SAM
https://sam.ensam.eu:443
The DSpace digital repository system captures, stores, indexes, preserves, and distributes digital research material.Tue, 06 Feb 2024 21:12:59 GMT2024-02-06T21:12:59ZData-Driven Modelling of Polyethylene Recycling under High-Temperature Extrusion
http://hdl.handle.net/10985/22199
Data-Driven Modelling of Polyethylene Recycling under High-Temperature Extrusion
CASTÉRAN, Fanny; DELAGE, Karim; HASCOËT, Nicolas; AMMAR, Amine; CHINESTA, Francisco; CASSAGNAU, Philippe
Two main problems are studied in this article. The first one is the use of the extrusion process for controlled thermo-mechanical degradation of polyethylene for recycling applications. The second is the data-based modelling of such reactive extrusion processes. Polyethylenes (high density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE)) were extruded in a corotating twin-screw extruder under high temperatures (350 °C < T < 420 °C) for various process conditions (flow rate and screw rotation speed). These process conditions involved a decrease in the molecular weight due to degradation reactions. A numerical method based on the Carreau-Yasuda model was developed to predict the rheological behaviour (variation of the viscosity versus shear rate) from the in-line measurement of the die pressure. The results were successfully compared to the viscosity measured from offline measurement assuming the Cox-Merz law. Weight average molecular weights were estimated from the resulting zero-shear rate viscosity. Furthermore, the linear viscoelastic behaviours (Frequency dependence of the complex shear modulus) were also used to predict the molecular weight distributions of final products by an inverse rheological method. Size exclusion chromatography (SEC) was performed on five samples, and the resulting molecular weight distributions were compared to the values obtained with the two aforementioned techniques. The values of weight average molecular weights were similar for the three techniques. The complete molecular weight distributions obtained by inverse rheology were similar to the SEC ones for extruded HDPE samples, but some inaccuracies were observed for extruded UHMWPE samples. The Ludovic® (SC-Consultants, Saint-Etienne, France) corotating twin-screw extrusion simulation software was used as a classical process simulation. However, as the rheo-kinetic laws of this process were unknown, the software could not predict all the flow characteristics successfully. Finally, machine learning techniques, able to operate in the low-data limit, were tested to build predicting models of the process outputs and material characteristics. Support Vector Machine Regression (SVR) and sparsed Proper Generalized Decomposition (sPGD) techniques were chosen to predict the process outputs successfully. These methods were also applied to material characteristics data, and both were found to be effective in predicting molecular weights. More precisely, the sPGD gave better results than the SVR for the zero-shear viscosity prediction. Stochastic methods were also tested on some of the data and showed promising results.
Fri, 18 Feb 2022 00:00:00 GMThttp://hdl.handle.net/10985/221992022-02-18T00:00:00ZCASTÉRAN, FannyDELAGE, KarimHASCOËT, NicolasAMMAR, AmineCHINESTA, FranciscoCASSAGNAU, PhilippeTwo main problems are studied in this article. The first one is the use of the extrusion process for controlled thermo-mechanical degradation of polyethylene for recycling applications. The second is the data-based modelling of such reactive extrusion processes. Polyethylenes (high density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE)) were extruded in a corotating twin-screw extruder under high temperatures (350 °C < T < 420 °C) for various process conditions (flow rate and screw rotation speed). These process conditions involved a decrease in the molecular weight due to degradation reactions. A numerical method based on the Carreau-Yasuda model was developed to predict the rheological behaviour (variation of the viscosity versus shear rate) from the in-line measurement of the die pressure. The results were successfully compared to the viscosity measured from offline measurement assuming the Cox-Merz law. Weight average molecular weights were estimated from the resulting zero-shear rate viscosity. Furthermore, the linear viscoelastic behaviours (Frequency dependence of the complex shear modulus) were also used to predict the molecular weight distributions of final products by an inverse rheological method. Size exclusion chromatography (SEC) was performed on five samples, and the resulting molecular weight distributions were compared to the values obtained with the two aforementioned techniques. The values of weight average molecular weights were similar for the three techniques. The complete molecular weight distributions obtained by inverse rheology were similar to the SEC ones for extruded HDPE samples, but some inaccuracies were observed for extruded UHMWPE samples. The Ludovic® (SC-Consultants, Saint-Etienne, France) corotating twin-screw extrusion simulation software was used as a classical process simulation. However, as the rheo-kinetic laws of this process were unknown, the software could not predict all the flow characteristics successfully. Finally, machine learning techniques, able to operate in the low-data limit, were tested to build predicting models of the process outputs and material characteristics. Support Vector Machine Regression (SVR) and sparsed Proper Generalized Decomposition (sPGD) techniques were chosen to predict the process outputs successfully. These methods were also applied to material characteristics data, and both were found to be effective in predicting molecular weights. More precisely, the sPGD gave better results than the SVR for the zero-shear viscosity prediction. Stochastic methods were also tested on some of the data and showed promising results.Learning the Parametric Transfer Function of Unitary Operations for Real-Time Evaluation of Manufacturing Processes Involving Operations Sequencing
http://hdl.handle.net/10985/20468
Learning the Parametric Transfer Function of Unitary Operations for Real-Time Evaluation of Manufacturing Processes Involving Operations Sequencing
LOREAU, Tanguy; CHAMPANEY, Victor; HASCOËT, Nicolas; MOURGUE, Philippe; DUVAL, Jean-Louis; CHINESTA, Francisco
For better designing manufacturing processes, surrogate models were widely considered in the past, where the effect of different material and process parameters was considered from the use of a parametric solution. The last contains the solution of the model describing the system under study, for any choice of the selected parameters. These surrogate models, also known as meta-models, virtual charts or computational vademecum, in the context of model order reduction, were successfully employed in a variety of industrial applications. However, they remain confronted to a major difficulty when the number of parameters grows exponentially. Thus, processes involving trajectories or sequencing entail a combinatorial exposition (curse of dimensionality) not only due to the number of possible combinations, but due to the number of parameters needed to describe the process. The present paper proposes a promising route for circumventing, or at least alleviating that difficulty. The proposed technique consists of a parametric transfer function that, as soon as it is learned, allows for, from a given state, inferring the new state after the application of a unitary operation, defined as a step in the sequenced process. Thus, any sequencing can be evaluated almost in real time by chaining that unitary transfer function, whose output becomes the input of the next operation. The benefits and potential of such a technique are illustrated on a problem of industrial relevance, the one concerning the induced deformation on a structural part when printing on it a series of stiffeners.
Fri, 01 Jan 2021 00:00:00 GMThttp://hdl.handle.net/10985/204682021-01-01T00:00:00ZLOREAU, TanguyCHAMPANEY, VictorHASCOËT, NicolasMOURGUE, PhilippeDUVAL, Jean-LouisCHINESTA, FranciscoFor better designing manufacturing processes, surrogate models were widely considered in the past, where the effect of different material and process parameters was considered from the use of a parametric solution. The last contains the solution of the model describing the system under study, for any choice of the selected parameters. These surrogate models, also known as meta-models, virtual charts or computational vademecum, in the context of model order reduction, were successfully employed in a variety of industrial applications. However, they remain confronted to a major difficulty when the number of parameters grows exponentially. Thus, processes involving trajectories or sequencing entail a combinatorial exposition (curse of dimensionality) not only due to the number of possible combinations, but due to the number of parameters needed to describe the process. The present paper proposes a promising route for circumventing, or at least alleviating that difficulty. The proposed technique consists of a parametric transfer function that, as soon as it is learned, allows for, from a given state, inferring the new state after the application of a unitary operation, defined as a step in the sequenced process. Thus, any sequencing can be evaluated almost in real time by chaining that unitary transfer function, whose output becomes the input of the next operation. The benefits and potential of such a technique are illustrated on a problem of industrial relevance, the one concerning the induced deformation on a structural part when printing on it a series of stiffeners.