SAM
https://sam.ensam.eu:443
The DSpace digital repository system captures, stores, indexes, preserves, and distributes digital research material.Thu, 15 Apr 2021 15:03:53 GMT2021-04-15T15:03:53ZParametric Electromagnetic Analysis of Radar-Based Advanced Driver Assistant Systems
http://hdl.handle.net/10985/19416
Parametric Electromagnetic Analysis of Radar-Based Advanced Driver Assistant Systems
VERMIGLIO, Simona; CHAMPANEY, Victor; SANCARLOS, Abel; DAIM, Fatima; KEDZIA, Jean Claude; DUVAL, Jean Louis; DIEZ, Pedro; CHINESTA, Francisco
Efficient and optimal design of radar-based Advanced Driver Assistant Systems (ADAS) needs the evaluation of many different electromagnetic solutions for evaluating the impact of the radome on the electromagnetic wave propagation. Because of the very high frequency at which these devices operate, with the associated extremely small wavelength, very fine meshes are needed to accurately discretize the electromagnetic equations. Thus, the computational cost of each numerical solution for a given choice of the design or operation parameters, is high (CPU time consuming and needing significant computational resources) compromising the efficiency of standard optimization algorithms. In order to alleviate the just referred difficulties the present paper proposes an approach based on the use of reduced order modeling, in particular the construction of a parametric solution by employing a non-intrusive formulation of the Proper Generalized Decomposition, combined with a powerful phase-angle unwrapping strategy for accurately addressing the electric and magnetic fields interpolation, contributing to improve the design, the calibration and the operational use of those systems.
Wed, 01 Jan 2020 00:00:00 GMThttp://hdl.handle.net/10985/194162020-01-01T00:00:00ZVERMIGLIO, SimonaCHAMPANEY, VictorSANCARLOS, AbelDAIM, FatimaKEDZIA, Jean ClaudeDUVAL, Jean LouisDIEZ, PedroCHINESTA, FranciscoEfficient and optimal design of radar-based Advanced Driver Assistant Systems (ADAS) needs the evaluation of many different electromagnetic solutions for evaluating the impact of the radome on the electromagnetic wave propagation. Because of the very high frequency at which these devices operate, with the associated extremely small wavelength, very fine meshes are needed to accurately discretize the electromagnetic equations. Thus, the computational cost of each numerical solution for a given choice of the design or operation parameters, is high (CPU time consuming and needing significant computational resources) compromising the efficiency of standard optimization algorithms. In order to alleviate the just referred difficulties the present paper proposes an approach based on the use of reduced order modeling, in particular the construction of a parametric solution by employing a non-intrusive formulation of the Proper Generalized Decomposition, combined with a powerful phase-angle unwrapping strategy for accurately addressing the electric and magnetic fields interpolation, contributing to improve the design, the calibration and the operational use of those systems.