SAM
https://sam.ensam.eu:443
The DSpace digital repository system captures, stores, indexes, preserves, and distributes digital research material.Mon, 25 May 2020 06:59:47 GMT2020-05-25T06:59:47ZIdentification of sensitive R-L parameters of a Multi-phase drive by a vector control
http://hdl.handle.net/10985/9256
Identification of sensitive R-L parameters of a Multi-phase drive by a vector control
BRUYERE, Antoine; SEMAIL, Eric; BOUSCAYROL, Alain; DUBUS, Jean-Marc; MIPO, Jean-Claude
This paper focuses on an experimental method to determine the electric parameters of a seven-phase low-voltage multiphase drive. The drive is a belt driven starter-alternator for powerful cars with Hybrid Electrical Vehicles (HEV) functions. The resistive and inductive parameters are necessary to obtain the six characteristic time constants of the control modeling. Classical direct measurements lead to imprecise results because of very low values for the windings electric resistance (a few mΩ) and inductance (a few μH). Effects of the imprecision on the measurements are all the more important that time constants are obtained by a ratio of cyclic inductances by resistance, with cyclic inductances being a linear combination of seven measured inductances. The methodology for identification detailed in this paper is based on a stator current vector control, in a multi-reference frame. This methodology allows us to get directly these time constants. Numerous measurements allow the robustness of the method to be evaluated
Tue, 01 Jan 2008 00:00:00 GMThttp://hdl.handle.net/10985/92562008-01-01T00:00:00ZBRUYERE, AntoineSEMAIL, EricBOUSCAYROL, AlainDUBUS, Jean-MarcMIPO, Jean-ClaudeThis paper focuses on an experimental method to determine the electric parameters of a seven-phase low-voltage multiphase drive. The drive is a belt driven starter-alternator for powerful cars with Hybrid Electrical Vehicles (HEV) functions. The resistive and inductive parameters are necessary to obtain the six characteristic time constants of the control modeling. Classical direct measurements lead to imprecise results because of very low values for the windings electric resistance (a few mΩ) and inductance (a few μH). Effects of the imprecision on the measurements are all the more important that time constants are obtained by a ratio of cyclic inductances by resistance, with cyclic inductances being a linear combination of seven measured inductances. The methodology for identification detailed in this paper is based on a stator current vector control, in a multi-reference frame. This methodology allows us to get directly these time constants. Numerous measurements allow the robustness of the method to be evaluatedInfluence of the Manufacturing Process of a Claw-Pole Alternator on Its Stator Shape and Acoustic Noise
http://hdl.handle.net/10985/12995
Influence of the Manufacturing Process of a Claw-Pole Alternator on Its Stator Shape and Acoustic Noise
TAN-KIM, Antoine; HAGEN, Nicolas; LANFRANCHI, Vincent; CLENET, Stéphane; COOREVITS, Thierry; MIPO, Jean-Claude; LEGRANGER, Jerome; PALLESCHI, Frédéric
This paper shows the influence of the manufacturing process of a claw-pole alternator on its acoustic noise. First, the stator welds and the assembly of the stator in the brackets are linked to deformations of the inner diameter of the stator. Then, the influences of these deformations on the magnetic forces and the subsequent acoustic noise are investigated. Results show that the deformations caused by the manufacturing process significantly increase the sound power level of particular orders.
Sun, 01 Jan 2017 00:00:00 GMThttp://hdl.handle.net/10985/129952017-01-01T00:00:00ZTAN-KIM, AntoineHAGEN, NicolasLANFRANCHI, VincentCLENET, StéphaneCOOREVITS, ThierryMIPO, Jean-ClaudeLEGRANGER, JeromePALLESCHI, FrédéricThis paper shows the influence of the manufacturing process of a claw-pole alternator on its acoustic noise. First, the stator welds and the assembly of the stator in the brackets are linked to deformations of the inner diameter of the stator. Then, the influences of these deformations on the magnetic forces and the subsequent acoustic noise are investigated. Results show that the deformations caused by the manufacturing process significantly increase the sound power level of particular orders.Enhanced Meta-model Based Optimization under Constraints using Parallel Computations
http://hdl.handle.net/10985/13417
Enhanced Meta-model Based Optimization under Constraints using Parallel Computations
EL BECHARI, Reda; BRISSET, Stéphane; CLENET, Stéphane; MIPO, Jean-Claude
Meta-models proved to be a very efficient strategy for optimization of expensive black-box models, e.g. Finite Element simulation for electromagnetic devices. It enables to reduce the computational burden for optimization purposes. Kriging is a popular method to build meta-model. Its statistical properties were firstly used in efficient global optimization for unconstrained problems. Afterwards many extensions were introduced in the literature to deal with constrained optimization. This paper presents a comparative study of some infill criteria for constraints handling and a new strategy for parallelization of the expensive computations of models. TEAM workshop problem 22 is taken as an electromagnetic test problem.
Sun, 01 Jan 2017 00:00:00 GMThttp://hdl.handle.net/10985/134172017-01-01T00:00:00ZEL BECHARI, RedaBRISSET, StéphaneCLENET, StéphaneMIPO, Jean-ClaudeMeta-models proved to be a very efficient strategy for optimization of expensive black-box models, e.g. Finite Element simulation for electromagnetic devices. It enables to reduce the computational burden for optimization purposes. Kriging is a popular method to build meta-model. Its statistical properties were firstly used in efficient global optimization for unconstrained problems. Afterwards many extensions were introduced in the literature to deal with constrained optimization. This paper presents a comparative study of some infill criteria for constraints handling and a new strategy for parallelization of the expensive computations of models. TEAM workshop problem 22 is taken as an electromagnetic test problem.Characterization of the local incremental permeability of a ferromagnetic plate based on a four needles technique
http://hdl.handle.net/10985/11754
Characterization of the local incremental permeability of a ferromagnetic plate based on a four needles technique
ARBENZ, Laure; BENABOU, Abdelkader; CLÉNET, Stéphane; FAVEROLLE, Pierre; MIPO, Jean-Claude
The performances of electrical machines depend highly on the behavior of ferromagnetic materials. In some applications, these materials operate under DC polarization, i.e. when the magnetic field oscillates around a DC bias. In that condition, it is required to know the incremental permeability which characterizes the magnetic behavior of the material around the operating point. In this paper, a non-destructive approach, involving a combination of experiment and Finite Element (FE) technique, is presented in order to determine the incremental permeability. The proposed sensor is based on the four-needles method. With this sensor, Bowler et al. have proposed a method to determine the initial permeability of homogeneous metal plates based on an analytical model. Here we propose to use the same kind of sensor to determine the incremental permeability. The measurement process is analyzed using a FE model. It is shown that the analytical approach reaches its limits if the permeability of the plate and its thickness become too high. A combination between the measurements and a FE model is introduced to overcome this
Fri, 01 Jan 2016 00:00:00 GMThttp://hdl.handle.net/10985/117542016-01-01T00:00:00ZARBENZ, LaureBENABOU, AbdelkaderCLÉNET, StéphaneFAVEROLLE, PierreMIPO, Jean-ClaudeThe performances of electrical machines depend highly on the behavior of ferromagnetic materials. In some applications, these materials operate under DC polarization, i.e. when the magnetic field oscillates around a DC bias. In that condition, it is required to know the incremental permeability which characterizes the magnetic behavior of the material around the operating point. In this paper, a non-destructive approach, involving a combination of experiment and Finite Element (FE) technique, is presented in order to determine the incremental permeability. The proposed sensor is based on the four-needles method. With this sensor, Bowler et al. have proposed a method to determine the initial permeability of homogeneous metal plates based on an analytical model. Here we propose to use the same kind of sensor to determine the incremental permeability. The measurement process is analyzed using a FE model. It is shown that the analytical approach reaches its limits if the permeability of the plate and its thickness become too high. A combination between the measurements and a FE model is introduced to overcome thisComparison of two approaches to compute magnetic field in problems with random domains
http://hdl.handle.net/10985/7276
Comparison of two approaches to compute magnetic field in problems with random domains
MAC, Duy Hung; CLENET, Stéphane; MIPO, Jean-Claude
Methods are now available to solve numerically electromagnetic problems with uncertain input data (behaviour law or geometry). The stochastic approach consists in modelling uncertain data using random variables. Discontinuities on the magnetic field distribution in the stochastic dimension can arise in a problem with uncertainties on the geometry. The basis functions (polynomial chaos) usually used to approximate the unknown fields in the random dimensions are no longer suited. One possibility proposed in the literature is to introduce additional functions (enrichment function) to tackle the problem of discontinuity. In this study, the authors focus on the method of random mappings and they show that in this case the discontinuity are naturally taken into account and that no enrichment function needs to be added.
This paper is a postprint of a paper submitted to and accepted for publication in Science, Measurement & Technology, IET and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at IET Digital Library
Sun, 01 Jan 2012 00:00:00 GMThttp://hdl.handle.net/10985/72762012-01-01T00:00:00ZMAC, Duy HungCLENET, StéphaneMIPO, Jean-ClaudeMethods are now available to solve numerically electromagnetic problems with uncertain input data (behaviour law or geometry). The stochastic approach consists in modelling uncertain data using random variables. Discontinuities on the magnetic field distribution in the stochastic dimension can arise in a problem with uncertainties on the geometry. The basis functions (polynomial chaos) usually used to approximate the unknown fields in the random dimensions are no longer suited. One possibility proposed in the literature is to introduce additional functions (enrichment function) to tackle the problem of discontinuity. In this study, the authors focus on the method of random mappings and they show that in this case the discontinuity are naturally taken into account and that no enrichment function needs to be added.Identification of a 7-phase claw-pole starter-alternator for a micro-hybrid automotive application
http://hdl.handle.net/10985/9255
Identification of a 7-phase claw-pole starter-alternator for a micro-hybrid automotive application
BRUYERE, Antoine; HENNERON, Thomas; SEMAIL, Eric; LOCMENT, Fabrice; BOUSCAYROL, Alain; DUBUS, Jean-Marc; MIPO, Jean-Claude
This paper deals with the identification of a new high power starter-alternator system, using both: a Finite Element Method (FEM) modeling and an experimental vector control. The drive is composed of a synchronous 7-phase claw-pole machine supplied with a low voltage / high current Voltage Source Inverter (VSI). This structure needs specific approaches to plan its electrical and mechanical behaviors and to identify the parameters needed for control purpose. At first, a Finite Element Method (FEM) modeling of the machine is presented. It is used for the predetermination of the electromotive forces and of the torque. Experimental results are in good accordance with numerical results. In a second part, resistive and inductive parameters of the drive are determined by an original experimental approach that takes into account each component of the drive: the battery, the VSI and the machine.
Tue, 01 Jan 2008 00:00:00 GMThttp://hdl.handle.net/10985/92552008-01-01T00:00:00ZBRUYERE, AntoineHENNERON, ThomasSEMAIL, EricLOCMENT, FabriceBOUSCAYROL, AlainDUBUS, Jean-MarcMIPO, Jean-ClaudeThis paper deals with the identification of a new high power starter-alternator system, using both: a Finite Element Method (FEM) modeling and an experimental vector control. The drive is composed of a synchronous 7-phase claw-pole machine supplied with a low voltage / high current Voltage Source Inverter (VSI). This structure needs specific approaches to plan its electrical and mechanical behaviors and to identify the parameters needed for control purpose. At first, a Finite Element Method (FEM) modeling of the machine is presented. It is used for the predetermination of the electromotive forces and of the torque. Experimental results are in good accordance with numerical results. In a second part, resistive and inductive parameters of the drive are determined by an original experimental approach that takes into account each component of the drive: the battery, the VSI and the machine.Characterization of the local Electrical Properties of Electrical Machine Parts with non-Trivial Geometry
http://hdl.handle.net/10985/9861
Characterization of the local Electrical Properties of Electrical Machine Parts with non-Trivial Geometry
ARBENZ, Laure; BENABOU, Abdelkader; CLENET, Stéphane; MIPO, Jean-Claude; FAVEROLLE, Pierre
In electrical machines, knowing the electrical conductivity is of importance for the eddy current calculation, especially when massive iron parts are involved. Generally the conductivity is measured on samples of raw materials with simple geometries. Indeed, a simple geometry is suitable for applying an analytical approach to deduce the electrical conductivity from the measured electrical quantities. Nevertheless, when a non destructive measurement is required, the measurement of the electrical conductivity can become rather difficult on parts with complex geometry. To that end, with the help of the Finite Element Modeling approach (FEM), a strategy is developed to characterize the local electrical properties of parts with a non-trivial geometry.
Thu, 01 Jan 2015 00:00:00 GMThttp://hdl.handle.net/10985/98612015-01-01T00:00:00ZARBENZ, LaureBENABOU, AbdelkaderCLENET, StéphaneMIPO, Jean-ClaudeFAVEROLLE, PierreIn electrical machines, knowing the electrical conductivity is of importance for the eddy current calculation, especially when massive iron parts are involved. Generally the conductivity is measured on samples of raw materials with simple geometries. Indeed, a simple geometry is suitable for applying an analytical approach to deduce the electrical conductivity from the measured electrical quantities. Nevertheless, when a non destructive measurement is required, the measurement of the electrical conductivity can become rather difficult on parts with complex geometry. To that end, with the help of the Finite Element Modeling approach (FEM), a strategy is developed to characterize the local electrical properties of parts with a non-trivial geometry.A priori error indicator in the transformation method for problems with geometric uncertainties
http://hdl.handle.net/10985/7114
A priori error indicator in the transformation method for problems with geometric uncertainties
MAC, Duy Hung; CLENET, Stéphane; MIPO, Jean-Claude; TSUKERMAN, Igor
To solve stochastic problems with geometric uncertainties, one can transform the original problem in a domain with stochastic boundaries and interfaces to a problem defined in a deterministic domain with uncertainties in the material behavior. The latter problem is then discretized. There exist infinitely many random mappings that lead to identical results in the continuous domain but not in the discretized domain. In this paper, an a priori error indicator is proposed for electromagnetic problems with scalar and vector potential formulations. This leads to criteria for selecting random mappings that reduce the numerical error. In an illustrative numerical example, the proposed a priori error indicator is compared with an a posteriori estimator for both potential formulations
Version éditeur de cette publication à l'adresse suivante : http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6514655
Tue, 01 Jan 2013 00:00:00 GMThttp://hdl.handle.net/10985/71142013-01-01T00:00:00ZMAC, Duy HungCLENET, StéphaneMIPO, Jean-ClaudeTSUKERMAN, IgorTo solve stochastic problems with geometric uncertainties, one can transform the original problem in a domain with stochastic boundaries and interfaces to a problem defined in a deterministic domain with uncertainties in the material behavior. The latter problem is then discretized. There exist infinitely many random mappings that lead to identical results in the continuous domain but not in the discretized domain. In this paper, an a priori error indicator is proposed for electromagnetic problems with scalar and vector potential formulations. This leads to criteria for selecting random mappings that reduce the numerical error. In an illustrative numerical example, the proposed a priori error indicator is compared with an a posteriori estimator for both potential formulationsModeling and Control of a 7-phase Claw-pole Starter-alternator for a Micro-hybrid Automotive Application
http://hdl.handle.net/10985/9263
Modeling and Control of a 7-phase Claw-pole Starter-alternator for a Micro-hybrid Automotive Application
BRUYERE, Antoine; SEMAIL, Eric; BOUSCAYROL, Alain; CHARLEY, Jacques; LOCMENT, Fabrice; DUBUS, Jean-Marc; MIPO, Jean-Claude
This paper deals with the modeling and the control of a new high power 12V Integrated Starter Alternator (ISA). This system is used to bring micro-hybrid functions to standard Internal Combustion Engine (ICE) vehicles. The drive is composed of a seven-phase synchronous claw-pole machine with separate excitation, supplied with a seven-leg Voltage Source Inverter (VSI) designed for low voltage and high current. The system is modeled in a generalized Concordia frame and a graphical description is used to highlight energetic properties of such a complex system. A control scheme is then deduced from this graphical description. Two controls are achieved in generator mode and compared: one is using the VSI in a square-wave mode, the other in a Pulse Width Modulation (PWM) mode. Experimental results are provided.
Tue, 01 Jan 2008 00:00:00 GMThttp://hdl.handle.net/10985/92632008-01-01T00:00:00ZBRUYERE, AntoineSEMAIL, EricBOUSCAYROL, AlainCHARLEY, JacquesLOCMENT, FabriceDUBUS, Jean-MarcMIPO, Jean-ClaudeThis paper deals with the modeling and the control of a new high power 12V Integrated Starter Alternator (ISA). This system is used to bring micro-hybrid functions to standard Internal Combustion Engine (ICE) vehicles. The drive is composed of a seven-phase synchronous claw-pole machine with separate excitation, supplied with a seven-leg Voltage Source Inverter (VSI) designed for low voltage and high current. The system is modeled in a generalized Concordia frame and a graphical description is used to highlight energetic properties of such a complex system. A control scheme is then deduced from this graphical description. Two controls are achieved in generator mode and compared: one is using the VSI in a square-wave mode, the other in a Pulse Width Modulation (PWM) mode. Experimental results are provided.Transformation Methods for Static Field Problems With Random Domains
http://hdl.handle.net/10985/7274
Transformation Methods for Static Field Problems With Random Domains
MAC, Duy Hung; CLENET, Stéphane; MIPO, Jean-Claude
The numerical solution of partial differential equations onto random domains can be done by using a mapping transforming this random domain into a deterministic domain. The issue is then to determine this one to one random mapping. In this paper, we present two methods-one based on the resolution of the Laplace equations, one based on a geometric transformation-to determine the random mapping. A stochastic magnetostatic example is treated to compare these methods.
Sat, 01 Jan 2011 00:00:00 GMThttp://hdl.handle.net/10985/72742011-01-01T00:00:00ZMAC, Duy HungCLENET, StéphaneMIPO, Jean-ClaudeThe numerical solution of partial differential equations onto random domains can be done by using a mapping transforming this random domain into a deterministic domain. The issue is then to determine this one to one random mapping. In this paper, we present two methods-one based on the resolution of the Laplace equations, one based on a geometric transformation-to determine the random mapping. A stochastic magnetostatic example is treated to compare these methods.