SAM
https://sam.ensam.eu:443
The DSpace digital repository system captures, stores, indexes, preserves, and distributes digital research material.Wed, 11 Dec 2019 21:15:27 GMT2019-12-11T21:15:27ZThe onset of three-dimensional centrifugal global modes and their nonlinear development in a recirculating flow over a flat surface
http://hdl.handle.net/10985/6867
The onset of three-dimensional centrifugal global modes and their nonlinear development in a recirculating flow over a flat surface
CHERUBINI, Stefania; ROBINET, Jean-Christophe; DE PALMA, Pietro; ALIZARD, Frédéric
The three-dimensional stability dynamics of a separation bubble over a flat plate has been studied in both linear and nonlinear conditions. Using a global eigenvalue analysis, two centrifugal global modes are identified: an asymptotically unstable three-dimensional weakly growing mode which appears to be originated by a Rayleigh instability; a marginally stable three-dimensional steady mode which is originated by a convective Gortler instability. Direct numerical simulations show that both modes play a role in the route to transition toward the turbulent flow. A structural sensitivity analysis is used to investigate the mechanism of selection of the path toward transition when small perturbations are considered. Finally, a scenario of transition via Gortler modes breakdown is studied in detail, revealing the formation of trains of hairpin vortices in streamwise succession.
Publisher version : http://pof.aip.org/resource/1/phfle6/v22/i11/p114102_s1?isAuthorized=no
Fri, 01 Jan 2010 00:00:00 GMThttp://hdl.handle.net/10985/68672010-01-01T00:00:00ZCHERUBINI, StefaniaROBINET, Jean-ChristopheDE PALMA, PietroALIZARD, FrédéricThe three-dimensional stability dynamics of a separation bubble over a flat plate has been studied in both linear and nonlinear conditions. Using a global eigenvalue analysis, two centrifugal global modes are identified: an asymptotically unstable three-dimensional weakly growing mode which appears to be originated by a Rayleigh instability; a marginally stable three-dimensional steady mode which is originated by a convective Gortler instability. Direct numerical simulations show that both modes play a role in the route to transition toward the turbulent flow. A structural sensitivity analysis is used to investigate the mechanism of selection of the path toward transition when small perturbations are considered. Finally, a scenario of transition via Gortler modes breakdown is studied in detail, revealing the formation of trains of hairpin vortices in streamwise succession.Rapid path to transition via nonlinear localized optimal perturbations in a boundary-layer flow
http://hdl.handle.net/10985/6861
Rapid path to transition via nonlinear localized optimal perturbations in a boundary-layer flow
CHERUBINI, Stefania; DE PALMA, Pietro; ROBINET, Jean-Christophe; BOTTARO, Alessandro
Recent studies have suggested that in some cases transition can be triggered by some purely nonlinear mechanisms. Here we aim at verifying such an hypothesis, looking for a localized perturbation able to lead a boundary-layer flow to a chaotic state, following a nonlinear route. Nonlinear optimal localized perturbations have been computed by means of an energy optimization which includes the nonlinear terms of the Navier- Stokes equations. Such perturbations lie on the turbulent side of the laminar-turbulent boundary, whereas, for the same value of the initial energy, their linear counterparts do not. The evolution of these perturbations toward a turbulent flow involves the presence of streamwise-inclined vortices at short times and of hairpin structures prior to breakdown.
Fri, 01 Jan 2010 00:00:00 GMThttp://hdl.handle.net/10985/68612010-01-01T00:00:00ZCHERUBINI, StefaniaDE PALMA, PietroROBINET, Jean-ChristopheBOTTARO, AlessandroRecent studies have suggested that in some cases transition can be triggered by some purely nonlinear mechanisms. Here we aim at verifying such an hypothesis, looking for a localized perturbation able to lead a boundary-layer flow to a chaotic state, following a nonlinear route. Nonlinear optimal localized perturbations have been computed by means of an energy optimization which includes the nonlinear terms of the Navier- Stokes equations. Such perturbations lie on the turbulent side of the laminar-turbulent boundary, whereas, for the same value of the initial energy, their linear counterparts do not. The evolution of these perturbations toward a turbulent flow involves the presence of streamwise-inclined vortices at short times and of hairpin structures prior to breakdown.A domain decomposition matrix-free method for global linear stability
http://hdl.handle.net/10985/8644
A domain decomposition matrix-free method for global linear stability
ALIZARD, Frédéric; ROBINET, Jean-Christophe; GLOERFELT, Xavier
This work is dedicated to the presentation of a matrix-free method for global linear stability analysis in geometries composed of multi-connected rectangular subdomains. An Arnoldi technique using snapshots in subdomains of the entire geometry combined with a multidomain linearized Direct Numerical Finite difference simulations based on an influence matrix for partitioning are adopted. The method is illustrated by three benchmark problems: the lid-driven cavity, the square cylinder and the open cavity flow. The efficiency of the method to extract large-scale structures in a multidomain framework is emphasized. The possibility to use subset of the full domain to recover the perturbation associated with the entire flow field is also highlighted. Such a method appears thus a promising tool to deal with large computational domains and three-dimensionality within a parallel architecture.
Sun, 01 Jan 2012 00:00:00 GMThttp://hdl.handle.net/10985/86442012-01-01T00:00:00ZALIZARD, FrédéricROBINET, Jean-ChristopheGLOERFELT, XavierThis work is dedicated to the presentation of a matrix-free method for global linear stability analysis in geometries composed of multi-connected rectangular subdomains. An Arnoldi technique using snapshots in subdomains of the entire geometry combined with a multidomain linearized Direct Numerical Finite difference simulations based on an influence matrix for partitioning are adopted. The method is illustrated by three benchmark problems: the lid-driven cavity, the square cylinder and the open cavity flow. The efficiency of the method to extract large-scale structures in a multidomain framework is emphasized. The possibility to use subset of the full domain to recover the perturbation associated with the entire flow field is also highlighted. Such a method appears thus a promising tool to deal with large computational domains and three-dimensionality within a parallel architecture.Optimal bursts in turbulent channel flow
http://hdl.handle.net/10985/11634
Optimal bursts in turbulent channel flow
FARANO, Mirko; CHERUBINI, Stefania; ROBINET, Jean-Christophe; DE PALMA, Pietro
Bursts are recurrent, transient, highly energetic events characterized by localized variations of velocity and vorticity in turbulent wall-bounded ﬂows. In this work, a nonlinear energy optimization strategy is employed to investigate whether the origin of such bursting events in a turbulent channel ﬂow can be related to the presence of high-amplitude coherent structures. The results show that bursting events correspond to optimal energy ﬂow structures embedded in the fully turbulent ﬂow. In particular, optimal structures inducing energy peaks at short time are initially composed of highly oscillating vortices and streaks near the wall. At moderate friction Reynolds numbers, through the bursts, energy is exchanged between the streaks and packets of hairpin vortices of different sizes reaching the outer scale. Such an optimal ﬂow conﬁguration reproduces well the spatial spectra as well as the probability density function typical of turbulent ﬂows, recovering the mechanism of direct-inverse energy cascade. These results represent an important step towards understanding the dynamics of turbulence at moderate Reynolds numbers and pave the way to new nonlinear techniques to manipulate and control the self-sustained turbulence dynamics.
Sun, 01 Jan 2017 00:00:00 GMThttp://hdl.handle.net/10985/116342017-01-01T00:00:00ZFARANO, MirkoCHERUBINI, StefaniaROBINET, Jean-ChristopheDE PALMA, PietroBursts are recurrent, transient, highly energetic events characterized by localized variations of velocity and vorticity in turbulent wall-bounded ﬂows. In this work, a nonlinear energy optimization strategy is employed to investigate whether the origin of such bursting events in a turbulent channel ﬂow can be related to the presence of high-amplitude coherent structures. The results show that bursting events correspond to optimal energy ﬂow structures embedded in the fully turbulent ﬂow. In particular, optimal structures inducing energy peaks at short time are initially composed of highly oscillating vortices and streaks near the wall. At moderate friction Reynolds numbers, through the bursts, energy is exchanged between the streaks and packets of hairpin vortices of different sizes reaching the outer scale. Such an optimal ﬂow conﬁguration reproduces well the spatial spectra as well as the probability density function typical of turbulent ﬂows, recovering the mechanism of direct-inverse energy cascade. These results represent an important step towards understanding the dynamics of turbulence at moderate Reynolds numbers and pave the way to new nonlinear techniques to manipulate and control the self-sustained turbulence dynamics.A purely nonlinear route to transition approaching the edge of chaos in a boundary layer
http://hdl.handle.net/10985/6864
A purely nonlinear route to transition approaching the edge of chaos in a boundary layer
CHERUBINI, Stefania; DE PALMA, Pietro; ROBINET, Jean-Christophe; BOTTARO, Alessandro
The understanding of transition in shear flows has recently progressed along new paradigms based on the central role of coherent flow structures and their nonlinear interactions. We follow such paradigms to identify, by means of a nonlinear optimization of the energy growth at short time, the initial perturbation which most easily induces transition in a boundary layer. Moreover, a bisection procedure has been used to identify localized flow structures living on the edge of chaos, found to be populated by hairpin vortices and streaks. Such an edge structure appears to act as a relative attractor for the trajectory of the laminar base state perturbed by the initial finite-amplitude disturbances, mediating the route to turbulence of the flow, via the triggering of a regeneration cycle of Lambda and hairpin structures at different space and time scales. These findings introduce a new, purely nonlinear scenario of transition in a boundary-layer flow.
Publisher version : http://iopscience.iop.org/1873-7005/44/3/031404
Sun, 01 Jan 2012 00:00:00 GMThttp://hdl.handle.net/10985/68642012-01-01T00:00:00ZCHERUBINI, StefaniaDE PALMA, PietroROBINET, Jean-ChristopheBOTTARO, AlessandroThe understanding of transition in shear flows has recently progressed along new paradigms based on the central role of coherent flow structures and their nonlinear interactions. We follow such paradigms to identify, by means of a nonlinear optimization of the energy growth at short time, the initial perturbation which most easily induces transition in a boundary layer. Moreover, a bisection procedure has been used to identify localized flow structures living on the edge of chaos, found to be populated by hairpin vortices and streaks. Such an edge structure appears to act as a relative attractor for the trajectory of the laminar base state perturbed by the initial finite-amplitude disturbances, mediating the route to turbulence of the flow, via the triggering of a regeneration cycle of Lambda and hairpin structures at different space and time scales. These findings introduce a new, purely nonlinear scenario of transition in a boundary-layer flow.Edge states in a boundary layer
http://hdl.handle.net/10985/6868
Edge states in a boundary layer
CHERUBINI, Stefania; DE PALMA, Pietro; ROBINET, Jean-Christophe; BOTTARO, Alessandro
The understanding of laminar-turbulent transition in shear flows has recently progressed along new paradigms based on the central role of nonlinear exact coherent states. We follow such paradigms to identify, for the first time in a spatially developing flow, localized flow structures living on the edge of chaos, which are the precursors of turbulence. These coherent structures are constituted by hairpin vortices and streamwise streaks. The results reported here extend the dynamical systems description of transition to spatially developing flows.
Publisher version : http://pof.aip.org/resource/1/phfle6/v23/i5/p051705_s1?isAuthorized=no
Sat, 01 Jan 2011 00:00:00 GMThttp://hdl.handle.net/10985/68682011-01-01T00:00:00ZCHERUBINI, StefaniaDE PALMA, PietroROBINET, Jean-ChristopheBOTTARO, AlessandroThe understanding of laminar-turbulent transition in shear flows has recently progressed along new paradigms based on the central role of nonlinear exact coherent states. We follow such paradigms to identify, for the first time in a spatially developing flow, localized flow structures living on the edge of chaos, which are the precursors of turbulence. These coherent structures are constituted by hairpin vortices and streamwise streaks. The results reported here extend the dynamical systems description of transition to spatially developing flows.Investigation of the roughness-induced transition: global stability analyses and direct numerical simulations
http://hdl.handle.net/10985/8974
Investigation of the roughness-induced transition: global stability analyses and direct numerical simulations
LOISEAU, Jean-Christophe; ROBINET, Jean-Christophe; CHERUBINI, Stefania; LERICHE, Emmanuel
The linear global instability and resulting transition to turbulence induced by an isolated cylindrical roughness element of height h and diameter d immersed within an incompressible boundary layer flow along a flat plate is investigated using the joint application of direct numerical simulations and fully three-dimensional global stability analyses. For the range of parameters investigated, base flow computations show that the roughness element induces a wake composed of a central low-speed region surrounded by a three-dimensional shear layer and a pair of low- and high-speed streaks on each of its sides. Results from the global stability analyses highlight the unstable nature of the central low-speed region and its crucial importance in the laminar–turbulent transition process. It is able to sustain two different global instabilities: a sinuous and a varicose one. Each of these globally unstable modes is related to a different physical mechanism. While the varicose mode has its root in the instability of the whole three-dimensional shear layer surrounding the central low-speed region, the sinuous instability turns out to be similar to the von Kármán instability in the two-dimensional cylinder wake and has its root in the lateral shear layers of the separated zone. The aspect ratio of the roughness element plays a key role on the selection of the dominant instability: whereas the flow over thin cylindrical roughness elements transitions due to a sinuous instability of the near-wake region, for larger roughness elements the varicose instability of the central low-speed region turns out to be the dominant one. Direct numerical simulations of the flow past an aspect ratio 1 roughness element sustaining only the sinuous instability have revealed that the bifurcation occurring in this particular case is supercritical. Finally, comparison of the transition thresholds predicted by global linear stability analyses with the von Doenhoff–Braslow transition diagram provides qualitatively good agreement
Wed, 01 Jan 2014 00:00:00 GMThttp://hdl.handle.net/10985/89742014-01-01T00:00:00ZLOISEAU, Jean-ChristopheROBINET, Jean-ChristopheCHERUBINI, StefaniaLERICHE, EmmanuelThe linear global instability and resulting transition to turbulence induced by an isolated cylindrical roughness element of height h and diameter d immersed within an incompressible boundary layer flow along a flat plate is investigated using the joint application of direct numerical simulations and fully three-dimensional global stability analyses. For the range of parameters investigated, base flow computations show that the roughness element induces a wake composed of a central low-speed region surrounded by a three-dimensional shear layer and a pair of low- and high-speed streaks on each of its sides. Results from the global stability analyses highlight the unstable nature of the central low-speed region and its crucial importance in the laminar–turbulent transition process. It is able to sustain two different global instabilities: a sinuous and a varicose one. Each of these globally unstable modes is related to a different physical mechanism. While the varicose mode has its root in the instability of the whole three-dimensional shear layer surrounding the central low-speed region, the sinuous instability turns out to be similar to the von Kármán instability in the two-dimensional cylinder wake and has its root in the lateral shear layers of the separated zone. The aspect ratio of the roughness element plays a key role on the selection of the dominant instability: whereas the flow over thin cylindrical roughness elements transitions due to a sinuous instability of the near-wake region, for larger roughness elements the varicose instability of the central low-speed region turns out to be the dominant one. Direct numerical simulations of the flow past an aspect ratio 1 roughness element sustaining only the sinuous instability have revealed that the bifurcation occurring in this particular case is supercritical. Finally, comparison of the transition thresholds predicted by global linear stability analyses with the von Doenhoff–Braslow transition diagram provides qualitatively good agreementThe minimal seed of turbulent transition in the boundary layer
http://hdl.handle.net/10985/6718
The minimal seed of turbulent transition in the boundary layer
CHERUBINI, Stefania; DE PALMA, Pietro; ROBINET, Jean-Christophe; BOTTARO, Alessandro
This paper describes a scenario of transition from laminar to turbulent flow in a spatially developing boundary layer over a flat plate. The base flow is the Blasius non-parallel flow solution; it is perturbed by optimal disturbances yielding the largest energy growth over a short time interval. Such perturbations are computed by a nonlinear global optimization approach based on a Lagrange multiplier technique. The results show that nonlinear optimal perturbations are characterized by a localized basic building block, called the minimal seed, defined as the smallest flow structure which maximizes the energy growth over short times. It is formed by vortices inclined in the streamwise direction surrounding a region of intense streamwise disturbance velocity. Such a basic structure appears to be a robust feature of the base flow since it is practically invariant with respect to the initial energy of the perturbation, the target time, the Reynolds number and the dimensions of the computational domain. The minimal seed grows very rapidly in time while spreading, and it triggers nonlinear effects which bring the flow to turbulence in a very efficient manner, through the formation of a turbulence spot. This evolution of the initial optimal disturbance has been studied in detail by direct numerical simulations. Using a perturbative formulation of the Navier–Stokes equations, each linear and nonlinear convective term of the equations has been analysed. The results show the fundamental role of the streamwise inclination of the vortices in the process. The nonlinear coupling of the finite amplitude disturbances is crucial to sustain such streamwise inclination, as well as to generate dislocations within the flow structures, and local inflectional velocity distributions. The analysis provides a picture of the transition process characterized by a sequence of structures appearing successively in the flow, namely, 3 vortices, hairpin vortices and streamwise streaks. Finally, a disturbance regeneration cycle is conceived, initiated by the fast nonlinear amplification of the minimal seed, providing a possible scenario for the continuous regeneration of the same fundamental flow structures at smaller space and time scales.
Sat, 01 Jan 2011 00:00:00 GMThttp://hdl.handle.net/10985/67182011-01-01T00:00:00ZCHERUBINI, StefaniaDE PALMA, PietroROBINET, Jean-ChristopheBOTTARO, AlessandroThis paper describes a scenario of transition from laminar to turbulent flow in a spatially developing boundary layer over a flat plate. The base flow is the Blasius non-parallel flow solution; it is perturbed by optimal disturbances yielding the largest energy growth over a short time interval. Such perturbations are computed by a nonlinear global optimization approach based on a Lagrange multiplier technique. The results show that nonlinear optimal perturbations are characterized by a localized basic building block, called the minimal seed, defined as the smallest flow structure which maximizes the energy growth over short times. It is formed by vortices inclined in the streamwise direction surrounding a region of intense streamwise disturbance velocity. Such a basic structure appears to be a robust feature of the base flow since it is practically invariant with respect to the initial energy of the perturbation, the target time, the Reynolds number and the dimensions of the computational domain. The minimal seed grows very rapidly in time while spreading, and it triggers nonlinear effects which bring the flow to turbulence in a very efficient manner, through the formation of a turbulence spot. This evolution of the initial optimal disturbance has been studied in detail by direct numerical simulations. Using a perturbative formulation of the Navier–Stokes equations, each linear and nonlinear convective term of the equations has been analysed. The results show the fundamental role of the streamwise inclination of the vortices in the process. The nonlinear coupling of the finite amplitude disturbances is crucial to sustain such streamwise inclination, as well as to generate dislocations within the flow structures, and local inflectional velocity distributions. The analysis provides a picture of the transition process characterized by a sequence of structures appearing successively in the flow, namely, 3 vortices, hairpin vortices and streamwise streaks. Finally, a disturbance regeneration cycle is conceived, initiated by the fast nonlinear amplification of the minimal seed, providing a possible scenario for the continuous regeneration of the same fundamental flow structures at smaller space and time scales.Successive bifurcations in a fully three-dimensional open cavity flow
http://hdl.handle.net/10985/13014
Successive bifurcations in a fully three-dimensional open cavity flow
PICELLA, F; LOISEAU, Jean-Christophe; LUSSEYRAN, F; ROBINET, Jean-Christophe; CHERUBINI, Stefania; PASTUR, L
The transition to unsteadiness of a three-dimensional open cavity flow is investigated using the joint application of direct numerical simulations and fully three-dimensional linear stability analyses, providing a clear understanding of the first two bifurcations occurring in the flow. The first bifurcation is characterized by the emergence of Taylor–Görtler-like vortices resulting from a centrifugal instability of the primary vortex core. Further increasing the Reynolds number eventually triggers self-sustained periodic oscillations of the flow in the vicinity of the spanwise end walls of the cavity. This secondary instability causes the emergence of a new set of Taylor–Görtler vortices experiencing a spanwise drift directed toward the spanwise end walls of the cavity. While a two-dimensional stability analysis would fail to capture this secondary instability due to the neglect of the lateral walls, it is the first time to our knowledge that this drifting of the vortices can be entirely characterized by a three-dimensional linear stability analysis of the flow. Good agreements with experimental observations and measurements strongly support our claim that the initial stages of the transition to turbulence of three-dimensional open cavity flows are solely governed by modal instabilities.
Mon, 01 Jan 2018 00:00:00 GMThttp://hdl.handle.net/10985/130142018-01-01T00:00:00ZPICELLA, FLOISEAU, Jean-ChristopheLUSSEYRAN, FROBINET, Jean-ChristopheCHERUBINI, StefaniaPASTUR, LThe transition to unsteadiness of a three-dimensional open cavity flow is investigated using the joint application of direct numerical simulations and fully three-dimensional linear stability analyses, providing a clear understanding of the first two bifurcations occurring in the flow. The first bifurcation is characterized by the emergence of Taylor–Görtler-like vortices resulting from a centrifugal instability of the primary vortex core. Further increasing the Reynolds number eventually triggers self-sustained periodic oscillations of the flow in the vicinity of the spanwise end walls of the cavity. This secondary instability causes the emergence of a new set of Taylor–Görtler vortices experiencing a spanwise drift directed toward the spanwise end walls of the cavity. While a two-dimensional stability analysis would fail to capture this secondary instability due to the neglect of the lateral walls, it is the first time to our knowledge that this drifting of the vortices can be entirely characterized by a three-dimensional linear stability analysis of the flow. Good agreements with experimental observations and measurements strongly support our claim that the initial stages of the transition to turbulence of three-dimensional open cavity flows are solely governed by modal instabilities.Global and Koopman modes analysis of sound generation in mixing layers
http://hdl.handle.net/10985/8642
Global and Koopman modes analysis of sound generation in mixing layers
SONG, Ge; ALIZARD, Frédéric; ROBINET, Jean-Christophe; GLOERFELT, Xavier
It is now well established that linear and nonlinear instability waves play a significant role in the noise generation process for a wide variety of shear flows such as jets or mixing layers. In that context, the problem of acoustic radiation generated by spatially growing instability waves of two-dimensional subsonic and supersonic mixing layers are revisited in a global point of view, i.e., without any assumption about the base flow, in both a linear and a nonlinear framework by using global and Koopman mode decompositions. In that respect, a timestepping technique based on disturbance equations is employed to extract the most dynamically relevant coherent structures for both linear and nonlinear regimes. The present analysis proposes thus a general strategy for analysing the near-field coherent structures which are responsible for the acoustic noise in these configurations. In particular, we illustrate the failure of linear global modes to describe the noise generation mechanism associated with the vortex pairing for the subsonic regime whereas they appropriately explain the Mach wave radiation of instability waves in the supersonic regime. By contrast, the Dynamic Mode Decomposition (DMD) analysis captures both the near-field dynamics and the far-field acoustics with a few number of modes for both configurations. In addition, the combination of DMD and linear global modes analyses provides new insight about the influence on the radiated noise of nonlinear interactions and saturation of instability waves as well as their interaction with the mean flow.
Tue, 01 Jan 2013 00:00:00 GMThttp://hdl.handle.net/10985/86422013-01-01T00:00:00ZSONG, GeALIZARD, FrédéricROBINET, Jean-ChristopheGLOERFELT, XavierIt is now well established that linear and nonlinear instability waves play a significant role in the noise generation process for a wide variety of shear flows such as jets or mixing layers. In that context, the problem of acoustic radiation generated by spatially growing instability waves of two-dimensional subsonic and supersonic mixing layers are revisited in a global point of view, i.e., without any assumption about the base flow, in both a linear and a nonlinear framework by using global and Koopman mode decompositions. In that respect, a timestepping technique based on disturbance equations is employed to extract the most dynamically relevant coherent structures for both linear and nonlinear regimes. The present analysis proposes thus a general strategy for analysing the near-field coherent structures which are responsible for the acoustic noise in these configurations. In particular, we illustrate the failure of linear global modes to describe the noise generation mechanism associated with the vortex pairing for the subsonic regime whereas they appropriately explain the Mach wave radiation of instability waves in the supersonic regime. By contrast, the Dynamic Mode Decomposition (DMD) analysis captures both the near-field dynamics and the far-field acoustics with a few number of modes for both configurations. In addition, the combination of DMD and linear global modes analyses provides new insight about the influence on the radiated noise of nonlinear interactions and saturation of instability waves as well as their interaction with the mean flow.