SAM
https://sam.ensam.eu:443
The DSpace digital repository system captures, stores, indexes, preserves, and distributes digital research material.Tue, 27 Feb 2024 10:54:28 GMT2024-02-27T10:54:28ZParametric analysis and machine learning-based parametric modeling of wire laser metal deposition induced porosity
http://hdl.handle.net/10985/22196
Parametric analysis and machine learning-based parametric modeling of wire laser metal deposition induced porosity
LOREAU, Tanguy; CHAMPANEY, Victor; HASCOET, Nicolas; LAMBARRI, Jon; MADARIETA, Mikel; GARMENDIA, Iker; CHINESTA, Francisco
Additive manufacturing is an appealing solution to produce geometrically complex parts, difficult to manufacture using traditional technologies. The extreme process conditions, in particular the high temperature, complex interactions and couplings, rich metallurgical transformations and combinatorial deposition trajectories, induce numerous process defects and in particular porosity. Simulating numerically porosity appearance remains extremely complex because of the multiple physics induced by the laser-material interaction, the multiple space and time scales, with a strong impact on the simulation efficiency and performances. Moreover, when analyzing parts build-up by using the wire laser metal deposition —wLMD— technology it can be noticed a significant variability in the porosity size and distribution even when process parameters remain unchanged. For these reasons the present paper aims at proposing an alternative modeling approach based on the use of neural networks to express the porosity as a function of different process parameters that will be extracted from the process analysis.
Fri, 01 Apr 2022 00:00:00 GMThttp://hdl.handle.net/10985/221962022-04-01T00:00:00ZLOREAU, TanguyCHAMPANEY, VictorHASCOET, NicolasLAMBARRI, JonMADARIETA, MikelGARMENDIA, IkerCHINESTA, FranciscoAdditive manufacturing is an appealing solution to produce geometrically complex parts, difficult to manufacture using traditional technologies. The extreme process conditions, in particular the high temperature, complex interactions and couplings, rich metallurgical transformations and combinatorial deposition trajectories, induce numerous process defects and in particular porosity. Simulating numerically porosity appearance remains extremely complex because of the multiple physics induced by the laser-material interaction, the multiple space and time scales, with a strong impact on the simulation efficiency and performances. Moreover, when analyzing parts build-up by using the wire laser metal deposition —wLMD— technology it can be noticed a significant variability in the porosity size and distribution even when process parameters remain unchanged. For these reasons the present paper aims at proposing an alternative modeling approach based on the use of neural networks to express the porosity as a function of different process parameters that will be extracted from the process analysis.Learning the Parametric Transfer Function of Unitary Operations for Real-Time Evaluation of Manufacturing Processes Involving Operations Sequencing
http://hdl.handle.net/10985/20468
Learning the Parametric Transfer Function of Unitary Operations for Real-Time Evaluation of Manufacturing Processes Involving Operations Sequencing
LOREAU, Tanguy; CHAMPANEY, Victor; HASCOËT, Nicolas; MOURGUE, Philippe; DUVAL, Jean-Louis; CHINESTA, Francisco
For better designing manufacturing processes, surrogate models were widely considered in the past, where the effect of different material and process parameters was considered from the use of a parametric solution. The last contains the solution of the model describing the system under study, for any choice of the selected parameters. These surrogate models, also known as meta-models, virtual charts or computational vademecum, in the context of model order reduction, were successfully employed in a variety of industrial applications. However, they remain confronted to a major difficulty when the number of parameters grows exponentially. Thus, processes involving trajectories or sequencing entail a combinatorial exposition (curse of dimensionality) not only due to the number of possible combinations, but due to the number of parameters needed to describe the process. The present paper proposes a promising route for circumventing, or at least alleviating that difficulty. The proposed technique consists of a parametric transfer function that, as soon as it is learned, allows for, from a given state, inferring the new state after the application of a unitary operation, defined as a step in the sequenced process. Thus, any sequencing can be evaluated almost in real time by chaining that unitary transfer function, whose output becomes the input of the next operation. The benefits and potential of such a technique are illustrated on a problem of industrial relevance, the one concerning the induced deformation on a structural part when printing on it a series of stiffeners.
Fri, 01 Jan 2021 00:00:00 GMThttp://hdl.handle.net/10985/204682021-01-01T00:00:00ZLOREAU, TanguyCHAMPANEY, VictorHASCOËT, NicolasMOURGUE, PhilippeDUVAL, Jean-LouisCHINESTA, FranciscoFor better designing manufacturing processes, surrogate models were widely considered in the past, where the effect of different material and process parameters was considered from the use of a parametric solution. The last contains the solution of the model describing the system under study, for any choice of the selected parameters. These surrogate models, also known as meta-models, virtual charts or computational vademecum, in the context of model order reduction, were successfully employed in a variety of industrial applications. However, they remain confronted to a major difficulty when the number of parameters grows exponentially. Thus, processes involving trajectories or sequencing entail a combinatorial exposition (curse of dimensionality) not only due to the number of possible combinations, but due to the number of parameters needed to describe the process. The present paper proposes a promising route for circumventing, or at least alleviating that difficulty. The proposed technique consists of a parametric transfer function that, as soon as it is learned, allows for, from a given state, inferring the new state after the application of a unitary operation, defined as a step in the sequenced process. Thus, any sequencing can be evaluated almost in real time by chaining that unitary transfer function, whose output becomes the input of the next operation. The benefits and potential of such a technique are illustrated on a problem of industrial relevance, the one concerning the induced deformation on a structural part when printing on it a series of stiffeners.