SAM
https://sam.ensam.eu:443
The DSpace digital repository system captures, stores, indexes, preserves, and distributes digital research material.Mon, 17 Jun 2024 21:19:55 GMT2024-06-17T21:19:55ZAn analytical finite-strain parametrization for texture evolution in deforming olivine polycrystals
http://hdl.handle.net/10985/14596
An analytical finite-strain parametrization for texture evolution in deforming olivine polycrystals
RIBE, Neil M.; HIELSCHE, Ralf; CASTELNAU, Olivier
Progressive deformation of upper mantle rocks via dislocation creep causes their constituent crystals to take on a non-random orientation distribution (crystal preferred orientation or CPO). The resulting anisotropy of the rock's elastic properties can be observed by seismic techniques, and provides a means to constrain mantle convective flow patterns. Existing methods for calculating the evolution of CPO in deforming olivine-dominated rocks rely on unwieldy discrete representations of the crystal orientation distribution in terms of a large number (103-104) of individual grains. Here we propose a more efficient method in which CPO is represented using three continuous analytical functions (structured basis functions or SBFs), each of which represents a virtual CPO produced by the action of just one of the three dominant slip systems of olivine. The SBFs are then combined using an appropriate weighting scheme to represent a realistic CPO that results from the simultaneous activity of all three slip systems. We assume that olivine CPO is a unique function of the finite strain experienced by the aggregate, which implies that the weights of the SBFs depend only on the two ratios of the lengths of the axes of the finite strain ellipsoid (FSE) and the two ratios of the strengths (critical resolved shear stresses) of the slip systems. Our preferred set of weighting coefficients is obtained by least-squares fitting of the SBF expansion to the predictions of a kinematic model (solved by the method of characteristics) in which the amplitudes of the crystallographic spins do not increase with strain. Calculation of CPO using this model is ≈107 times faster than full homogenization approaches such as the second-order self-consistent model, and the result fits the characteristics-based solution with a variance reduction ≥ 88.6 per cent for equivalent strains up to 0.9. Finally, we propose a simple modification of the FSE that prevents the CPO from becoming singular at large strains.
Tue, 01 Jan 2019 00:00:00 GMThttp://hdl.handle.net/10985/145962019-01-01T00:00:00ZRIBE, Neil M.HIELSCHE, RalfCASTELNAU, OlivierProgressive deformation of upper mantle rocks via dislocation creep causes their constituent crystals to take on a non-random orientation distribution (crystal preferred orientation or CPO). The resulting anisotropy of the rock's elastic properties can be observed by seismic techniques, and provides a means to constrain mantle convective flow patterns. Existing methods for calculating the evolution of CPO in deforming olivine-dominated rocks rely on unwieldy discrete representations of the crystal orientation distribution in terms of a large number (103-104) of individual grains. Here we propose a more efficient method in which CPO is represented using three continuous analytical functions (structured basis functions or SBFs), each of which represents a virtual CPO produced by the action of just one of the three dominant slip systems of olivine. The SBFs are then combined using an appropriate weighting scheme to represent a realistic CPO that results from the simultaneous activity of all three slip systems. We assume that olivine CPO is a unique function of the finite strain experienced by the aggregate, which implies that the weights of the SBFs depend only on the two ratios of the lengths of the axes of the finite strain ellipsoid (FSE) and the two ratios of the strengths (critical resolved shear stresses) of the slip systems. Our preferred set of weighting coefficients is obtained by least-squares fitting of the SBF expansion to the predictions of a kinematic model (solved by the method of characteristics) in which the amplitudes of the crystallographic spins do not increase with strain. Calculation of CPO using this model is ≈107 times faster than full homogenization approaches such as the second-order self-consistent model, and the result fits the characteristics-based solution with a variance reduction ≥ 88.6 per cent for equivalent strains up to 0.9. Finally, we propose a simple modification of the FSE that prevents the CPO from becoming singular at large strains.Analytical parametrization of self-consistent polycrystal mechanics: Fast calculation of upper mantle anisotropy
http://hdl.handle.net/10985/10415
Analytical parametrization of self-consistent polycrystal mechanics: Fast calculation of upper mantle anisotropy
GOULDING, Neil J.; RIBE, Neil M.; CASTELNAU, Olivier; WALKER, Andrew M.
Progressive deformation of upper mantle rocks via dislocation creep causes their constituent crystals to take on a non-random orientation distribution (crystallographic preferred orientation or CPO) whose observable signatures include shear-wave splitting and azimuthal dependence of surface wave speeds. Comparison of these signatures with mantle flow models thus allows mantle dynamics to be unraveled on global and regional scales. However, existing self-consistent models of CPO evolution are computationally expensive when used with 3-D and/or time-dependent convection models. Here we propose a new method, called ANPAR, which is based on an analytical parametrization of the crystallographic spin predicted by the second-order (SO) self-consistent theory. Our parametrization runs ≈2–6 × 104 times faster than the SO model and fits its predictions for CPO and crystallographic spin with a variance reduction >99 per cent. We illustrate the ANPAR model predictions for the deformation of olivine with three dominant slip systems, (010)[100], (001)[100] and (010)[001], for three uniform deformations (uniaxial compression, pure shear and simple shear) and for a corner-flow model of a spreading mid-ocean ridge.
Thu, 01 Jan 2015 00:00:00 GMThttp://hdl.handle.net/10985/104152015-01-01T00:00:00ZGOULDING, Neil J.RIBE, Neil M.CASTELNAU, OlivierWALKER, Andrew M.Progressive deformation of upper mantle rocks via dislocation creep causes their constituent crystals to take on a non-random orientation distribution (crystallographic preferred orientation or CPO) whose observable signatures include shear-wave splitting and azimuthal dependence of surface wave speeds. Comparison of these signatures with mantle flow models thus allows mantle dynamics to be unraveled on global and regional scales. However, existing self-consistent models of CPO evolution are computationally expensive when used with 3-D and/or time-dependent convection models. Here we propose a new method, called ANPAR, which is based on an analytical parametrization of the crystallographic spin predicted by the second-order (SO) self-consistent theory. Our parametrization runs ≈2–6 × 104 times faster than the SO model and fits its predictions for CPO and crystallographic spin with a variance reduction >99 per cent. We illustrate the ANPAR model predictions for the deformation of olivine with three dominant slip systems, (010)[100], (001)[100] and (010)[001], for three uniform deformations (uniaxial compression, pure shear and simple shear) and for a corner-flow model of a spreading mid-ocean ridge.