SAM
https://sam.ensam.eu:443
The DSpace digital repository system captures, stores, indexes, preserves, and distributes digital research material.Sun, 19 Sep 2021 02:26:21 GMT2021-09-19T02:26:21ZAn experimental study of boundary-layer transition induced vibrations on a hydrofoil
http://hdl.handle.net/10985/8905
An experimental study of boundary-layer transition induced vibrations on a hydrofoil
DUCOIN, Antoine; ASTOLFI, Jacques Andre; GOBERT, Marie-Laure
This paper aims at characterizing experimentally laminar to turbulent transition induced vibrations. Here, the transition is known to be triggered by a Laminar Separation Bubble that results from a laminar separation of the boundary-layer flow on a hydrofoil. In this study we consider two NACA66312 (Mod) laminar hydrofoils at low angles of incidence (mostly 2° and 4°) and Reynolds numbers ranging from Re=450 000 to 1 200 000, in order to get transitional regimes. The first hydrofoil, made of steel (E=2.1×1011 Pa), is referred to as the rigid hydrofoil, although it is seen to vibrate under the action of the LSB. To better understand the possible interaction between the flow and the foil vibrations, vibration measurements are repeated using a flexible hydrofoil (E=3×109 Pa) of same geometry (under zero loading) and in close configurations. The experiments are carried out at the French Naval Academy Research Institute (IRENav, France). Wall pressure and flow velocity measurements enable a characterization of the laminar separation bubble and the identification of a vortex shedding at a given frequency. It is hence shown that the boundary-layer transition induces important foil vibrations, whose characteristics in terms of frequency and amplitude depend on the vortex shedding frequency, and can be coupled with natural frequencies of the hydrofoils.
Sun, 01 Jan 2012 00:00:00 GMThttp://hdl.handle.net/10985/89052012-01-01T00:00:00ZDUCOIN, AntoineASTOLFI, Jacques AndreGOBERT, Marie-LaureThis paper aims at characterizing experimentally laminar to turbulent transition induced vibrations. Here, the transition is known to be triggered by a Laminar Separation Bubble that results from a laminar separation of the boundary-layer flow on a hydrofoil. In this study we consider two NACA66312 (Mod) laminar hydrofoils at low angles of incidence (mostly 2° and 4°) and Reynolds numbers ranging from Re=450 000 to 1 200 000, in order to get transitional regimes. The first hydrofoil, made of steel (E=2.1×1011 Pa), is referred to as the rigid hydrofoil, although it is seen to vibrate under the action of the LSB. To better understand the possible interaction between the flow and the foil vibrations, vibration measurements are repeated using a flexible hydrofoil (E=3×109 Pa) of same geometry (under zero loading) and in close configurations. The experiments are carried out at the French Naval Academy Research Institute (IRENav, France). Wall pressure and flow velocity measurements enable a characterization of the laminar separation bubble and the identification of a vortex shedding at a given frequency. It is hence shown that the boundary-layer transition induces important foil vibrations, whose characteristics in terms of frequency and amplitude depend on the vortex shedding frequency, and can be coupled with natural frequencies of the hydrofoils.Nonlinear disturbance evolution in a two-dimensional boundary layer along an elastic plate and induced radiated sound
http://hdl.handle.net/10985/8934
Nonlinear disturbance evolution in a two-dimensional boundary layer along an elastic plate and induced radiated sound
GOBERT, Marie-Laure; EHRENSTEIN, Uwe; ASTOLFI, Jacques Andre; BOT, Patrick
The interaction between a boundary-layer flow and an elastic plate is addressed by direct numerical simulation, taking into account the full coupling between the fluid flow and the flexible wall. The convectively unstable flow state is harmonically forced and two-dimensional nonlinearly saturated wavelike disturbances are computed along archetype-plates with respect to stiffness and natural frequencies. In the aim of determining the low-Mach-number radiated sound for the system, the simulation data are used to solve the Lighthill’s equation in terms of a Green’s function in the wavenumber-frequency space. Different degrees of fluid-structure coupling are implemented in the radiated sound model and the resulting acoustic pressure levels are compared. The sound radiation levels are shown to be increased in the presence of flexible walls with however significant differences in the radiated pressure levels for different coupling assumptions
Fri, 01 Jan 2010 00:00:00 GMThttp://hdl.handle.net/10985/89342010-01-01T00:00:00ZGOBERT, Marie-LaureEHRENSTEIN, UweASTOLFI, Jacques AndreBOT, PatrickThe interaction between a boundary-layer flow and an elastic plate is addressed by direct numerical simulation, taking into account the full coupling between the fluid flow and the flexible wall. The convectively unstable flow state is harmonically forced and two-dimensional nonlinearly saturated wavelike disturbances are computed along archetype-plates with respect to stiffness and natural frequencies. In the aim of determining the low-Mach-number radiated sound for the system, the simulation data are used to solve the Lighthill’s equation in terms of a Green’s function in the wavenumber-frequency space. Different degrees of fluid-structure coupling are implemented in the radiated sound model and the resulting acoustic pressure levels are compared. The sound radiation levels are shown to be increased in the presence of flexible walls with however significant differences in the radiated pressure levels for different coupling assumptions