SAM
https://sam.ensam.eu:443
The DSpace digital repository system captures, stores, indexes, preserves, and distributes digital research material.Wed, 24 Jul 2024 08:56:19 GMT2024-07-24T08:56:19ZPort-metriplectic neural networks: thermodynamics-informed machine learning of complex physical systems
http://hdl.handle.net/10985/24724
Port-metriplectic neural networks: thermodynamics-informed machine learning of complex physical systems
HERNÁNDEZ, Quercus; BADIAS, Alberto; CHINESTA SORIA, Francisco; CUETO, Elias
We develop inductive biases for the machine learning of complex physical systems based on the port-Hamiltonian formalism. To satisfy by construction the principles of thermodynamics in the learned physics (conservation of energy, non-negative entropy production), we modify accordingly the port-Hamiltonian formalism so as to achieve a port-metriplectic one. We show that the constructed networks are able to learn the physics of complex systems by parts, thus alleviating the burden associated to the experimental characterization and posterior learning process of this kind of systems. Predictions can be done, however, at the scale of the complete system. Examples are shown on the performance of the proposed technique.
Sun, 01 Jan 2023 00:00:00 GMThttp://hdl.handle.net/10985/247242023-01-01T00:00:00ZHERNÁNDEZ, QuercusBADIAS, AlbertoCHINESTA SORIA, FranciscoCUETO, EliasWe develop inductive biases for the machine learning of complex physical systems based on the port-Hamiltonian formalism. To satisfy by construction the principles of thermodynamics in the learned physics (conservation of energy, non-negative entropy production), we modify accordingly the port-Hamiltonian formalism so as to achieve a port-metriplectic one. We show that the constructed networks are able to learn the physics of complex systems by parts, thus alleviating the burden associated to the experimental characterization and posterior learning process of this kind of systems. Predictions can be done, however, at the scale of the complete system. Examples are shown on the performance of the proposed technique.Thermodynamics-informed neural networks for physically realistic mixed reality
http://hdl.handle.net/10985/24750
Thermodynamics-informed neural networks for physically realistic mixed reality
HERNÁNDEZ, Quercus; BADIAS, Alberto; CHINESTA SORIA, Francisco; CUETO, Elias
The imminent impact of immersive technologies in society urges for active research in real-time and interactive physics simulation for virtual worlds to be realistic. In this context, realistic means to be compliant to the laws of physics. In this paper we present a method for computing the dynamic response of (possibly non-linear and dissipative) deformable objects induced by real-time user interactions in mixed reality using deep learning. The graph-based architecture of the method ensures the thermodynamic consistency of the predictions, whereas the visualization pipeline allows a natural and realistic user experience. Two examples of virtual solids interacting with virtual or physical solids in mixed reality scenarios are provided to prove the performance of the method.
Sun, 01 Jan 2023 00:00:00 GMThttp://hdl.handle.net/10985/247502023-01-01T00:00:00ZHERNÁNDEZ, QuercusBADIAS, AlbertoCHINESTA SORIA, FranciscoCUETO, EliasThe imminent impact of immersive technologies in society urges for active research in real-time and interactive physics simulation for virtual worlds to be realistic. In this context, realistic means to be compliant to the laws of physics. In this paper we present a method for computing the dynamic response of (possibly non-linear and dissipative) deformable objects induced by real-time user interactions in mixed reality using deep learning. The graph-based architecture of the method ensures the thermodynamic consistency of the predictions, whereas the visualization pipeline allows a natural and realistic user experience. Two examples of virtual solids interacting with virtual or physical solids in mixed reality scenarios are provided to prove the performance of the method.Structure-preserving neural networks
http://hdl.handle.net/10985/19561
Structure-preserving neural networks
HERNÁNDEZ, Quercus; BADÍAS, Alberto; GONZÁLEZ, David; CUETO, Elías; CHINESTA SORIA, Francisco
We develop a method to learn physical systems from data that employs feedforward neural networks and whose predictions comply with the first and second principles of thermodynamics. The method employs a minimum amount of data by enforcing the metriplectic structure of dissipative Hamiltonian systems in the form of the so-called General Equation for the Non-Equilibrium Reversible-Irreversible Coupling, GENERIC (Öttinger and Grmela (1997) [36]). The method does not need to enforce any kind of balance equation, and thus no previous knowledge on the nature of the system is needed. Conservation of energy and dissipation of entropy in the prediction of previously unseen situations arise as a natural by-product of the structure of the method. Examples of the performance of the method are shown that comprise conservative as well as dissipative systems, discrete as well as continuous ones.
Wed, 01 Jan 2020 00:00:00 GMThttp://hdl.handle.net/10985/195612020-01-01T00:00:00ZHERNÁNDEZ, QuercusBADÍAS, AlbertoGONZÁLEZ, DavidCUETO, ElíasCHINESTA SORIA, FranciscoWe develop a method to learn physical systems from data that employs feedforward neural networks and whose predictions comply with the first and second principles of thermodynamics. The method employs a minimum amount of data by enforcing the metriplectic structure of dissipative Hamiltonian systems in the form of the so-called General Equation for the Non-Equilibrium Reversible-Irreversible Coupling, GENERIC (Öttinger and Grmela (1997) [36]). The method does not need to enforce any kind of balance equation, and thus no previous knowledge on the nature of the system is needed. Conservation of energy and dissipation of entropy in the prediction of previously unseen situations arise as a natural by-product of the structure of the method. Examples of the performance of the method are shown that comprise conservative as well as dissipative systems, discrete as well as continuous ones.Structure-preserving neural networks
http://hdl.handle.net/10985/19924
Structure-preserving neural networks
HERNÁNDEZ, Quercus; BADÍAS, Alberto; GONZÁLEZ, David; CUETO, Elías; CHINESTA SORIA, Francisco
We develop a method to learn physical systems from data that employs feedforward neural networks and whose predictions comply with the first and second principles of thermodynamics. The method employs a minimum amount of data by enforcing the metriplectic structure of dissipative Hamiltonian systems in the form of the so-called General Equation for the Non-Equilibrium Reversible-Irreversible Coupling, GENERIC (Öttinger and Grmela (1997) [36]). The method does not need to enforce any kind of balance equation, and thus no previous knowledge on the nature of the system is needed. Conservation of energy and dissipation of entropy in the prediction of previously unseen situations arise as a natural by-product of the structure of the method. Examples of the performance of the method are shown that comprise conservative as well as dissipative systems, discrete as well as continuous ones.
Fri, 01 Jan 2021 00:00:00 GMThttp://hdl.handle.net/10985/199242021-01-01T00:00:00ZHERNÁNDEZ, QuercusBADÍAS, AlbertoGONZÁLEZ, DavidCUETO, ElíasCHINESTA SORIA, FranciscoWe develop a method to learn physical systems from data that employs feedforward neural networks and whose predictions comply with the first and second principles of thermodynamics. The method employs a minimum amount of data by enforcing the metriplectic structure of dissipative Hamiltonian systems in the form of the so-called General Equation for the Non-Equilibrium Reversible-Irreversible Coupling, GENERIC (Öttinger and Grmela (1997) [36]). The method does not need to enforce any kind of balance equation, and thus no previous knowledge on the nature of the system is needed. Conservation of energy and dissipation of entropy in the prediction of previously unseen situations arise as a natural by-product of the structure of the method. Examples of the performance of the method are shown that comprise conservative as well as dissipative systems, discrete as well as continuous ones.