SAM
https://sam.ensam.eu:443
The DSpace digital repository system captures, stores, indexes, preserves, and distributes digital research material.Fri, 04 Oct 2024 09:28:02 GMT2024-10-04T09:28:02ZA new locking-free formulation for the SHB8PS solid–shell element: non-linear benchmark problems
http://hdl.handle.net/10985/10454
A new locking-free formulation for the SHB8PS solid–shell element: non-linear benchmark problems
COMBESCURE, Alain; ABED-MERAIM, Farid
In this work, a new physically stabilized and locking-free formulation of the SHB8PS element is presented. This is a solid-shell element based on a purely 3D formulation. It has eight nodes as well as five integration points, all distributed along the “thickness” direction. Consequently, it can be used for the modeling of thin structures, while providing an accurate description of the various through-thickness phenomena. The reduced integration has been used in order to prevent some locking phenomena and to increase computational efficiency. The spurious zero-energy deformation modes due to the reduced integration are efficiently stabilized, whereas the strain components corresponding to locking modes are eliminated with a projection technique following the Enhanced Assumed Strain (EAS) method.
Mon, 01 Jan 2007 00:00:00 GMThttp://hdl.handle.net/10985/104542007-01-01T00:00:00ZCOMBESCURE, AlainABED-MERAIM, Farid In this work, a new physically stabilized and locking-free formulation of the SHB8PS element is presented. This is a solid-shell element based on a purely 3D formulation. It has eight nodes as well as five integration points, all distributed along the “thickness” direction. Consequently, it can be used for the modeling of thin structures, while providing an accurate description of the various through-thickness phenomena. The reduced integration has been used in order to prevent some locking phenomena and to increase computational efficiency. The spurious zero-energy deformation modes due to the reduced integration are efficiently stabilized, whereas the strain components corresponding to locking modes are eliminated with a projection technique following the Enhanced Assumed Strain (EAS) method.Formulation of new quadratic solid-shell elements and their evaluation on popular benchmark problems
http://hdl.handle.net/10985/10459
Formulation of new quadratic solid-shell elements and their evaluation on popular benchmark problems
TRINH, Vuong-Dieu; COMBESCURE, Alain; ABED-MERAIM, Farid
Over the last decade, considerable progress has been made in the development of three-dimensional finite elements capable of modeling thin structures. The coupling between solid and shell formulations has proven to be an interesting way to provide continuum finite element models that can be efficiently used for structural applications. The current work proposes the formulation of two solid-shell elements based on a purely three-dimensional approach. These elements have numerous advantages for the analysis of various complex structural geometries that are common in many industrial applications. Their main advantage is to allow such complex structural shapes to be meshed without classical problems of connecting zones meshed with different element types (continuum and structural elements for instance). Another important benefit of solid-shell elements is the avoidance of tedious pure-shell element formulations needed for the complex treatment of large rotations. The two solid-shell elements developed are a 20-node and a 15-node element, respectively, with displacements as the only degrees of freedom. They also have a special direction called “the thickness”. Therefore, they can be used for the modeling of thin structures, while providing an accurate description of various through-thickness phenomena thanks to the use of a set of integration points in that direction. A reduced integration scheme has been introduced to prevent some locking phenomena and increase computational efficiency. To assess the effectiveness of the proposed solid-shell elements, a set of popular benchmark problems is investigated, involving linear as well as geometric nonlinear analyses. It is shown that these elements can support high aspect ratios, up to 500, and are especially efficient for elastoplastic bending behavior. The various numerical experiments in linear and nonlinear situations reveal that these solid-shell elements perform really better than standard solid elements having similar properties in terms of geometry, interpolation and degrees of freedom.
Fri, 01 Jan 2010 00:00:00 GMThttp://hdl.handle.net/10985/104592010-01-01T00:00:00ZTRINH, Vuong-DieuCOMBESCURE, AlainABED-MERAIM, Farid Over the last decade, considerable progress has been made in the development of three-dimensional finite elements capable of modeling thin structures. The coupling between solid and shell formulations has proven to be an interesting way to provide continuum finite element models that can be efficiently used for structural applications. The current work proposes the formulation of two solid-shell elements based on a purely three-dimensional approach. These elements have numerous advantages for the analysis of various complex structural geometries that are common in many industrial applications. Their main advantage is to allow such complex structural shapes to be meshed without classical problems of connecting zones meshed with different element types (continuum and structural elements for instance). Another important benefit of solid-shell elements is the avoidance of tedious pure-shell element formulations needed for the complex treatment of large rotations. The two solid-shell elements developed are a 20-node and a 15-node element, respectively, with displacements as the only degrees of freedom. They also have a special direction called “the thickness”. Therefore, they can be used for the modeling of thin structures, while providing an accurate description of various through-thickness phenomena thanks to the use of a set of integration points in that direction. A reduced integration scheme has been introduced to prevent some locking phenomena and increase computational efficiency. To assess the effectiveness of the proposed solid-shell elements, a set of popular benchmark problems is investigated, involving linear as well as geometric nonlinear analyses. It is shown that these elements can support high aspect ratios, up to 500, and are especially efficient for elastoplastic bending behavior. The various numerical experiments in linear and nonlinear situations reveal that these solid-shell elements perform really better than standard solid elements having similar properties in terms of geometry, interpolation and degrees of freedom.Validation d’une nouvelle version de l’élément solide/coque “SHB8PS” sur des cas tests non linéaires
http://hdl.handle.net/10985/10334
Validation d’une nouvelle version de l’élément solide/coque “SHB8PS” sur des cas tests non linéaires
COMBESCURE, Alain; ABED-MERAIM, Farid
L’intérêt de disposer d’éléments finis volumiques capables de modéliser des structures minces est motivé par de nombreux problèmes industriels. Ainsi, ces dernières années, plusieurs travaux ont été réalisés dans ce domaine. Ces éléments coques épaisses ont de nombreux avantages : ils sont capables de représenter le comportement de structures minces avec une bonne prise en compte des phénomènes à travers l’épaisseur et avec un gain de temps de calcul significatif, ils permettent de mailler des géométries complexes où coques et solides doivent cohabiter sans les problèmes connus de raccordement de maillages. L’élément SHB8PS a été développé dans ce sens à partir d’une formulation purement tridimensionnelle. Récemment, une nouvelle version, libre de verrouillage (en membrane et cisaillement), a été formulée et validée en linéaire. Dans la présente étude, cette version revisitée est validée à travers de nombreux cas tests non linéaires.
Mon, 01 Jan 2007 00:00:00 GMThttp://hdl.handle.net/10985/103342007-01-01T00:00:00ZCOMBESCURE, AlainABED-MERAIM, Farid L’intérêt de disposer d’éléments finis volumiques capables de modéliser des structures minces est motivé par de nombreux problèmes industriels. Ainsi, ces dernières années, plusieurs travaux ont été réalisés dans ce domaine. Ces éléments coques épaisses ont de nombreux avantages : ils sont capables de représenter le comportement de structures minces avec une bonne prise en compte des phénomènes à travers l’épaisseur et avec un gain de temps de calcul significatif, ils permettent de mailler des géométries complexes où coques et solides doivent cohabiter sans les problèmes connus de raccordement de maillages. L’élément SHB8PS a été développé dans ce sens à partir d’une formulation purement tridimensionnelle. Récemment, une nouvelle version, libre de verrouillage (en membrane et cisaillement), a été formulée et validée en linéaire. Dans la présente étude, cette version revisitée est validée à travers de nombreux cas tests non linéaires.Assumed-strain solid–shell formulation for the six-node finite element SHB6: evaluation on nonlinear benchmark problems
http://hdl.handle.net/10985/10358
Assumed-strain solid–shell formulation for the six-node finite element SHB6: evaluation on nonlinear benchmark problems
TRINH, Vuong-Dieu; COMBESCURE, Alain; ABED-MERAIM, Farid
Because accuracy and efficiency are the main features expected within the finite element (FE) method, the current contribution proposes a six-node prismatic solid–shell, denoted (SHB6). The formulation is extended here to geometric and material nonlinearities, and focus will be placed on its validation on nonlinear benchmark problems. This type of FE is specifically designed for the modeling of thin structures, by combining several useful shell features with some well-known solid element advantages. Therefore, the resulting derivation only involves displacement degrees of freedom as it is based on a fully 3D approach. Some of the motivation behind this formulation is to allow a natural mesh connection in problems where both structural (shell/plate) and continuum (solid) elements need to be simultaneously used. Another major interest of this prismatic solid–shell is to complement meshes that use hexahedral solid–shell FE, especially when free mesh generation tools are employed. To achieve an efficient formulation, the assumed-strain method is combined with an in-plane one-point quadrature scheme. These techniques are intended to reduce both locking phenomena and computational cost. A careful analysis of possible stiffness matrix rank deficiencies demonstrates that this reduced integration procedure does not induce hourglass modes and thus no stabilization is required.
Sat, 01 Jan 2011 00:00:00 GMThttp://hdl.handle.net/10985/103582011-01-01T00:00:00ZTRINH, Vuong-DieuCOMBESCURE, AlainABED-MERAIM, Farid Because accuracy and efficiency are the main features expected within the finite element (FE) method, the current contribution proposes a six-node prismatic solid–shell, denoted (SHB6). The formulation is extended here to geometric and material nonlinearities, and focus will be placed on its validation on nonlinear benchmark problems. This type of FE is specifically designed for the modeling of thin structures, by combining several useful shell features with some well-known solid element advantages. Therefore, the resulting derivation only involves displacement degrees of freedom as it is based on a fully 3D approach. Some of the motivation behind this formulation is to allow a natural mesh connection in problems where both structural (shell/plate) and continuum (solid) elements need to be simultaneously used. Another major interest of this prismatic solid–shell is to complement meshes that use hexahedral solid–shell FE, especially when free mesh generation tools are employed. To achieve an efficient formulation, the assumed-strain method is combined with an in-plane one-point quadrature scheme. These techniques are intended to reduce both locking phenomena and computational cost. A careful analysis of possible stiffness matrix rank deficiencies demonstrates that this reduced integration procedure does not induce hourglass modes and thus no stabilization is required.A new assumed strain solid-shell formulation "SHB6" for the six-node prismatic finite element
http://hdl.handle.net/10985/10193
A new assumed strain solid-shell formulation "SHB6" for the six-node prismatic finite element
TRINH, Vuong-Dieu; COMBESCURE, Alain; ABED-MERAIM, Farid
This paper presents the development of a new prismatic solid-shell finite element, denoted SHB6, obtained using a purely three-dimensional approach. This element has six nodes with displacements as the only degrees of freedom, and only requires two integration points distributed along a preferential direction, designated as the "thickness". Although geometrically three-dimensional, this element can be conveniently used to model thin structures while taking into account the various phenomena occurring across the thickness. A reduced integration scheme and specific projections of the strains are introduced, based on the assumed-strain method, in order to improve performance and to eliminate most locking effects. It is first shown that the adopted in-plane reduced integration does not generate "hourglass" modes, but the resulting SHB6 element exhibits some shear and thickness-type locking. This is common in linear triangular elements, in which the strain is constant. The paper details the formulation of this element and illustrates its capabilities through a set of various benchmark problems commonly used in the literature. In particular, it is shown that this new element plays a useful role as a complement to the SHB8PS hexahedral element, which enables one to mesh arbitrary geometries. Examples using both SHB6 and SHB8PS elements demonstrate the advantage of mixing these two solid-shell elements.
Sat, 01 Jan 2011 00:00:00 GMThttp://hdl.handle.net/10985/101932011-01-01T00:00:00ZTRINH, Vuong-DieuCOMBESCURE, AlainABED-MERAIM, Farid This paper presents the development of a new prismatic solid-shell finite element, denoted SHB6, obtained using a purely three-dimensional approach. This element has six nodes with displacements as the only degrees of freedom, and only requires two integration points distributed along a preferential direction, designated as the "thickness". Although geometrically three-dimensional, this element can be conveniently used to model thin structures while taking into account the various phenomena occurring across the thickness. A reduced integration scheme and specific projections of the strains are introduced, based on the assumed-strain method, in order to improve performance and to eliminate most locking effects. It is first shown that the adopted in-plane reduced integration does not generate "hourglass" modes, but the resulting SHB6 element exhibits some shear and thickness-type locking. This is common in linear triangular elements, in which the strain is constant. The paper details the formulation of this element and illustrates its capabilities through a set of various benchmark problems commonly used in the literature. In particular, it is shown that this new element plays a useful role as a complement to the SHB8PS hexahedral element, which enables one to mesh arbitrary geometries. Examples using both SHB6 and SHB8PS elements demonstrate the advantage of mixing these two solid-shell elements.New quadratic solid-shell elements and their evaluation on linear benchmark problems
http://hdl.handle.net/10985/10228
New quadratic solid-shell elements and their evaluation on linear benchmark problems
TRINH, Vuong-Dieu; COMBESCURE, Alain; ABED-MERAIM, Farid
This paper is concerned with the development of a new family of solid- shell finite elements. This concept of solid-shell elements is shown to have a number of attractive computational properties as compared to conventional three-dimensional elements. More specifically, two new solid-shell elements are formulated in this work (a fifteen-node and a twenty-node element) on the basis of a purely three-dimensional approach. The performance of these elements is shown through the analysis of various structural problems. Note that one of their main advantages is to allow complex structural shapes to be simulated without classical problems of connecting zones meshed with different element types. These solid-shell elements have a special direction denoted as the "thickness", along which a set of integration points are located. Reduced integration is also used to prevent some locking phenomena and to increase computational efficiency. Focus will be placed here on linear benchmark problems, where it is shown that these solid-shell elements perform much better than their counterparts, conventional solid elements.
Tue, 01 Jan 2013 00:00:00 GMThttp://hdl.handle.net/10985/102282013-01-01T00:00:00ZTRINH, Vuong-DieuCOMBESCURE, AlainABED-MERAIM, Farid This paper is concerned with the development of a new family of solid- shell finite elements. This concept of solid-shell elements is shown to have a number of attractive computational properties as compared to conventional three-dimensional elements. More specifically, two new solid-shell elements are formulated in this work (a fifteen-node and a twenty-node element) on the basis of a purely three-dimensional approach. The performance of these elements is shown through the analysis of various structural problems. Note that one of their main advantages is to allow complex structural shapes to be simulated without classical problems of connecting zones meshed with different element types. These solid-shell elements have a special direction denoted as the "thickness", along which a set of integration points are located. Reduced integration is also used to prevent some locking phenomena and to increase computational efficiency. Focus will be placed here on linear benchmark problems, where it is shown that these solid-shell elements perform much better than their counterparts, conventional solid elements.Improved formulation for the stabilized enhanced strain solid-shell element (SHB8PS): geometric linear and nonlinear applications
http://hdl.handle.net/10985/10394
Improved formulation for the stabilized enhanced strain solid-shell element (SHB8PS): geometric linear and nonlinear applications
COMBESCURE, Alain; ABED-MERAIM, Farid
In this study, the formulation of the SHB8PS solid-shell element is reviewed in order to eliminate some persistent membrane and shear locking phenomena. The resulting physically stabilized and locking-free finite element consists in a continuum mechanics shell element based on a purely three-dimensional formulation. In fact, this is a hexahedral element with eight nodes as well as five integration points, all distributed along the “thickness” direction. Consequently, it can be used for the modelling of thin structures, while providing an accurate description of the various through-thickness phenomena. The reduced integration has been used in order to prevent some locking phenomena and to increase computational efficiency. The spurious zero-energy deformation modes due to the reduced integration are efficiently stabilized, whereas the strain components corresponding to locking modes are eliminated with a projection technique following the Enhanced Assumed Strain (EAS) method.
Mon, 01 Jan 2007 00:00:00 GMThttp://hdl.handle.net/10985/103942007-01-01T00:00:00ZCOMBESCURE, AlainABED-MERAIM, Farid In this study, the formulation of the SHB8PS solid-shell element is reviewed in order to eliminate some persistent membrane and shear locking phenomena. The resulting physically stabilized and locking-free finite element consists in a continuum mechanics shell element based on a purely three-dimensional formulation. In fact, this is a hexahedral element with eight nodes as well as five integration points, all distributed along the “thickness” direction. Consequently, it can be used for the modelling of thin structures, while providing an accurate description of the various through-thickness phenomena. The reduced integration has been used in order to prevent some locking phenomena and to increase computational efficiency. The spurious zero-energy deformation modes due to the reduced integration are efficiently stabilized, whereas the strain components corresponding to locking modes are eliminated with a projection technique following the Enhanced Assumed Strain (EAS) method.Éléments finis de type coques volumiques pour la simulation des structures minces
http://hdl.handle.net/10985/10357
Éléments finis de type coques volumiques pour la simulation des structures minces
TRINH, Vuong-Dieu; COMBESCURE, Alain; ABED-MERAIM, Farid
Ce travail concerne le développement d’une nouvelle famille d’éléments finis (EF) de type coques volumiques quadratiques. Deux éléments seront présentés, un hexaèdre à vingt nœuds et un prisme à quinze nœuds, qui sont formulés à partir d’une approche purement tridimensionnelle. La performance de ces éléments sera montrée à travers l’analyse de problèmes structuraux variés.; This work is concerned with the development of a new family of solid–shell finite elements. Two elements will be presented, a twenty-node hexahedron and a fifteen-node prism, which are formulated based on a purely three-dimensional approach. The performance of these solid–shell elements will be shown through the analysis of various structural problems.
Tue, 01 Jan 2013 00:00:00 GMThttp://hdl.handle.net/10985/103572013-01-01T00:00:00ZTRINH, Vuong-DieuCOMBESCURE, AlainABED-MERAIM, Farid Ce travail concerne le développement d’une nouvelle famille d’éléments finis (EF) de type coques volumiques quadratiques. Deux éléments seront présentés, un hexaèdre à vingt nœuds et un prisme à quinze nœuds, qui sont formulés à partir d’une approche purement tridimensionnelle. La performance de ces éléments sera montrée à travers l’analyse de problèmes structuraux variés.
This work is concerned with the development of a new family of solid–shell finite elements. Two elements will be presented, a twenty-node hexahedron and a fifteen-node prism, which are formulated based on a purely three-dimensional approach. The performance of these solid–shell elements will be shown through the analysis of various structural problems.Une nouvelle formulation solide–coque basée sur le concept "Assumed Strain" pour l'élément fini prismatique à six-noeuds "SHB6"
http://hdl.handle.net/10985/10022
Une nouvelle formulation solide–coque basée sur le concept "Assumed Strain" pour l'élément fini prismatique à six-noeuds "SHB6"
TRINH, Vuong-Dieu; COMBESCURE, Alain; ABED-MERAIM, Farid
Une nouvelle formulation de l'élément solide–coque SHB6 est décrite. Il s'agit d'un élément isoparamétrique prismatique à 6 noeuds, interpolation linéaire et intégration réduite dans le plan moyen. Les déplacements sont les seuls d.d.l. et les points d'intégration sont distribués à travers l'épaisseur. L'analyse de hourglass a révélé qu'il n'y a pas de modes à énergie nulle à stabiliser ; néanmoins, la méthode "assumed strain" est adoptée pour améliorer sa convergence. Les performances du nouvel élément, ainsi obtenu, sont évaluées à travers des cas tests standard.
Thu, 01 Jan 2009 00:00:00 GMThttp://hdl.handle.net/10985/100222009-01-01T00:00:00ZTRINH, Vuong-DieuCOMBESCURE, AlainABED-MERAIM, Farid Une nouvelle formulation de l'élément solide–coque SHB6 est décrite. Il s'agit d'un élément isoparamétrique prismatique à 6 noeuds, interpolation linéaire et intégration réduite dans le plan moyen. Les déplacements sont les seuls d.d.l. et les points d'intégration sont distribués à travers l'épaisseur. L'analyse de hourglass a révélé qu'il n'y a pas de modes à énergie nulle à stabiliser ; néanmoins, la méthode "assumed strain" est adoptée pour améliorer sa convergence. Les performances du nouvel élément, ainsi obtenu, sont évaluées à travers des cas tests standard.An improved assumed strain solid-shell element formulation with physical stabilization for geometric non-linear applications and elastic-plastic stability analysis
http://hdl.handle.net/10985/10204
An improved assumed strain solid-shell element formulation with physical stabilization for geometric non-linear applications and elastic-plastic stability analysis
COMBESCURE, Alain; ABED-MERAIM, Farid
In this paper, the earlier formulation of the SHB8PS finite element is revised in order to eliminate some persistent membrane and shear locking phenomena. This new formulation consists of a solid-shell element based on a purely three-dimensional approach. More specifically, the element has eight nodes, with displacements as the only degrees of freedom, as well as an arbitrary number of integration points, with a minimum number of two, distributed along the 'thickness' direction. The resulting derivation, which is computationally efficient, can then be used for the modeling of thin structures, while providing an accurate description of the various through-thickness phenomena. A reduced integration scheme is used to prevent some locking phenomena and to achieve an attractive, low-cost formulation. The spurious zero-energy modes due to this in-plane one-point quadrature are efficiently controlled using a physical stabilization procedure, whereas the strain components corresponding to locking modes are eliminated with a projection technique following the assumed strain method. In addition to the extended and detailed formulation presented in this paper, particular attention has been focused on providing full justification regarding the identification of hourglass modes in relation to rank deficiencies. Moreover, an attempt has been made to provide a sound foundation to the derivation of the co-rotational coordinate frame, on which the calculations of the stabilization stiffness matrix and internal load vector are based. Finally to assess the effectiveness and performance of this new formulation, a set of popular benchmark problems is investigated, involving geometric non-linear analyses as well as elastic-plastic stability issues.
Thu, 01 Jan 2009 00:00:00 GMThttp://hdl.handle.net/10985/102042009-01-01T00:00:00ZCOMBESCURE, AlainABED-MERAIM, Farid In this paper, the earlier formulation of the SHB8PS finite element is revised in order to eliminate some persistent membrane and shear locking phenomena. This new formulation consists of a solid-shell element based on a purely three-dimensional approach. More specifically, the element has eight nodes, with displacements as the only degrees of freedom, as well as an arbitrary number of integration points, with a minimum number of two, distributed along the 'thickness' direction. The resulting derivation, which is computationally efficient, can then be used for the modeling of thin structures, while providing an accurate description of the various through-thickness phenomena. A reduced integration scheme is used to prevent some locking phenomena and to achieve an attractive, low-cost formulation. The spurious zero-energy modes due to this in-plane one-point quadrature are efficiently controlled using a physical stabilization procedure, whereas the strain components corresponding to locking modes are eliminated with a projection technique following the assumed strain method. In addition to the extended and detailed formulation presented in this paper, particular attention has been focused on providing full justification regarding the identification of hourglass modes in relation to rank deficiencies. Moreover, an attempt has been made to provide a sound foundation to the derivation of the co-rotational coordinate frame, on which the calculations of the stabilization stiffness matrix and internal load vector are based. Finally to assess the effectiveness and performance of this new formulation, a set of popular benchmark problems is investigated, involving geometric non-linear analyses as well as elastic-plastic stability issues.