SAM
https://sam.ensam.eu:443
The DSpace digital repository system captures, stores, indexes, preserves, and distributes digital research material.Tue, 15 Oct 2024 19:25:15 GMT2024-10-15T19:25:15ZSensitivity and optimal forcing response in separated boundary layer flows
http://hdl.handle.net/10985/6862
Sensitivity and optimal forcing response in separated boundary layer flows
ALIZARD, Frédéric; CHERUBINI, Stefania; ROBINET, Jean-Christophe
The optimal asymptotic response to time harmonic forcing of a convectively unstable two-dimensional separated boundary layer on a flat plate is numerically revisited from a global point of view. By expanding the flow disturbance variables and the forcing term as a summation of temporal modes, the linear convective instability mechanism associated with the response leading to the maximum gain in energy is theoretically investigated. Such a response is driven by a pseudoresonance of temporal modes due to the non-normality of the underlying linearized evolution operator. In particular, the considered expansion on a limited number of modes is found able to accurately simulate the linear instability mechanism, as suggested by a comparison between the global linear stability analysis and a linearized direct numerical simulation. Furthermore, the dependence of such a mechanism on the Reynolds number and the adverse pressure gradient is investigated, outlining a physical description of the destabilization of the flow induced by the rolling up of the shear layer. Therefore, the convective character of the problem suggests that the considered flat plate separated flows may act as a selective noise amplifier. In order to verfy such a possibility, the responses of the flow to the optimal forcing and to a small level of noise are compared, and their connection to the onset of self-excited vortices observed in literature is investigated. For that purpose, a nonlinear direct numerical simulation is performed, which is initialized by a random noise superposed to the base flow at the inflow boundary points. The band of excited frequencies as well as the associated peak match with the ones computed by the asymptotic global analysis. Finally, the connection between the onset of unsteadiness and the optimal response is further supported by a comparison between the optimal circular frequency and a typical Strouhal number predicted by numerical simulations of previous authors in similar cases.
Publisher version : http://pof.aip.org/resource/1/phfle6/v21/i6/p064108_s1?isAuthorized=no
Thu, 01 Jan 2009 00:00:00 GMThttp://hdl.handle.net/10985/68622009-01-01T00:00:00ZALIZARD, FrédéricCHERUBINI, StefaniaROBINET, Jean-ChristopheThe optimal asymptotic response to time harmonic forcing of a convectively unstable two-dimensional separated boundary layer on a flat plate is numerically revisited from a global point of view. By expanding the flow disturbance variables and the forcing term as a summation of temporal modes, the linear convective instability mechanism associated with the response leading to the maximum gain in energy is theoretically investigated. Such a response is driven by a pseudoresonance of temporal modes due to the non-normality of the underlying linearized evolution operator. In particular, the considered expansion on a limited number of modes is found able to accurately simulate the linear instability mechanism, as suggested by a comparison between the global linear stability analysis and a linearized direct numerical simulation. Furthermore, the dependence of such a mechanism on the Reynolds number and the adverse pressure gradient is investigated, outlining a physical description of the destabilization of the flow induced by the rolling up of the shear layer. Therefore, the convective character of the problem suggests that the considered flat plate separated flows may act as a selective noise amplifier. In order to verfy such a possibility, the responses of the flow to the optimal forcing and to a small level of noise are compared, and their connection to the onset of self-excited vortices observed in literature is investigated. For that purpose, a nonlinear direct numerical simulation is performed, which is initialized by a random noise superposed to the base flow at the inflow boundary points. The band of excited frequencies as well as the associated peak match with the ones computed by the asymptotic global analysis. Finally, the connection between the onset of unsteadiness and the optimal response is further supported by a comparison between the optimal circular frequency and a typical Strouhal number predicted by numerical simulations of previous authors in similar cases.A purely nonlinear route to transition approaching the edge of chaos in a boundary layer
http://hdl.handle.net/10985/6864
A purely nonlinear route to transition approaching the edge of chaos in a boundary layer
CHERUBINI, Stefania; DE PALMA, Pietro; BOTTARO, Alessandro; ROBINET, Jean-Christophe
The understanding of transition in shear flows has recently progressed along new paradigms based on the central role of coherent flow structures and their nonlinear interactions. We follow such paradigms to identify, by means of a nonlinear optimization of the energy growth at short time, the initial perturbation which most easily induces transition in a boundary layer. Moreover, a bisection procedure has been used to identify localized flow structures living on the edge of chaos, found to be populated by hairpin vortices and streaks. Such an edge structure appears to act as a relative attractor for the trajectory of the laminar base state perturbed by the initial finite-amplitude disturbances, mediating the route to turbulence of the flow, via the triggering of a regeneration cycle of Lambda and hairpin structures at different space and time scales. These findings introduce a new, purely nonlinear scenario of transition in a boundary-layer flow.
Publisher version : http://iopscience.iop.org/1873-7005/44/3/031404
Sun, 01 Jan 2012 00:00:00 GMThttp://hdl.handle.net/10985/68642012-01-01T00:00:00ZCHERUBINI, StefaniaDE PALMA, PietroBOTTARO, AlessandroROBINET, Jean-ChristopheThe understanding of transition in shear flows has recently progressed along new paradigms based on the central role of coherent flow structures and their nonlinear interactions. We follow such paradigms to identify, by means of a nonlinear optimization of the energy growth at short time, the initial perturbation which most easily induces transition in a boundary layer. Moreover, a bisection procedure has been used to identify localized flow structures living on the edge of chaos, found to be populated by hairpin vortices and streaks. Such an edge structure appears to act as a relative attractor for the trajectory of the laminar base state perturbed by the initial finite-amplitude disturbances, mediating the route to turbulence of the flow, via the triggering of a regeneration cycle of Lambda and hairpin structures at different space and time scales. These findings introduce a new, purely nonlinear scenario of transition in a boundary-layer flow.Edge states in a boundary layer
http://hdl.handle.net/10985/6868
Edge states in a boundary layer
CHERUBINI, Stefania; DE PALMA, Pietro; BOTTARO, Alessandro; ROBINET, Jean-Christophe
The understanding of laminar-turbulent transition in shear flows has recently progressed along new paradigms based on the central role of nonlinear exact coherent states. We follow such paradigms to identify, for the first time in a spatially developing flow, localized flow structures living on the edge of chaos, which are the precursors of turbulence. These coherent structures are constituted by hairpin vortices and streamwise streaks. The results reported here extend the dynamical systems description of transition to spatially developing flows.
Publisher version : http://pof.aip.org/resource/1/phfle6/v23/i5/p051705_s1?isAuthorized=no
Sat, 01 Jan 2011 00:00:00 GMThttp://hdl.handle.net/10985/68682011-01-01T00:00:00ZCHERUBINI, StefaniaDE PALMA, PietroBOTTARO, AlessandroROBINET, Jean-ChristopheThe understanding of laminar-turbulent transition in shear flows has recently progressed along new paradigms based on the central role of nonlinear exact coherent states. We follow such paradigms to identify, for the first time in a spatially developing flow, localized flow structures living on the edge of chaos, which are the precursors of turbulence. These coherent structures are constituted by hairpin vortices and streamwise streaks. The results reported here extend the dynamical systems description of transition to spatially developing flows.Nonlinear optimals in the asymptotic suction boundary layer: Transition thresholds and symmetry breaking
http://hdl.handle.net/10985/10320
Nonlinear optimals in the asymptotic suction boundary layer: Transition thresholds and symmetry breaking
CHERUBINI, Stefania; DE PALMA, Pietro; ROBINET, Jean-Christophe
The effect of a constant homogeneous wall suction on the nonlinear transient growth of localized finite amplitude perturbations in a boundary-layer flow is investigated. Using a variational technique, nonlinear optimal disturbances are computed for the asymptotic suction boundary layer (ASBL) flow, defined as those finite amplitude disturbances yielding the largest energy growth at a given target time T. It is found that homogeneous wall suction remarkably reduces the optimal energy gain in the nonlinear case. Furthermore, mirror-symmetry breaking of the shape of the optimal perturbation appears when decreasing the Reynolds number from 10?000 to 5000, whereas spanwise mirror-symmetry was a robust feature of the nonlinear optimal perturbations found in the Blasius boundary-layer flow. Direct numerical simulations show that the different evolutions of the symmetric and of the non-symmetric initial perturbations are linked to different mechanisms of transport and tilting of the vortices by the mean flow. By bisecting the initial energy of the nonlinear optimal perturbations, minimal energy thresholds for subcritical transition to turbulence have been obtained. These energy thresholds are found to be 1-4 orders of magnitude smaller than those provided in the literature for other transition scenarios. For low to moderate Reynolds numbers, the energy thresholds are found to scale with Re-2, suggesting a new scaling law for transition in the ASBL.
Thu, 01 Jan 2015 00:00:00 GMThttp://hdl.handle.net/10985/103202015-01-01T00:00:00ZCHERUBINI, StefaniaDE PALMA, PietroROBINET, Jean-ChristopheThe effect of a constant homogeneous wall suction on the nonlinear transient growth of localized finite amplitude perturbations in a boundary-layer flow is investigated. Using a variational technique, nonlinear optimal disturbances are computed for the asymptotic suction boundary layer (ASBL) flow, defined as those finite amplitude disturbances yielding the largest energy growth at a given target time T. It is found that homogeneous wall suction remarkably reduces the optimal energy gain in the nonlinear case. Furthermore, mirror-symmetry breaking of the shape of the optimal perturbation appears when decreasing the Reynolds number from 10?000 to 5000, whereas spanwise mirror-symmetry was a robust feature of the nonlinear optimal perturbations found in the Blasius boundary-layer flow. Direct numerical simulations show that the different evolutions of the symmetric and of the non-symmetric initial perturbations are linked to different mechanisms of transport and tilting of the vortices by the mean flow. By bisecting the initial energy of the nonlinear optimal perturbations, minimal energy thresholds for subcritical transition to turbulence have been obtained. These energy thresholds are found to be 1-4 orders of magnitude smaller than those provided in the literature for other transition scenarios. For low to moderate Reynolds numbers, the energy thresholds are found to scale with Re-2, suggesting a new scaling law for transition in the ASBL.The minimal seed of turbulent transition in the boundary layer
http://hdl.handle.net/10985/6718
The minimal seed of turbulent transition in the boundary layer
CHERUBINI, Stefania; DE PALMA, Pietro; BOTTARO, Alessandro; ROBINET, Jean-Christophe
This paper describes a scenario of transition from laminar to turbulent flow in a spatially developing boundary layer over a flat plate. The base flow is the Blasius non-parallel flow solution; it is perturbed by optimal disturbances yielding the largest energy growth over a short time interval. Such perturbations are computed by a nonlinear global optimization approach based on a Lagrange multiplier technique. The results show that nonlinear optimal perturbations are characterized by a localized basic building block, called the minimal seed, defined as the smallest flow structure which maximizes the energy growth over short times. It is formed by vortices inclined in the streamwise direction surrounding a region of intense streamwise disturbance velocity. Such a basic structure appears to be a robust feature of the base flow since it is practically invariant with respect to the initial energy of the perturbation, the target time, the Reynolds number and the dimensions of the computational domain. The minimal seed grows very rapidly in time while spreading, and it triggers nonlinear effects which bring the flow to turbulence in a very efficient manner, through the formation of a turbulence spot. This evolution of the initial optimal disturbance has been studied in detail by direct numerical simulations. Using a perturbative formulation of the Navier–Stokes equations, each linear and nonlinear convective term of the equations has been analysed. The results show the fundamental role of the streamwise inclination of the vortices in the process. The nonlinear coupling of the finite amplitude disturbances is crucial to sustain such streamwise inclination, as well as to generate dislocations within the flow structures, and local inflectional velocity distributions. The analysis provides a picture of the transition process characterized by a sequence of structures appearing successively in the flow, namely, 3 vortices, hairpin vortices and streamwise streaks. Finally, a disturbance regeneration cycle is conceived, initiated by the fast nonlinear amplification of the minimal seed, providing a possible scenario for the continuous regeneration of the same fundamental flow structures at smaller space and time scales.
Sat, 01 Jan 2011 00:00:00 GMThttp://hdl.handle.net/10985/67182011-01-01T00:00:00ZCHERUBINI, StefaniaDE PALMA, PietroBOTTARO, AlessandroROBINET, Jean-ChristopheThis paper describes a scenario of transition from laminar to turbulent flow in a spatially developing boundary layer over a flat plate. The base flow is the Blasius non-parallel flow solution; it is perturbed by optimal disturbances yielding the largest energy growth over a short time interval. Such perturbations are computed by a nonlinear global optimization approach based on a Lagrange multiplier technique. The results show that nonlinear optimal perturbations are characterized by a localized basic building block, called the minimal seed, defined as the smallest flow structure which maximizes the energy growth over short times. It is formed by vortices inclined in the streamwise direction surrounding a region of intense streamwise disturbance velocity. Such a basic structure appears to be a robust feature of the base flow since it is practically invariant with respect to the initial energy of the perturbation, the target time, the Reynolds number and the dimensions of the computational domain. The minimal seed grows very rapidly in time while spreading, and it triggers nonlinear effects which bring the flow to turbulence in a very efficient manner, through the formation of a turbulence spot. This evolution of the initial optimal disturbance has been studied in detail by direct numerical simulations. Using a perturbative formulation of the Navier–Stokes equations, each linear and nonlinear convective term of the equations has been analysed. The results show the fundamental role of the streamwise inclination of the vortices in the process. The nonlinear coupling of the finite amplitude disturbances is crucial to sustain such streamwise inclination, as well as to generate dislocations within the flow structures, and local inflectional velocity distributions. The analysis provides a picture of the transition process characterized by a sequence of structures appearing successively in the flow, namely, 3 vortices, hairpin vortices and streamwise streaks. Finally, a disturbance regeneration cycle is conceived, initiated by the fast nonlinear amplification of the minimal seed, providing a possible scenario for the continuous regeneration of the same fundamental flow structures at smaller space and time scales.Optimal wave packets in a boundary layer and initial phases of a turbulent spot
http://hdl.handle.net/10985/6717
Optimal wave packets in a boundary layer and initial phases of a turbulent spot
CHERUBINI, Stefania; BOTTARO, Alessandro; DE PALMA, Pietro; ROBINET, Jean-Christophe
The three-dimensional global optimal dynamics of a flat-plate boundary layer is studied by means of an adjoint-based optimization in a spatial domain of long – but finite – streamwise dimension. The localized optimal initial perturbation is characterized by a pair of streamwise-modulated counter-rotating vortices, tilted upstream, yielding at the optimal time elongated streaks of alternating sign in the streamwise direction. This indicates that perturbations with non-zero streamwise wavenumber have a role in the transient dynamics of a boundary layer. A scaling law is provided, describing the variation of the streamwise modulation of the optimal initial perturbation with respect to the streamwise domain length and to the Reynolds number. For spanwise-extended domains, a near-optimal three-dimensional perturbation is extracted during the optimization process; it is localized also in the spanwise direction, resulting in a wave packet of elongated disturbances modulated in the spanwise and streamwise directions. The nonlinear evolution of the optimal and near-optimal perturbations is investigated by means of direct numerical simulations. Both perturbations are found to induce transition at lower levels of the initial energy than local optimal and suboptimal perturbations. Moreover, it is observed that transition occurs in a well-defined region of the convected wave packet, close to its centre, via a mechanism including at the same time oscillations of the streaks of both quasi-sinuous and quasi-varicose nature. Hairpin vortices are observed before transition; they have an active role in the breakdown of the streaks and result in a turbulent spot which spreads out in the boundary layer.
Fri, 01 Jan 2010 00:00:00 GMThttp://hdl.handle.net/10985/67172010-01-01T00:00:00ZCHERUBINI, StefaniaBOTTARO, AlessandroDE PALMA, PietroROBINET, Jean-ChristopheThe three-dimensional global optimal dynamics of a flat-plate boundary layer is studied by means of an adjoint-based optimization in a spatial domain of long – but finite – streamwise dimension. The localized optimal initial perturbation is characterized by a pair of streamwise-modulated counter-rotating vortices, tilted upstream, yielding at the optimal time elongated streaks of alternating sign in the streamwise direction. This indicates that perturbations with non-zero streamwise wavenumber have a role in the transient dynamics of a boundary layer. A scaling law is provided, describing the variation of the streamwise modulation of the optimal initial perturbation with respect to the streamwise domain length and to the Reynolds number. For spanwise-extended domains, a near-optimal three-dimensional perturbation is extracted during the optimization process; it is localized also in the spanwise direction, resulting in a wave packet of elongated disturbances modulated in the spanwise and streamwise directions. The nonlinear evolution of the optimal and near-optimal perturbations is investigated by means of direct numerical simulations. Both perturbations are found to induce transition at lower levels of the initial energy than local optimal and suboptimal perturbations. Moreover, it is observed that transition occurs in a well-defined region of the convected wave packet, close to its centre, via a mechanism including at the same time oscillations of the streaks of both quasi-sinuous and quasi-varicose nature. Hairpin vortices are observed before transition; they have an active role in the breakdown of the streaks and result in a turbulent spot which spreads out in the boundary layer.Nonlinear control of unsteady finite-amplitude perturbations in the Blasius boundary-layer flow
http://hdl.handle.net/10985/9012
Nonlinear control of unsteady finite-amplitude perturbations in the Blasius boundary-layer flow
CHERUBINI, Stefania; DE PALMA, Pietro; ROBINET, Jean-Christophe
The present work provides an optimal control strategy, based on the nonlinear Navier–Stokes equations, aimed at hampering the rapid growth of unsteady finite-amplitude perturbations in a Blasius boundary-layer flow. A variational procedure is used to find the blowing and suction control law at the wall providing the maximum damping of the energy of a given perturbation at a given target time, with the final aim of leading the flow back to the laminar state. Two optimally growing finite-amplitude initial perturbations capable of leading very rapidly to transition have been used to initialize the flow. The nonlinear control procedure has been found able to drive such perturbations back to the laminar state, provided that the target time of the minimization and the region in which the blowing and suction is applied have been suitably chosen. On the other hand, an equivalent control procedure based on the linearized Navier–Stokes equations has been found much less effective, being not able to lead the flow to the laminar state when finite-amplitude disturbances are considered. Regions of strong sensitivity to blowing and suction have been also identified for the given initial perturbations: when the control is actuated in such regions, laminarization is also observed for a shorter extent of the actuation region. The nonlinear optimal blowing and suction law consists of alternating wall-normal velocity perturbations, which appear to modify the core flow structures by means of two distinct mechanisms: (i) a wall-normal velocity compensation at small times; (ii) a rotation-counterbalancing effect al larger times. Similar control laws have been observed for different target times, values of the cost parameter, and streamwise extents of the blowing and suction zone, meaning that these two mechanisms are robust features of the optimal control strategy, provided that the nonlinear effects are taken into account.
Tue, 01 Jan 2013 00:00:00 GMThttp://hdl.handle.net/10985/90122013-01-01T00:00:00ZCHERUBINI, StefaniaDE PALMA, PietroROBINET, Jean-ChristopheThe present work provides an optimal control strategy, based on the nonlinear Navier–Stokes equations, aimed at hampering the rapid growth of unsteady finite-amplitude perturbations in a Blasius boundary-layer flow. A variational procedure is used to find the blowing and suction control law at the wall providing the maximum damping of the energy of a given perturbation at a given target time, with the final aim of leading the flow back to the laminar state. Two optimally growing finite-amplitude initial perturbations capable of leading very rapidly to transition have been used to initialize the flow. The nonlinear control procedure has been found able to drive such perturbations back to the laminar state, provided that the target time of the minimization and the region in which the blowing and suction is applied have been suitably chosen. On the other hand, an equivalent control procedure based on the linearized Navier–Stokes equations has been found much less effective, being not able to lead the flow to the laminar state when finite-amplitude disturbances are considered. Regions of strong sensitivity to blowing and suction have been also identified for the given initial perturbations: when the control is actuated in such regions, laminarization is also observed for a shorter extent of the actuation region. The nonlinear optimal blowing and suction law consists of alternating wall-normal velocity perturbations, which appear to modify the core flow structures by means of two distinct mechanisms: (i) a wall-normal velocity compensation at small times; (ii) a rotation-counterbalancing effect al larger times. Similar control laws have been observed for different target times, values of the cost parameter, and streamwise extents of the blowing and suction zone, meaning that these two mechanisms are robust features of the optimal control strategy, provided that the nonlinear effects are taken into account.The onset of three-dimensional centrifugal global modes and their nonlinear development in a recirculating flow over a flat surface
http://hdl.handle.net/10985/6867
The onset of three-dimensional centrifugal global modes and their nonlinear development in a recirculating flow over a flat surface
CHERUBINI, Stefania; DE PALMA, Pietro; ALIZARD, Frédéric; ROBINET, Jean-Christophe
The three-dimensional stability dynamics of a separation bubble over a flat plate has been studied in both linear and nonlinear conditions. Using a global eigenvalue analysis, two centrifugal global modes are identified: an asymptotically unstable three-dimensional weakly growing mode which appears to be originated by a Rayleigh instability; a marginally stable three-dimensional steady mode which is originated by a convective Gortler instability. Direct numerical simulations show that both modes play a role in the route to transition toward the turbulent flow. A structural sensitivity analysis is used to investigate the mechanism of selection of the path toward transition when small perturbations are considered. Finally, a scenario of transition via Gortler modes breakdown is studied in detail, revealing the formation of trains of hairpin vortices in streamwise succession.
Publisher version : http://pof.aip.org/resource/1/phfle6/v22/i11/p114102_s1?isAuthorized=no
Fri, 01 Jan 2010 00:00:00 GMThttp://hdl.handle.net/10985/68672010-01-01T00:00:00ZCHERUBINI, StefaniaDE PALMA, PietroALIZARD, FrédéricROBINET, Jean-ChristopheThe three-dimensional stability dynamics of a separation bubble over a flat plate has been studied in both linear and nonlinear conditions. Using a global eigenvalue analysis, two centrifugal global modes are identified: an asymptotically unstable three-dimensional weakly growing mode which appears to be originated by a Rayleigh instability; a marginally stable three-dimensional steady mode which is originated by a convective Gortler instability. Direct numerical simulations show that both modes play a role in the route to transition toward the turbulent flow. A structural sensitivity analysis is used to investigate the mechanism of selection of the path toward transition when small perturbations are considered. Finally, a scenario of transition via Gortler modes breakdown is studied in detail, revealing the formation of trains of hairpin vortices in streamwise succession.Rapid path to transition via nonlinear localized optimal perturbations in a boundary-layer flow
http://hdl.handle.net/10985/6861
Rapid path to transition via nonlinear localized optimal perturbations in a boundary-layer flow
CHERUBINI, Stefania; DE PALMA, Pietro; BOTTARO, Alessandro; ROBINET, Jean-Christophe
Recent studies have suggested that in some cases transition can be triggered by some purely nonlinear mechanisms. Here we aim at verifying such an hypothesis, looking for a localized perturbation able to lead a boundary-layer flow to a chaotic state, following a nonlinear route. Nonlinear optimal localized perturbations have been computed by means of an energy optimization which includes the nonlinear terms of the Navier- Stokes equations. Such perturbations lie on the turbulent side of the laminar-turbulent boundary, whereas, for the same value of the initial energy, their linear counterparts do not. The evolution of these perturbations toward a turbulent flow involves the presence of streamwise-inclined vortices at short times and of hairpin structures prior to breakdown.
Fri, 01 Jan 2010 00:00:00 GMThttp://hdl.handle.net/10985/68612010-01-01T00:00:00ZCHERUBINI, StefaniaDE PALMA, PietroBOTTARO, AlessandroROBINET, Jean-ChristopheRecent studies have suggested that in some cases transition can be triggered by some purely nonlinear mechanisms. Here we aim at verifying such an hypothesis, looking for a localized perturbation able to lead a boundary-layer flow to a chaotic state, following a nonlinear route. Nonlinear optimal localized perturbations have been computed by means of an energy optimization which includes the nonlinear terms of the Navier- Stokes equations. Such perturbations lie on the turbulent side of the laminar-turbulent boundary, whereas, for the same value of the initial energy, their linear counterparts do not. The evolution of these perturbations toward a turbulent flow involves the presence of streamwise-inclined vortices at short times and of hairpin structures prior to breakdown.Investigation of the roughness-induced transition: global stability analyses and direct numerical simulations
http://hdl.handle.net/10985/8974
Investigation of the roughness-induced transition: global stability analyses and direct numerical simulations
CHERUBINI, Stefania; LERICHE, Emmanuel; ROBINET, Jean-Christophe; LOISEAU, Jean-Christophe
The linear global instability and resulting transition to turbulence induced by an isolated cylindrical roughness element of height h and diameter d immersed within an incompressible boundary layer flow along a flat plate is investigated using the joint application of direct numerical simulations and fully three-dimensional global stability analyses. For the range of parameters investigated, base flow computations show that the roughness element induces a wake composed of a central low-speed region surrounded by a three-dimensional shear layer and a pair of low- and high-speed streaks on each of its sides. Results from the global stability analyses highlight the unstable nature of the central low-speed region and its crucial importance in the laminar–turbulent transition process. It is able to sustain two different global instabilities: a sinuous and a varicose one. Each of these globally unstable modes is related to a different physical mechanism. While the varicose mode has its root in the instability of the whole three-dimensional shear layer surrounding the central low-speed region, the sinuous instability turns out to be similar to the von Kármán instability in the two-dimensional cylinder wake and has its root in the lateral shear layers of the separated zone. The aspect ratio of the roughness element plays a key role on the selection of the dominant instability: whereas the flow over thin cylindrical roughness elements transitions due to a sinuous instability of the near-wake region, for larger roughness elements the varicose instability of the central low-speed region turns out to be the dominant one. Direct numerical simulations of the flow past an aspect ratio 1 roughness element sustaining only the sinuous instability have revealed that the bifurcation occurring in this particular case is supercritical. Finally, comparison of the transition thresholds predicted by global linear stability analyses with the von Doenhoff–Braslow transition diagram provides qualitatively good agreement
Wed, 01 Jan 2014 00:00:00 GMThttp://hdl.handle.net/10985/89742014-01-01T00:00:00ZCHERUBINI, StefaniaLERICHE, EmmanuelROBINET, Jean-ChristopheLOISEAU, Jean-ChristopheThe linear global instability and resulting transition to turbulence induced by an isolated cylindrical roughness element of height h and diameter d immersed within an incompressible boundary layer flow along a flat plate is investigated using the joint application of direct numerical simulations and fully three-dimensional global stability analyses. For the range of parameters investigated, base flow computations show that the roughness element induces a wake composed of a central low-speed region surrounded by a three-dimensional shear layer and a pair of low- and high-speed streaks on each of its sides. Results from the global stability analyses highlight the unstable nature of the central low-speed region and its crucial importance in the laminar–turbulent transition process. It is able to sustain two different global instabilities: a sinuous and a varicose one. Each of these globally unstable modes is related to a different physical mechanism. While the varicose mode has its root in the instability of the whole three-dimensional shear layer surrounding the central low-speed region, the sinuous instability turns out to be similar to the von Kármán instability in the two-dimensional cylinder wake and has its root in the lateral shear layers of the separated zone. The aspect ratio of the roughness element plays a key role on the selection of the dominant instability: whereas the flow over thin cylindrical roughness elements transitions due to a sinuous instability of the near-wake region, for larger roughness elements the varicose instability of the central low-speed region turns out to be the dominant one. Direct numerical simulations of the flow past an aspect ratio 1 roughness element sustaining only the sinuous instability have revealed that the bifurcation occurring in this particular case is supercritical. Finally, comparison of the transition thresholds predicted by global linear stability analyses with the von Doenhoff–Braslow transition diagram provides qualitatively good agreement