed via the Sobol indices. With this analysis, we can determine the most influential parameters for each state of magnetization (according to the level of I) and investigate where the characterization process of the B(H) curve should focus to improve the accuracy of the computed flux linkage.Influence of the Manufacturing Process of a Claw-Pole Alternator on Its Stator Shape and Acoustic Noise
http://hdl.handle.net/10985/12995
Influence of the Manufacturing Process of a Claw-Pole Alternator on Its Stator Shape and Acoustic Noise
TAN-KIM, Antoine; HAGEN, Nicolas; LANFRANCHI, Vincent; CLENET, Stéphane; COOREVITS, Thierry; MIPO, Jean-Claude; LEGRANGER, Jerome; PALLESCHI, Frédéric
This paper shows the influence of the manufacturing process of a claw-pole alternator on its acoustic noise. First, the stator welds and the assembly of the stator in the brackets are linked to deformations of the inner diameter of the stator. Then, the influences of these deformations on the magnetic forces and the subsequent acoustic noise are investigated. Results show that the deformations caused by the manufacturing process significantly increase the sound power level of particular orders.
Sun, 01 Jan 2017 00:00:00 GMThttp://hdl.handle.net/10985/129952017-01-01T00:00:00ZTAN-KIM, AntoineHAGEN, NicolasLANFRANCHI, VincentCLENET, StéphaneCOOREVITS, ThierryMIPO, Jean-ClaudeLEGRANGER, JeromePALLESCHI, FrédéricThis paper shows the influence of the manufacturing process of a claw-pole alternator on its acoustic noise. First, the stator welds and the assembly of the stator in the brackets are linked to deformations of the inner diameter of the stator. Then, the influences of these deformations on the magnetic forces and the subsequent acoustic noise are investigated. Results show that the deformations caused by the manufacturing process significantly increase the sound power level of particular orders.Model Order Reduction of Electrical Machines with Multiple Inputs
http://hdl.handle.net/10985/12755
Model Order Reduction of Electrical Machines with Multiple Inputs
FARZAM FAR, M.; BELAHCEN, Anouar; RASILO, Paavo; CLENET, Stéphane; PIERQUIN, A.
In this paper, proper orthogonal decomposition method is employed to build a reduced-order model from a high-order nonlinear permanent magnet synchronous machine model with multiple inputs. Three parameters are selected as the multiple inputs of the machine. These parameters are terminal current, angle of the terminal current, and rotation angle. To produce the lower-rank system, snapshots or instantaneous system states are projected onto a set of orthonormal basis functions with small dimension. The reduced model is then validated by comparing the vector potential, flux density distribution, and torque results of the original model,which indicates the capability of using the proper orthogonal decomposition method in the multi-variable input problems. The developed methodology can be used for fast simulations of the machine.
Sun, 01 Jan 2017 00:00:00 GMThttp://hdl.handle.net/10985/127552017-01-01T00:00:00ZFARZAM FAR, M.BELAHCEN, AnouarRASILO, PaavoCLENET, StéphanePIERQUIN, A.In this paper, proper orthogonal decomposition method is employed to build a reduced-order model from a high-order nonlinear permanent magnet synchronous machine model with multiple inputs. Three parameters are selected as the multiple inputs of the machine. These parameters are terminal current, angle of the terminal current, and rotation angle. To produce the lower-rank system, snapshots or instantaneous system states are projected onto a set of orthonormal basis functions with small dimension. The reduced model is then validated by comparing the vector potential, flux density distribution, and torque results of the original model,which indicates the capability of using the proper orthogonal decomposition method in the multi-variable input problems. The developed methodology can be used for fast simulations of the machine.Application of the Proper Generalized Decomposition to Solve MagnetoElectric Problem
http://hdl.handle.net/10985/12754
Application of the Proper Generalized Decomposition to Solve MagnetoElectric Problem
HENNERON, Thomas; CLENET, Stéphane
Among the model order reduction techniques, the Proper Generalized Decomposition (PGD) has shown its efficiency to solve a large number of engineering problems. In this article, the PGD approach is applied to solve a multi-physics problem based on a magnetoelectric device. A reduced model is developed to study the device in its environment based on an Offline/Online approach. In the Offline step, two specific imulations are performed in order to build a PGD reduced model. Then, we obtain a model very well fitted to study in the Online stage the influence of parameters like the frequency or the load. The reduced model of the device is coupled with an electric load (R-L) to illustrate the possibility offered by the PGD.
Mon, 01 Jan 2018 00:00:00 GMThttp://hdl.handle.net/10985/127542018-01-01T00:00:00ZHENNERON, ThomasCLENET, StéphaneAmong the model order reduction techniques, the Proper Generalized Decomposition (PGD) has shown its efficiency to solve a large number of engineering problems. In this article, the PGD approach is applied to solve a multi-physics problem based on a magnetoelectric device. A reduced model is developed to study the device in its environment based on an Offline/Online approach. In the Offline step, two specific imulations are performed in order to build a PGD reduced model. Then, we obtain a model very well fitted to study in the Online stage the influence of parameters like the frequency or the load. The reduced model of the device is coupled with an electric load (R-L) to illustrate the possibility offered by the PGD.Enhanced Meta-model Based Optimization under Constraints using Parallel Computations
http://hdl.handle.net/10985/13417
Enhanced Meta-model Based Optimization under Constraints using Parallel Computations
EL BECHARI, Reda; BRISSET, Stéphane; CLENET, Stéphane; MIPO, Jean-Claude
Meta-models proved to be a very efficient strategy for optimization of expensive black-box models, e.g. Finite Element simulation for electromagnetic devices. It enables to reduce the computational burden for optimization purposes. Kriging is a popular method to build meta-model. Its statistical properties were firstly used in efficient global optimization for unconstrained problems. Afterwards many extensions were introduced in the literature to deal with constrained optimization. This paper presents a comparative study of some infill criteria for constraints handling and a new strategy for parallelization of the expensive computations of models. TEAM workshop problem 22 is taken as an electromagnetic test problem.
Sun, 01 Jan 2017 00:00:00 GMThttp://hdl.handle.net/10985/134172017-01-01T00:00:00ZEL BECHARI, RedaBRISSET, StéphaneCLENET, StéphaneMIPO, Jean-ClaudeMeta-models proved to be a very efficient strategy for optimization of expensive black-box models, e.g. Finite Element simulation for electromagnetic devices. It enables to reduce the computational burden for optimization purposes. Kriging is a popular method to build meta-model. Its statistical properties were firstly used in efficient global optimization for unconstrained problems. Afterwards many extensions were introduced in the literature to deal with constrained optimization. This paper presents a comparative study of some infill criteria for constraints handling and a new strategy for parallelization of the expensive computations of models. TEAM workshop problem 22 is taken as an electromagnetic test problem.Modélisation couplée multiphysique d'une hydrolienne RIM-DRIVEN
http://hdl.handle.net/10985/9621
Modélisation couplée multiphysique d'une hydrolienne RIM-DRIVEN; A multi physical approach for the design of RIM‑DRIVEN Tidal Turbines
DROUEN, Laurent; CHARPENTIER, Jean-Frederic; HAUVILLE, Frédéric; ASTOLFI, Jacques Andre; SEMAIL, Eric; CLENET, Stéphane
Le travail présenté concerne le développement d’une méthodologie de conception de systèmes hydroliens innovants de type RIM‑DRIVEN pour la récupération de l’énergie des courants de marée. L’originalité d’un système RIM‑DRIVEN réside dans la structure même de l’hydrolienne, inspirée directement des nouveaux systèmes de propulsion navale, où le rotor et le stator sont placés en périphérie de l’hélice et protégés par une tuyère, l’entrefer étant immergé. Au sein d’une structure de type RIM‑DRIVEN les phénomènes électromécaniques, thermiques et hydrodynamique sont intimement couplés. Du fait du très fort couplage des phénomènes physiques au sein du système, cette méthodologie associe au sein d’un même environnement d’optimisation des modèles électromagnétiques et thermiques spécifiques de la génératrice avec des modèles hydrodynamique des performances de l’hélice et de l’écoulement dans l’entrefer. L’approche proposée est illustrée par une étude de cas qui concerne une machine de 10m de diamètre destinée à être implantée dans le Raz de Sein. Les modèles ont été validés par des résultats issus d’une campagne expérimentale sur un démonstrateur dédié.; This paper deals with the study of an unconventional design of marine tidal turbine where the electrical generator is located in the periphery of the blades and where the magnetic gap is underwater. This kind of solution called “RIM DRIVEN” structure allows increasing the compactness and the robustness of the system. Due to the strong interaction of the multi physical phenomena, an electromagnetic model and a thermal model of the PM generator are associated with a hydrodynamic model of the blades and of the water flow in the underwater air gap. These models are used in a global coupled design approach in order to optimize, under constraints, the global efficiency of the system. This approach is illustrated in a case study which deals with the design of a 10m diameter tidal turbine. Proposed coupled models are validated by comparison with experimental data from the tests of an academic low power demonstrator
Thu, 01 Jan 2015 00:00:00 GMThttp://hdl.handle.net/10985/96212015-01-01T00:00:00ZDROUEN, LaurentCHARPENTIER, Jean-FredericHAUVILLE, FrédéricASTOLFI, Jacques AndreSEMAIL, EricCLENET, StéphaneLe travail présenté concerne le développement d’une méthodologie de conception de systèmes hydroliens innovants de type RIM‑DRIVEN pour la récupération de l’énergie des courants de marée. L’originalité d’un système RIM‑DRIVEN réside dans la structure même de l’hydrolienne, inspirée directement des nouveaux systèmes de propulsion navale, où le rotor et le stator sont placés en périphérie de l’hélice et protégés par une tuyère, l’entrefer étant immergé. Au sein d’une structure de type RIM‑DRIVEN les phénomènes électromécaniques, thermiques et hydrodynamique sont intimement couplés. Du fait du très fort couplage des phénomènes physiques au sein du système, cette méthodologie associe au sein d’un même environnement d’optimisation des modèles électromagnétiques et thermiques spécifiques de la génératrice avec des modèles hydrodynamique des performances de l’hélice et de l’écoulement dans l’entrefer. L’approche proposée est illustrée par une étude de cas qui concerne une machine de 10m de diamètre destinée à être implantée dans le Raz de Sein. Les modèles ont été validés par des résultats issus d’une campagne expérimentale sur un démonstrateur dédié.
This paper deals with the study of an unconventional design of marine tidal turbine where the electrical generator is located in the periphery of the blades and where the magnetic gap is underwater. This kind of solution called “RIM DRIVEN” structure allows increasing the compactness and the robustness of the system. Due to the strong interaction of the multi physical phenomena, an electromagnetic model and a thermal model of the PM generator are associated with a hydrodynamic model of the blades and of the water flow in the underwater air gap. These models are used in a global coupled design approach in order to optimize, under constraints, the global efficiency of the system. This approach is illustrated in a case study which deals with the design of a 10m diameter tidal turbine. Proposed coupled models are validated by comparison with experimental data from the tests of an academic low power demonstratorModel order reduction applied to the numerical study of electrical motor based on POD method taking into account rotation movement
http://hdl.handle.net/10985/9559
Model order reduction applied to the numerical study of electrical motor based on POD method taking into account rotation movement
HENNERON, Thomas; CLENET, Stéphane
In order to reduce the computation time and the memory resources required to solve an electromagnetic field problem, Model Order Reduction (MOR) approaches can be applied to reduce the size of the linear equation system obtained after discretisation. In the literature, the Proper Orthogonal Decomposition (POD) is widely used in engineering. In this paper, we propose to apply the POD in the case of a Finite Element problem accounting for the movement. The efficiency of this method is evaluated by considering an electrical motor and by comparing with the full model in terms of computational time and accuracy.
Wed, 01 Jan 2014 00:00:00 GMThttp://hdl.handle.net/10985/95592014-01-01T00:00:00ZHENNERON, ThomasCLENET, StéphaneIn order to reduce the computation time and the memory resources required to solve an electromagnetic field problem, Model Order Reduction (MOR) approaches can be applied to reduce the size of the linear equation system obtained after discretisation. In the literature, the Proper Orthogonal Decomposition (POD) is widely used in engineering. In this paper, we propose to apply the POD in the case of a Finite Element problem accounting for the movement. The efficiency of this method is evaluated by considering an electrical motor and by comparing with the full model in terms of computational time and accuracy.Multirate coupling of controlled rectifier and non-linear finite element model based on Waveform Relaxation Method
http://hdl.handle.net/10985/10556
Multirate coupling of controlled rectifier and non-linear finite element model based on Waveform Relaxation Method
HENNERON, Thomas; CLENET, Stéphane; PIERQUIN, Antoine; BRISSET, Stéphane
To study a multirate system, each subsystem can be solved by a dedicated sofware with respect to the physical problem and the time constant. Then, the problem is the coupling of the solutions of the subsystems. The Waveform Relaxation Method (WRM) seems to be an interesting solution for the coupling but until now it has been mainly applied on academic examples. In this paper, the WRM is applied to perform the coupling of a controlled rectifier and a non-linear finite element model of a transformer.
Fri, 01 Jan 2016 00:00:00 GMThttp://hdl.handle.net/10985/105562016-01-01T00:00:00ZHENNERON, ThomasCLENET, StéphanePIERQUIN, AntoineBRISSET, StéphaneTo study a multirate system, each subsystem can be solved by a dedicated sofware with respect to the physical problem and the time constant. Then, the problem is the coupling of the solutions of the subsystems. The Waveform Relaxation Method (WRM) seems to be an interesting solution for the coupling but until now it has been mainly applied on academic examples. In this paper, the WRM is applied to perform the coupling of a controlled rectifier and a non-linear finite element model of a transformer.