SAM
https://sam.ensam.eu:443
The DSpace digital repository system captures, stores, indexes, preserves, and distributes digital research material.Wed, 23 Oct 2019 10:38:25 GMT2019-10-23T10:38:25ZSensitivity of a 5-phase Brushless DC machine to the 7th harmonic of the back-electromotive force
http://hdl.handle.net/10985/10781
Sensitivity of a 5-phase Brushless DC machine to the 7th harmonic of the back-electromotive force
SEMAIL, Eric; KESTELYN, Xavier; BOUSCAYROL, Alain
This paper presents a vector control of a 5-phase drive composed of a 5-leg Pulse Width Modulation (PWM) Voltage Source Inverter (VSI) supplying a permanent-magnet Brushless DC (BLDC) machine with trapezoidal waveform of the back-electromotive force (EMF). To achieve this control a Multi-machine Multi-converter model is used: the 5-phase machine is transformed into a set of two 2-phase fictitious machines which are each one controlled in a (d,q) frame as 3-phase machines with sine waveform back-EMF. In comparison with the 3-phase BLDC drives, the 5-phase ones present one particularity: a high sensitivity to the 7th harmonic of back-EMF. Experimental results show that the 7th harmonic of back-EMF, which represents only 5% of RMS back-EMF, induces high amplitude parasitic currents (29 % percent of RMS current). The model allows to explain the origin of this sensitivity and how to modify simply the control algorithm. Experimental improvements of the drive are presented.
Thu, 01 Jan 2004 00:00:00 GMThttp://hdl.handle.net/10985/107812004-01-01T00:00:00ZSEMAIL, EricKESTELYN, XavierBOUSCAYROL, AlainThis paper presents a vector control of a 5-phase drive composed of a 5-leg Pulse Width Modulation (PWM) Voltage Source Inverter (VSI) supplying a permanent-magnet Brushless DC (BLDC) machine with trapezoidal waveform of the back-electromotive force (EMF). To achieve this control a Multi-machine Multi-converter model is used: the 5-phase machine is transformed into a set of two 2-phase fictitious machines which are each one controlled in a (d,q) frame as 3-phase machines with sine waveform back-EMF. In comparison with the 3-phase BLDC drives, the 5-phase ones present one particularity: a high sensitivity to the 7th harmonic of back-EMF. Experimental results show that the 7th harmonic of back-EMF, which represents only 5% of RMS back-EMF, induces high amplitude parasitic currents (29 % percent of RMS current). The model allows to explain the origin of this sensitivity and how to modify simply the control algorithm. Experimental improvements of the drive are presented.Analytical Optimal Currents for Multiphase PMSMs Under Fault Conditions and Saturation
http://hdl.handle.net/10985/8410
Analytical Optimal Currents for Multiphase PMSMs Under Fault Conditions and Saturation
NGUYEN, Ngac Ky; FLIELLER, Damien; KESTELYN, Xavier; SEMAIL, Eric
An original analytical expression is presented in this paper to obtain optimal currents minimizing the copper losses of a multi-phase Permanent Magnet Synchronous Motor (PMSM) under fault conditions. Based on the existing solutions [i]opt1 (without zero sequence of current constraint) and [i]opt2 (with zero sequence constraint), this new expression of currents [i]opt3 is obtained by means of a geometrical representation and can be applied to open-circuit, defect of current regulation, current saturation and machine phase short-circuit fault. Simulation results are presented to validate the proposed approach.
Wed, 01 Jan 2014 00:00:00 GMThttp://hdl.handle.net/10985/84102014-01-01T00:00:00ZNGUYEN, Ngac KyFLIELLER, DamienKESTELYN, XavierSEMAIL, EricAn original analytical expression is presented in this paper to obtain optimal currents minimizing the copper losses of a multi-phase Permanent Magnet Synchronous Motor (PMSM) under fault conditions. Based on the existing solutions [i]opt1 (without zero sequence of current constraint) and [i]opt2 (with zero sequence constraint), this new expression of currents [i]opt3 is obtained by means of a geometrical representation and can be applied to open-circuit, defect of current regulation, current saturation and machine phase short-circuit fault. Simulation results are presented to validate the proposed approach.High Order Sliding mode optimal current control of Five Phase Permanent magnet Motor under Open Circuited phase Fault Conditions
http://hdl.handle.net/10985/8822
High Order Sliding mode optimal current control of Five Phase Permanent magnet Motor under Open Circuited phase Fault Conditions
MEKRI, Fatiha; CHARPENTIER, Jean-Frederic; BENELGHALI, Seifeddine; KESTELYN, Xavier
Electrical marine propulsion systems are characterized by very high level requirements in terms of compactness, acoustic behavior and reliability. In this particular context, the use of multiphase PM machines associated with VSI drives appears to be a very efficient solution. Presented work focus on the use of such a system in open circuited phase fault conditions. With this kind of system it is possible to determine optimal current references which maximize the torque density of the system when one or two phases are open circuited. Classical linear controllers (as PID for example) cannot provide a correct tracking of these optimal current references because they have a highly dynamical behavior. We propose in this paper to combine this optimal current reference generation with High Order Sliding Mode (HOSM) control. This kind of solution allows a good tracking of these unconventional current references with a fixed switching frequency for the VSI. This method is validated experimentally using a low power experimental set-up which associates a 5-phase PM machine with a DSP controlled IGBT 5-leg VSI drive.
Fri, 01 Jan 2010 00:00:00 GMThttp://hdl.handle.net/10985/88222010-01-01T00:00:00ZMEKRI, FatihaCHARPENTIER, Jean-FredericBENELGHALI, SeifeddineKESTELYN, XavierElectrical marine propulsion systems are characterized by very high level requirements in terms of compactness, acoustic behavior and reliability. In this particular context, the use of multiphase PM machines associated with VSI drives appears to be a very efficient solution. Presented work focus on the use of such a system in open circuited phase fault conditions. With this kind of system it is possible to determine optimal current references which maximize the torque density of the system when one or two phases are open circuited. Classical linear controllers (as PID for example) cannot provide a correct tracking of these optimal current references because they have a highly dynamical behavior. We propose in this paper to combine this optimal current reference generation with High Order Sliding Mode (HOSM) control. This kind of solution allows a good tracking of these unconventional current references with a fixed switching frequency for the VSI. This method is validated experimentally using a low power experimental set-up which associates a 5-phase PM machine with a DSP controlled IGBT 5-leg VSI drive.Multi-phase System Supplied by SVM VSI: A New Fast Algorithm to Compute Duty Cycles
http://hdl.handle.net/10985/6998
Multi-phase System Supplied by SVM VSI: A New Fast Algorithm to Compute Duty Cycles
KESTELYN, Xavier; SEMAIL, Eric; HAUTIER, Jean-Paul
Many authors proposed SVM VSI applied to multi-phase drives.
La version éditeur de cette article est disponible à l'adresse suivante : http://www.epe-association.org/epe/index.php
Thu, 01 Jan 2004 00:00:00 GMThttp://hdl.handle.net/10985/69982004-01-01T00:00:00ZKESTELYN, XavierSEMAIL, EricHAUTIER, Jean-PaulMany authors proposed SVM VSI applied to multi-phase drives.Signal-based Technique for Fault Detection and Isolation of Inverter Faults in Multi-phase Drives
http://hdl.handle.net/10985/6817
Signal-based Technique for Fault Detection and Isolation of Inverter Faults in Multi-phase Drives
MEINGUET, Fabien; SANDULESCU, Paul; ASLAN, Bassel; LU, Li; NGUYEN, Ngac Ky; KESTELYN, Xavier; SEMAIL, Eric
A method for fault detection and isolation is proposed and applied to inverter faults in multi-phase drives. An analysis of simulations in faulty conditions leads to the derivation of suitable fault indices. These are based on the unbalance of the phase currents and their instantaneous frequency. The method is applied to a five-phase permanent-magnet synchronous machine drive. Simulations and experiments validate the proposed method.
Sun, 01 Jan 2012 00:00:00 GMThttp://hdl.handle.net/10985/68172012-01-01T00:00:00ZMEINGUET, FabienSANDULESCU, PaulASLAN, BasselLU, LiNGUYEN, Ngac KyKESTELYN, XavierSEMAIL, EricA method for fault detection and isolation is proposed and applied to inverter faults in multi-phase drives. An analysis of simulations in faulty conditions leads to the derivation of suitable fault indices. These are based on the unbalance of the phase currents and their instantaneous frequency. The method is applied to a five-phase permanent-magnet synchronous machine drive. Simulations and experiments validate the proposed method.Inversion-based control of electromechanical systems using causal graphical descriptions
http://hdl.handle.net/10985/9276
Inversion-based control of electromechanical systems using causal graphical descriptions
BARRE, Pierre-Jean; BOUSCAYROL, Alain; DELARUE, Philippe; DUMETZ, Eric; GIRAUD, Frédéric; HAUTIER, Jean-Paul; KESTELYN, Xavier; LEMAIRE-SEMAIL, Betty; SEMAIL, Eric
Causal Ordering Graph and Energetic Macroscopic Representation are graphical descriptions to model electromechanical systems using integral causality. Inversion rules have been defined in order to deduce control structure step-bystep from these graphical descriptions. These two modeling tools can be used together to develop a two-layer control of system with complex parts. A double-drive paper system is taken as an example. The deduced control yields good performances of tension regulation and velocity tracking.
Sun, 01 Jan 2006 00:00:00 GMThttp://hdl.handle.net/10985/92762006-01-01T00:00:00ZBARRE, Pierre-JeanBOUSCAYROL, AlainDELARUE, PhilippeDUMETZ, EricGIRAUD, FrédéricHAUTIER, Jean-PaulKESTELYN, XavierLEMAIRE-SEMAIL, BettySEMAIL, EricCausal Ordering Graph and Energetic Macroscopic Representation are graphical descriptions to model electromechanical systems using integral causality. Inversion rules have been defined in order to deduce control structure step-bystep from these graphical descriptions. These two modeling tools can be used together to develop a two-layer control of system with complex parts. A double-drive paper system is taken as an example. The deduced control yields good performances of tension regulation and velocity tracking.Right Harmonic Spectrum for the back-electromotive force of a n-phase synchronous motor
http://hdl.handle.net/10985/9274
Right Harmonic Spectrum for the back-electromotive force of a n-phase synchronous motor
SEMAIL, Eric; KESTELYN, Xavier; BOUSCAYROL, Alain
This paper deals with a vector control of n-phase permanent magnet synchronous machine. To use control algorithms already developed for sine-wave 3-phase machines, the spectrum of back electromotive force (EMF) must contain only odd 2k+1 harmonics which verify the following inequality, 1≤ 2k +1< n . In an experimental vector control of a 5-phase drive, two usual algorithms of sine-wave 3-phase machine are thus used to supply a machine with trapezoidal waveform back EMF. In this case, the first and third harmonics are used to produce torque: the other harmonics, and particularly the 7th one, induce effects as torque ripples and parasitic currents.
Thu, 01 Jan 2004 00:00:00 GMThttp://hdl.handle.net/10985/92742004-01-01T00:00:00ZSEMAIL, EricKESTELYN, XavierBOUSCAYROL, AlainThis paper deals with a vector control of n-phase permanent magnet synchronous machine. To use control algorithms already developed for sine-wave 3-phase machines, the spectrum of back electromotive force (EMF) must contain only odd 2k+1 harmonics which verify the following inequality, 1≤ 2k +1< n . In an experimental vector control of a 5-phase drive, two usual algorithms of sine-wave 3-phase machine are thus used to supply a machine with trapezoidal waveform back EMF. In this case, the first and third harmonics are used to produce torque: the other harmonics, and particularly the 7th one, induce effects as torque ripples and parasitic currents.A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles
http://hdl.handle.net/10985/6750
A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles
SANDULESCU, Paul; KESTELYN, Xavier; SEMAIL, Eric; BRUYERE, Antoine; BOUCHEZ, Boris; DE SOUSA, Luis
For Electric Vehicles (EV), the charger is one of the main technical and economical weaknesses. This paper focuses on an original electric drive [1]-[3] dedicated to the vehicle traction and configurable as a battery charger without need of additional components. This cheap solution can outfit either electric or plug-in hybrid automotive vehicles, without needing additional mass and volume dedicated to the charger. Moreover, it allows a high charging power, for short duration charge cycles. However, this solution needs specific cares concerning the electrical machine control. This paper deals with the control of this drive [1], focusing on traction mode. In introduction, a review is done about topologies of combined on-board chargers. Then, the studied topology is introduced; using a 3-phase brushless machine supplied with a 6-leg Voltage Source Inverter (VSI). A model for its control is defined in the generalized Concordia frame, considering the traction mode. Then, an analysis of this model is established using a multimachine theory and a graphical formalism (the Energetic Macroscopic Representation denoted EMR). Using EMR, a description of energy flows shows specific control constraints. Indeed, numerical simulations illustrate the perturbations on the currents and the torque when controlling the machine with standard control methodologies. An improved control, deduced from the previous analysis, shows good performances, strongly reducing currents and torque ripples.
Fri, 01 Jan 2010 00:00:00 GMThttp://hdl.handle.net/10985/67502010-01-01T00:00:00ZSANDULESCU, PaulKESTELYN, XavierSEMAIL, EricBRUYERE, AntoineBOUCHEZ, BorisDE SOUSA, LuisFor Electric Vehicles (EV), the charger is one of the main technical and economical weaknesses. This paper focuses on an original electric drive [1]-[3] dedicated to the vehicle traction and configurable as a battery charger without need of additional components. This cheap solution can outfit either electric or plug-in hybrid automotive vehicles, without needing additional mass and volume dedicated to the charger. Moreover, it allows a high charging power, for short duration charge cycles. However, this solution needs specific cares concerning the electrical machine control. This paper deals with the control of this drive [1], focusing on traction mode. In introduction, a review is done about topologies of combined on-board chargers. Then, the studied topology is introduced; using a 3-phase brushless machine supplied with a 6-leg Voltage Source Inverter (VSI). A model for its control is defined in the generalized Concordia frame, considering the traction mode. Then, an analysis of this model is established using a multimachine theory and a graphical formalism (the Energetic Macroscopic Representation denoted EMR). Using EMR, a description of energy flows shows specific control constraints. Indeed, numerical simulations illustrate the perturbations on the currents and the torque when controlling the machine with standard control methodologies. An improved control, deduced from the previous analysis, shows good performances, strongly reducing currents and torque ripples.FPGA Implementation of a General Space Vector Approach on a 6-Leg Voltage Source Inverter
http://hdl.handle.net/10985/6749
FPGA Implementation of a General Space Vector Approach on a 6-Leg Voltage Source Inverter
SANDULESCU, Paul; IDKHAJINE, Lahoucine; CENSE, Sébastien; COLAS, Frédéric; KESTELYN, Xavier; SEMAIL, Eric; BRUYERE, Antoine
A general algorithm of a Space Vector approach is implemented on a 6-leg VSI controlling a PM synchronous machine with three independent phases. In this last case, the necessity of controlling the zero-sequence current motivates the choice of a special family of vectors, different of this one used in Pulse Width Modulation (PWM) intersective strategy and in common Space Vector PWM (SVPWM). To preserve the parallelism of the algorithm and fulfill the execution time constraints, the implementation is made on a Field Programmable Gate Array (FPGA). Comparisons with more classical 2-level and 3-level PWM are provided.
Sat, 01 Jan 2011 00:00:00 GMThttp://hdl.handle.net/10985/67492011-01-01T00:00:00ZSANDULESCU, PaulIDKHAJINE, LahoucineCENSE, SébastienCOLAS, FrédéricKESTELYN, XavierSEMAIL, EricBRUYERE, AntoineA general algorithm of a Space Vector approach is implemented on a 6-leg VSI controlling a PM synchronous machine with three independent phases. In this last case, the necessity of controlling the zero-sequence current motivates the choice of a special family of vectors, different of this one used in Pulse Width Modulation (PWM) intersective strategy and in common Space Vector PWM (SVPWM). To preserve the parallelism of the algorithm and fulfill the execution time constraints, the implementation is made on a Field Programmable Gate Array (FPGA). Comparisons with more classical 2-level and 3-level PWM are provided.Modélisation vectorielle et commande de machines polyphasées à pôles lisses alimentées par onduleur de tension
http://hdl.handle.net/10985/6896
Modélisation vectorielle et commande de machines polyphasées à pôles lisses alimentées par onduleur de tension
SEMAIL, Eric; KESTELYN, Xavier
Ce chapitre traite de la modélisation et de la commande de machines électriques à plus de deux courants indépendants alimentées par onduleur de tension. Une approche vectorielle générale permettant de généraliser le concept de machine diphasée équivalente utilisé pour les machines triphasées est présentée et appliquée au cas d’une machine synchrone prototype à aimants permanents cinq phases alimentée soit par 5 bras d’onduleurs.
Fri, 01 Jan 2010 00:00:00 GMThttp://hdl.handle.net/10985/68962010-01-01T00:00:00ZSEMAIL, EricKESTELYN, XavierCe chapitre traite de la modélisation et de la commande de machines électriques à plus de deux courants indépendants alimentées par onduleur de tension. Une approche vectorielle générale permettant de généraliser le concept de machine diphasée équivalente utilisé pour les machines triphasées est présentée et appliquée au cas d’une machine synchrone prototype à aimants permanents cinq phases alimentée soit par 5 bras d’onduleurs.