SAM
https://sam.ensam.eu:443
The DSpace digital repository system captures, stores, indexes, preserves, and distributes digital research material.Sun, 14 Apr 2024 01:08:56 GMT2024-04-14T01:08:56ZEffects of Non-Sinusoidal Motion and Effective Angle of Attack on Energy Extraction Performance of a Fully- Activated Flapping Foil
http://hdl.handle.net/10985/20265
Effects of Non-Sinusoidal Motion and Effective Angle of Attack on Energy Extraction Performance of a Fully- Activated Flapping Foil
BOUDIS, A.; OUALLI, H.; BENZAOUI, A.; GUERRI, O; BAYEUL-LAINE, Annie-Claude; COUTIER-DELGOSHA, Olivier
Flapping foil energy harvesting systems are considered as highly competitive devices for conventional turbines. Several research projects have already been carried out to improve performances of such new devices. This paper is devoted to study effects of non-sinusoidal heaving trajectory, non-sinusoidal pitching trajectory, and the effective angle of attack on the energy extraction performances of a flapping foil operating at low Reynolds number (Re=1100). An elliptic function with an adjustable parameter S (flattening parameter) is used to simulate various sinusoidal and non-sinusoidal flapping trajectories. The flow around the flapping foil is simulated by solving Navier–Stokes equations using the commercial software Star CCM+ based on the finite-volume method. Overset mesh technique is used to model the flapping motion. The study is applied to the NACA0015 foil with the following kinetic parameters: a dimensionless heaving amplitude h0 = 1c, a shift angle between heaving and pitching motions f = 90 , a reduced frequency f = 0:14, and an effective angle of attack amax varying between 15 and 50 , corresponding to a pitching amplitude in the range q0 = 55:51 to 90:51 . The results show that, the non-sinusoidal trajectory affects considerably the energy extraction performances. For the reference case (sinusoidal heaving and pitching motions, Sh = Sq = 1), best performances are obtained for the effective angle of attack, amax = 40 . At small effective angle of attack amax < 30 , the non-sinusoidal pitching motion combined with a sinusoidal heaving motion, greatly improve energy extraction performances. For amax = 15 , Sh = 1 and Sq = 2, energy extraction efficiency is improved by 52.22% and the power coefficient by 70.40% comparatively to sinusoidal pitching motion. At high effective angles of attack ( amax >40 ), non-sinusoidal pitching motion has a negative effect. Performance improvement is quite limited with the combined motions non-sinusoidal heaving/sinusoidal pitching.
Fri, 01 Jan 2021 00:00:00 GMThttp://hdl.handle.net/10985/202652021-01-01T00:00:00ZBOUDIS, A.OUALLI, H.BENZAOUI, A.GUERRI, OBAYEUL-LAINE, Annie-ClaudeCOUTIER-DELGOSHA, OlivierFlapping foil energy harvesting systems are considered as highly competitive devices for conventional turbines. Several research projects have already been carried out to improve performances of such new devices. This paper is devoted to study effects of non-sinusoidal heaving trajectory, non-sinusoidal pitching trajectory, and the effective angle of attack on the energy extraction performances of a flapping foil operating at low Reynolds number (Re=1100). An elliptic function with an adjustable parameter S (flattening parameter) is used to simulate various sinusoidal and non-sinusoidal flapping trajectories. The flow around the flapping foil is simulated by solving Navier–Stokes equations using the commercial software Star CCM+ based on the finite-volume method. Overset mesh technique is used to model the flapping motion. The study is applied to the NACA0015 foil with the following kinetic parameters: a dimensionless heaving amplitude h0 = 1c, a shift angle between heaving and pitching motions f = 90 , a reduced frequency f = 0:14, and an effective angle of attack amax varying between 15 and 50 , corresponding to a pitching amplitude in the range q0 = 55:51 to 90:51 . The results show that, the non-sinusoidal trajectory affects considerably the energy extraction performances. For the reference case (sinusoidal heaving and pitching motions, Sh = Sq = 1), best performances are obtained for the effective angle of attack, amax = 40 . At small effective angle of attack amax < 30 , the non-sinusoidal pitching motion combined with a sinusoidal heaving motion, greatly improve energy extraction performances. For amax = 15 , Sh = 1 and Sq = 2, energy extraction efficiency is improved by 52.22% and the power coefficient by 70.40% comparatively to sinusoidal pitching motion. At high effective angles of attack ( amax >40 ), non-sinusoidal pitching motion has a negative effect. Performance improvement is quite limited with the combined motions non-sinusoidal heaving/sinusoidal pitching.Numerical Investigation of the Effects of Nonsinusoidal Motion Trajectory on the Propulsion Mechanisms of a Flapping Airfoil
http://hdl.handle.net/10985/15496
Numerical Investigation of the Effects of Nonsinusoidal Motion Trajectory on the Propulsion Mechanisms of a Flapping Airfoil
BOUDIS, A.; BAYEUL-LAINE, Annie-Claude; BENZAOUI, A.; OUALLI, H.; GUERRI, O.; COUTIER-DELGOSHA, Olivier
The effect of nonsinusoidal trajectory on the propulsive performances and the vortex shedding process behind a flapping airfoil is investigated in this study. A movement of a rigid NACA0012 airfoil undergoing a combined heaving and pitching motions at low Reynolds number (Re¼11,000) is considered. An elliptic function with an adjustable parameter S (flattening parameter) is used to realize various nonsinusoidal trajectories of both motions. The two-dimensional (2D) unsteady and incompressible Navier–Stokes equation governing the flow over the flapping airfoil are resolved using the commercial software STAR CCMþ. It is shown that the nonsinusoidal flapping motion has a major effect on the propulsive performances of the flapping airfoil. Although the maximum propulsive efficiency is always achievable with sinusoidal trajectories, nonsinusoidal trajectories are found to considerably improve performance: a 110% increase of the thrust force was obtained in the best studied case. This improvement is mainly related to the modification of the heaving motion, more specifically the increase of the heaving speed at maximum pitching angle of the foil. The analysis of the flow vorticity and wake structure also enables to explain the drop of the propulsive efficiency for nonsinusoidal trajectories.
Tue, 01 Jan 2019 00:00:00 GMThttp://hdl.handle.net/10985/154962019-01-01T00:00:00ZBOUDIS, A.BAYEUL-LAINE, Annie-ClaudeBENZAOUI, A.OUALLI, H.GUERRI, O.COUTIER-DELGOSHA, OlivierThe effect of nonsinusoidal trajectory on the propulsive performances and the vortex shedding process behind a flapping airfoil is investigated in this study. A movement of a rigid NACA0012 airfoil undergoing a combined heaving and pitching motions at low Reynolds number (Re¼11,000) is considered. An elliptic function with an adjustable parameter S (flattening parameter) is used to realize various nonsinusoidal trajectories of both motions. The two-dimensional (2D) unsteady and incompressible Navier–Stokes equation governing the flow over the flapping airfoil are resolved using the commercial software STAR CCMþ. It is shown that the nonsinusoidal flapping motion has a major effect on the propulsive performances of the flapping airfoil. Although the maximum propulsive efficiency is always achievable with sinusoidal trajectories, nonsinusoidal trajectories are found to considerably improve performance: a 110% increase of the thrust force was obtained in the best studied case. This improvement is mainly related to the modification of the heaving motion, more specifically the increase of the heaving speed at maximum pitching angle of the foil. The analysis of the flow vorticity and wake structure also enables to explain the drop of the propulsive efficiency for nonsinusoidal trajectories.