SAM
https://sam.ensam.eu:443
The DSpace digital repository system captures, stores, indexes, preserves, and distributes digital research material.Thu, 18 Apr 2019 17:24:19 GMT2019-04-18T17:24:19ZMicro-mechanical modelling of high cycle fatigue behaviour of metals under multiaxial loads
http://hdl.handle.net/10985/6796
Micro-mechanical modelling of high cycle fatigue behaviour of metals under multiaxial loads
ROBERT, Camille; SAINTIER, Nicolas; PALIN-LUC, Thierry; MOREL, Franck
An analysis of high cycle multiaxial fatigue behaviour is conducted through the numerical simulation of polycrystalline aggregates using the finite elementmethod. The metallicmaterial chosen for investigation is pure copper, which has a Face Centred Cubic (FCC) crystalline microstructure. The elementary volumes are modelled in 2D using an hypothesis of generalised plane strain and consist of 300 equi-probability, randomly oriented grains with equiaxed geometry. The aggregates are loaded at levels equivalent to the average macroscopic fatigue strength at 107 cycles. The goal is to compute the mechanical quantities at the mesoscopic scale (i.e. average within the grain) after stabilization of the local cyclic behaviour. The results show that the mesoscopic mechanical variables are characterised by high dispersion. A statistical analysis of the response of the aggregates is undertaken for different loading modes: fully reversed tensile loads, torsion and combined in-phase tension-torsion. Via the calculation of the local mechanical quantities for a sufficiently large number of different microstructures, a critical analysis of certain multiaxial endurance criteria (Crossland, Dang Van and Matake) is conducted. In terms of material behaviour models, it is shown that elastic anisotropy strongly affects the scatter of the mechanical parameters used in the different criteria and that its role is predominant compared to that of crystal plasticity. The analysis of multiaxial endurance criteria at both the macroscopic and mesoscopic scales clearly show that the critical plane type criteria (Dang Van and Matake) give an adequate estimation of the shear stress but badly reflect the scatter of the normal stress or the hydrostatic stress.
Sun, 01 Jan 2012 00:00:00 GMThttp://hdl.handle.net/10985/67962012-01-01T00:00:00ZROBERT, CamilleSAINTIER, NicolasPALIN-LUC, ThierryMOREL, FranckAn analysis of high cycle multiaxial fatigue behaviour is conducted through the numerical simulation of polycrystalline aggregates using the finite elementmethod. The metallicmaterial chosen for investigation is pure copper, which has a Face Centred Cubic (FCC) crystalline microstructure. The elementary volumes are modelled in 2D using an hypothesis of generalised plane strain and consist of 300 equi-probability, randomly oriented grains with equiaxed geometry. The aggregates are loaded at levels equivalent to the average macroscopic fatigue strength at 107 cycles. The goal is to compute the mechanical quantities at the mesoscopic scale (i.e. average within the grain) after stabilization of the local cyclic behaviour. The results show that the mesoscopic mechanical variables are characterised by high dispersion. A statistical analysis of the response of the aggregates is undertaken for different loading modes: fully reversed tensile loads, torsion and combined in-phase tension-torsion. Via the calculation of the local mechanical quantities for a sufficiently large number of different microstructures, a critical analysis of certain multiaxial endurance criteria (Crossland, Dang Van and Matake) is conducted. In terms of material behaviour models, it is shown that elastic anisotropy strongly affects the scatter of the mechanical parameters used in the different criteria and that its role is predominant compared to that of crystal plasticity. The analysis of multiaxial endurance criteria at both the macroscopic and mesoscopic scales clearly show that the critical plane type criteria (Dang Van and Matake) give an adequate estimation of the shear stress but badly reflect the scatter of the normal stress or the hydrostatic stress.Multiaxial high cycle fatigue damage mechanisms associated with the different microstructural heterogeneities of cast aluminium alloys
http://hdl.handle.net/10985/10857
Multiaxial high cycle fatigue damage mechanisms associated with the different microstructural heterogeneities of cast aluminium alloys; Mechanismes d'endommagement en fatigue multiaxiale à grand nombre de cycles associés aux différentes hétérogénéités microstructurales des alliages d'aluminium de fonderie
LE, Viet Duc; MOREL, Franck; SAINTIER, Nicolas; BELLETT, Daniel; OSMOND, Pierre
This article is dedicated to the high cycle fatigue (HCF) behaviour of cast Al-Si alloys. In particular, three similar alloys with different microstructural characteristics are investigated. The result of an experimental campaign are presented, in order to characterise the fatigue behaviour, and more specifically the fatigue damage mechanisms related to the different microstructural heterogeneities (i.e. casting porosity, dendrite size, SDAS, non-metallic inclusions and silicon particles), observed under different multiaxial loading conditions: pure tension, plane bending, pure torsion and combined tension-torsion with a load ratio R=-1. It is shown that casting porosity has a very detrimental influence on the uniaxial and combined tension-torsion fatigue strengths. However, a much lower influence is observed for the torsional fatigue strength. For the porosity-free alloy, it is observed that the formation of persistent slip bands (PSB) in the aluminium matrix is the major fatigue crack initiation mechanism regardless of the loading modes, at a load ratio of R=-1. It is also shown that the aluminium matrix has a large role in the formation of PSB and that the Si particles facilitate the formation of PSB.
Fri, 01 Jan 2016 00:00:00 GMThttp://hdl.handle.net/10985/108572016-01-01T00:00:00ZLE, Viet DucMOREL, FranckSAINTIER, NicolasBELLETT, DanielOSMOND, PierreThis article is dedicated to the high cycle fatigue (HCF) behaviour of cast Al-Si alloys. In particular, three similar alloys with different microstructural characteristics are investigated. The result of an experimental campaign are presented, in order to characterise the fatigue behaviour, and more specifically the fatigue damage mechanisms related to the different microstructural heterogeneities (i.e. casting porosity, dendrite size, SDAS, non-metallic inclusions and silicon particles), observed under different multiaxial loading conditions: pure tension, plane bending, pure torsion and combined tension-torsion with a load ratio R=-1. It is shown that casting porosity has a very detrimental influence on the uniaxial and combined tension-torsion fatigue strengths. However, a much lower influence is observed for the torsional fatigue strength. For the porosity-free alloy, it is observed that the formation of persistent slip bands (PSB) in the aluminium matrix is the major fatigue crack initiation mechanism regardless of the loading modes, at a load ratio of R=-1. It is also shown that the aluminium matrix has a large role in the formation of PSB and that the Si particles facilitate the formation of PSB.Statistical assessment of multiaxial HCF criteria at the grain scale
http://hdl.handle.net/10985/8394
Statistical assessment of multiaxial HCF criteria at the grain scale
HOR, Anis; SAINTIER, Nicolas; ROBERT, Camille; PALIN-LUC, Thierry; MOREL, Franck
Multiaxial high cycle fatigue modeling of materials is an issue that concerns many industrial domains (automotive, aerospace, nuclear, etc.) and in which many progress still remains to be achieved. Several approaches exist in the literature: invariants, energy, integral and critical plane approaches all of them having their advantages and drawbacks. These different formulations are usually based on mechanical quantities at the micro or mesoscales using localization schemes and strong assumptions to propose simple analytical forms. This study aims to revisit these formulations using a numerical approach based on crystal plasticity modeling coupled with explicit description of microstructure (morphology and texture) and proposes a statistical procedure for the analyses of numerical results in the HCF context. This work has three steps: First, 2.5D periodic digital microstructures based on a random grain sizes distribution are generated. Second, multiaxial cyclic loading conditions corresponding to the fatigue strength at 106 cycles are applied to these microstructures. Third, the mesoscopic Fatigue Indicator Parameters (FIPs), formulated from the different criteria existing in the literature, are identified using the finite element calculations of the mechanical fields. These mesoscopic FIP show the limits of the original criteria when it comes to applying them at the grain scale. A statistical method based on extreme value probability is used to redefine the thresholds of these criteria. These new thresholds contain the sensitivity of the HCF behavior to microstructure attributes. Finally, the biaxiality and phase shift effects are discussed at the grain scale and the loading paths of some critical grains are analyzed.
Wed, 01 Jan 2014 00:00:00 GMThttp://hdl.handle.net/10985/83942014-01-01T00:00:00ZHOR, AnisSAINTIER, NicolasROBERT, CamillePALIN-LUC, ThierryMOREL, FranckMultiaxial high cycle fatigue modeling of materials is an issue that concerns many industrial domains (automotive, aerospace, nuclear, etc.) and in which many progress still remains to be achieved. Several approaches exist in the literature: invariants, energy, integral and critical plane approaches all of them having their advantages and drawbacks. These different formulations are usually based on mechanical quantities at the micro or mesoscales using localization schemes and strong assumptions to propose simple analytical forms. This study aims to revisit these formulations using a numerical approach based on crystal plasticity modeling coupled with explicit description of microstructure (morphology and texture) and proposes a statistical procedure for the analyses of numerical results in the HCF context. This work has three steps: First, 2.5D periodic digital microstructures based on a random grain sizes distribution are generated. Second, multiaxial cyclic loading conditions corresponding to the fatigue strength at 106 cycles are applied to these microstructures. Third, the mesoscopic Fatigue Indicator Parameters (FIPs), formulated from the different criteria existing in the literature, are identified using the finite element calculations of the mechanical fields. These mesoscopic FIP show the limits of the original criteria when it comes to applying them at the grain scale. A statistical method based on extreme value probability is used to redefine the thresholds of these criteria. These new thresholds contain the sensitivity of the HCF behavior to microstructure attributes. Finally, the biaxiality and phase shift effects are discussed at the grain scale and the loading paths of some critical grains are analyzed.High-Cycle Fatigue Behaviour of Pure Tantalum under Multiaxial and Variable Amplitude Loadings
http://hdl.handle.net/10985/8397
High-Cycle Fatigue Behaviour of Pure Tantalum under Multiaxial and Variable Amplitude Loadings
MARECHAL, David; SAINTIER, Nicolas; PALIN-LUC, Thierry; NADAL, François
Due to its specific mechanical properties, tantalum is often used in strength-demanding military applications. High-cycle fatigue (HCF) behaviour of pure tantalum, however, has been rarely reported and the mechanisms at stake to account for deformation under cyclic loadings are still badly understood. This paper aims at better understanding the fatigue behaviour of tantalum and at clarifying the mechanisms of damage formation encountered under such loadings. HCF experiments performed at room temperature on commercially-pure tantalum are presented. Mean stress effects were investigated in the aim of clarifying the interaction between fatigue and creep. Fracture mechanisms were observed to vary from intergranular to transgranular depending on applied stress amplitude and mean stress. Damage mechanisms were investigated under tension and torsion. Results are analyzed in the light of existing fatigue criteria, the limitations of which are discussed. Finally, complex sequential loadings, representative of in-service loadings, were applied to tantalum smooth specimens. The contribution of each loading sequence to the overall damage was quantified and analyzed in terms of linear or non-linear cumulative damage rule
Wed, 01 Jan 2014 00:00:00 GMThttp://hdl.handle.net/10985/83972014-01-01T00:00:00ZMARECHAL, DavidSAINTIER, NicolasPALIN-LUC, ThierryNADAL, FrançoisDue to its specific mechanical properties, tantalum is often used in strength-demanding military applications. High-cycle fatigue (HCF) behaviour of pure tantalum, however, has been rarely reported and the mechanisms at stake to account for deformation under cyclic loadings are still badly understood. This paper aims at better understanding the fatigue behaviour of tantalum and at clarifying the mechanisms of damage formation encountered under such loadings. HCF experiments performed at room temperature on commercially-pure tantalum are presented. Mean stress effects were investigated in the aim of clarifying the interaction between fatigue and creep. Fracture mechanisms were observed to vary from intergranular to transgranular depending on applied stress amplitude and mean stress. Damage mechanisms were investigated under tension and torsion. Results are analyzed in the light of existing fatigue criteria, the limitations of which are discussed. Finally, complex sequential loadings, representative of in-service loadings, were applied to tantalum smooth specimens. The contribution of each loading sequence to the overall damage was quantified and analyzed in terms of linear or non-linear cumulative damage ruleHigh cycle multiaxial fatigue crack initiation : experimental observations and microstructure simulations
http://hdl.handle.net/10985/7497
High cycle multiaxial fatigue crack initiation : experimental observations and microstructure simulations
AGBESSI, Komlan; SAINTIER, Nicolas; PALIN-LUC, Thierry
This study provides an analysis of high cycle multiaxial fatigue crack initiation modes based on SEM observations.The statistical study of crack initiation preferential sites shows that grains with multiple slip have a high probability of crack initiation. The application of Dang Van criterion at the grain scale using finite element analysis (cubic elasticity with / or without crystal plasticity) on 3D synthetic semi-periodic microstructures shows a strong heterogeneity of both the hydrostatic stress and shear. The evolution of this heterogeneity introduced by the material behavior is discussed. Finally, a method based on the extreme values statistics is proposed and applied to the fatigue indicative parameter associated to the Dang Van criterion. The effects of free surface and constitutive material model were analyzed.
Tue, 01 Jan 2013 00:00:00 GMThttp://hdl.handle.net/10985/74972013-01-01T00:00:00ZAGBESSI, KomlanSAINTIER, NicolasPALIN-LUC, ThierryThis study provides an analysis of high cycle multiaxial fatigue crack initiation modes based on SEM observations.The statistical study of crack initiation preferential sites shows that grains with multiple slip have a high probability of crack initiation. The application of Dang Van criterion at the grain scale using finite element analysis (cubic elasticity with / or without crystal plasticity) on 3D synthetic semi-periodic microstructures shows a strong heterogeneity of both the hydrostatic stress and shear. The evolution of this heterogeneity introduced by the material behavior is discussed. Finally, a method based on the extreme values statistics is proposed and applied to the fatigue indicative parameter associated to the Dang Van criterion. The effects of free surface and constitutive material model were analyzed.Micromechanical study of the loading path effect in high cycle fatigue
http://hdl.handle.net/10985/8937
Micromechanical study of the loading path effect in high cycle fatigue
GUERCHAIS, Raphaël; ROBERT, Camille; MOREL, Franck; SAINTIER, Nicolas
In this work, an analysis of both the mechanical response at the grain scale and high cycle multiaxial fatigue criteria is undertaken using finite element (FE) simulations of polycrystalline aggregates. The metallic material chosen for investigation, a pure copper, has a Face Centred Cubic (FCC) crystalline structure. Two-dimensional polycrystalline aggregates, which are composed of 300 randomly orientated equiaxed grains, are loaded at the median fatigue strength defined at 107 cycles. In order to analyse the effect of the loading path on the local mechanical response, combined tension–torsion and biaxial tension loading cases, in-phase and out-of-phase, with different biaxiality ratios, are applied to each polycrystalline aggregate. Three different material constitutive models assigned to the grains are investigated: isotropic elasticity, cubic elasticity and crystal plasticity in addition to the cubic elasticity. First, some aspects of the mechanical response of the grains are highlighted, namely the scatter and the multiaxiality of the mesoscopic responses with respect to an uniaxial macroscopic response. Then, the distributions of relevant mechanical quantities classically used in fatigue criteria are analysed for some loading cases and the role of each source of anisotropy on the mechanical response is evaluated and compared to the isotropic elastic case. In particular, the significant influence of the elastic anisotropy on the mesoscopic mechanical response is highlighted. Finally, an analysis of three different fatigue criteria is conducted, using mechanical quantities computed at the grain scale. More precisely, the predictions provided by these criteria, for each constitutive model studied, are compared with the experimental trends observed in metallic materials for such loading conditions.
Wed, 01 Jan 2014 00:00:00 GMThttp://hdl.handle.net/10985/89372014-01-01T00:00:00ZGUERCHAIS, RaphaëlROBERT, CamilleMOREL, FranckSAINTIER, NicolasIn this work, an analysis of both the mechanical response at the grain scale and high cycle multiaxial fatigue criteria is undertaken using finite element (FE) simulations of polycrystalline aggregates. The metallic material chosen for investigation, a pure copper, has a Face Centred Cubic (FCC) crystalline structure. Two-dimensional polycrystalline aggregates, which are composed of 300 randomly orientated equiaxed grains, are loaded at the median fatigue strength defined at 107 cycles. In order to analyse the effect of the loading path on the local mechanical response, combined tension–torsion and biaxial tension loading cases, in-phase and out-of-phase, with different biaxiality ratios, are applied to each polycrystalline aggregate. Three different material constitutive models assigned to the grains are investigated: isotropic elasticity, cubic elasticity and crystal plasticity in addition to the cubic elasticity. First, some aspects of the mechanical response of the grains are highlighted, namely the scatter and the multiaxiality of the mesoscopic responses with respect to an uniaxial macroscopic response. Then, the distributions of relevant mechanical quantities classically used in fatigue criteria are analysed for some loading cases and the role of each source of anisotropy on the mechanical response is evaluated and compared to the isotropic elastic case. In particular, the significant influence of the elastic anisotropy on the mesoscopic mechanical response is highlighted. Finally, an analysis of three different fatigue criteria is conducted, using mechanical quantities computed at the grain scale. More precisely, the predictions provided by these criteria, for each constitutive model studied, are compared with the experimental trends observed in metallic materials for such loading conditions.Non-local energy based fatigue life calculation method under multiaxial variable amplitude loadings
http://hdl.handle.net/10985/7414
Non-local energy based fatigue life calculation method under multiaxial variable amplitude loadings
SAINTIER, Nicolas; PALIN-LUC, Thierry; BÉNABÈS, Jérôme; COCHETEUX, Francis
Reliable design of industrial components against high cycle multiaxial fatigue requires a model capable of predicting both stress gradient and load type effects. Indeed, taking into account gradient effects is of prior importance for the applicability of fatigue models to real structures. In this paper, a fatigue life assessment method is proposed for proportional and non-proportional multiaxial variable amplitude loadings in the range 104 –107 cycles. This method derives from the fatigue criterion initially proposed by Palin-Luc and Lasserre (1998) [2] and revisited by Banvillet et al. (2003) [16] for multiaxial constant amplitude loading. The new proposal consists of a complete reformulation and extension of the previ- ously cited energy based fatigue strength criteria. It includes two major improvements of the existing criteria. The first one consists in a fatigue criterion for multiaxial variable amplitude loadings while only constant amplitude loadings were considered in the above cited works. The second one is an extension to an incremental fatigue life assessment method for proportional and non-proportional multiaxial variable amplitude loadings. No cycle counting technique is needed whatever the variable amplitude load- ings type considered (uniaxial or multiaxial). The predictions of the method for constant and variable amplitude multiaxial loadings are compared with experimental results on specimens from literature and from new experiments on a ferrito-perlitic steel. The above mentioned method has been implemented as a post-processor of a finite element software. An application to a railway wheel is finally presented.
Tue, 01 Jan 2013 00:00:00 GMThttp://hdl.handle.net/10985/74142013-01-01T00:00:00ZSAINTIER, NicolasPALIN-LUC, ThierryBÉNABÈS, JérômeCOCHETEUX, FrancisReliable design of industrial components against high cycle multiaxial fatigue requires a model capable of predicting both stress gradient and load type effects. Indeed, taking into account gradient effects is of prior importance for the applicability of fatigue models to real structures. In this paper, a fatigue life assessment method is proposed for proportional and non-proportional multiaxial variable amplitude loadings in the range 104 –107 cycles. This method derives from the fatigue criterion initially proposed by Palin-Luc and Lasserre (1998) [2] and revisited by Banvillet et al. (2003) [16] for multiaxial constant amplitude loading. The new proposal consists of a complete reformulation and extension of the previ- ously cited energy based fatigue strength criteria. It includes two major improvements of the existing criteria. The first one consists in a fatigue criterion for multiaxial variable amplitude loadings while only constant amplitude loadings were considered in the above cited works. The second one is an extension to an incremental fatigue life assessment method for proportional and non-proportional multiaxial variable amplitude loadings. No cycle counting technique is needed whatever the variable amplitude load- ings type considered (uniaxial or multiaxial). The predictions of the method for constant and variable amplitude multiaxial loadings are compared with experimental results on specimens from literature and from new experiments on a ferrito-perlitic steel. The above mentioned method has been implemented as a post-processor of a finite element software. An application to a railway wheel is finally presented.Simulation of the Kitagawa-Takahashi diagram using a probabilistic approach for cast Al-Si alloys under different multiaxial loads
http://hdl.handle.net/10985/11184
Simulation of the Kitagawa-Takahashi diagram using a probabilistic approach for cast Al-Si alloys under different multiaxial loads
LE, Viet Duc; MOREL, Franck; BELLETT, Daniel; SAINTIER, Nicolas; OSMOND, Pierre
This article describes a microstructural-based high cycle fatigue strength modelling approach applied to different cast Al-Si alloys used in an automotive context. Thank to different casting processes (gravity die casting and lost foam casting), associated with several heat treatment (T7 and Hot Isostatic Pressing-HIP), three alloys with very different microstructures have been obtained. In a vast experimental campaign undertaken to investigate the fatigue damage mechanisms governing these alloys under different multiaxial loading conditions, it was shown that the principal crack initiation mechanisms for the porosity-free alloy are either the formation of persistent slip bands (PSB) or the rupture and/or debonding of eutectic particles. For the porosity-containing alloys, the fatigue damage is always controlled by crack growth from pores. In order to take into account these fatigue damage mechanisms, a probabilistic model using a combination of the Dang Van and a modified LEFM criteria is proposed. The modified LEFM criterion is able to take into account the influence of the grain size on the threshold of the stress intensity factor. It is shown that for the porosity-free alloy, the predictions are good for combined tension-torsion loads with R = - 1. However, because the crack initiation mechanisms are not the same depending on the hydrostatic stress, the predictions are non-conservative for the uniaxial and equibiaxial tension oads with R = 0,1. For the porosity-containing alloys, the predictions are very good for the uniaxial, combined tension-torsion and equibiaxial tension loads with both R = - 1and R = 0,1. As observed experimentally, the proposed model can also predict a more pronounced effect of casting porosity for the uniaxial and combined tension-torsion loads, when compared to pure torsion loads.
Fri, 01 Jan 2016 00:00:00 GMThttp://hdl.handle.net/10985/111842016-01-01T00:00:00ZLE, Viet DucMOREL, FranckBELLETT, DanielSAINTIER, NicolasOSMOND, PierreThis article describes a microstructural-based high cycle fatigue strength modelling approach applied to different cast Al-Si alloys used in an automotive context. Thank to different casting processes (gravity die casting and lost foam casting), associated with several heat treatment (T7 and Hot Isostatic Pressing-HIP), three alloys with very different microstructures have been obtained. In a vast experimental campaign undertaken to investigate the fatigue damage mechanisms governing these alloys under different multiaxial loading conditions, it was shown that the principal crack initiation mechanisms for the porosity-free alloy are either the formation of persistent slip bands (PSB) or the rupture and/or debonding of eutectic particles. For the porosity-containing alloys, the fatigue damage is always controlled by crack growth from pores. In order to take into account these fatigue damage mechanisms, a probabilistic model using a combination of the Dang Van and a modified LEFM criteria is proposed. The modified LEFM criterion is able to take into account the influence of the grain size on the threshold of the stress intensity factor. It is shown that for the porosity-free alloy, the predictions are good for combined tension-torsion loads with R = - 1. However, because the crack initiation mechanisms are not the same depending on the hydrostatic stress, the predictions are non-conservative for the uniaxial and equibiaxial tension oads with R = 0,1. For the porosity-containing alloys, the predictions are very good for the uniaxial, combined tension-torsion and equibiaxial tension loads with both R = - 1and R = 0,1. As observed experimentally, the proposed model can also predict a more pronounced effect of casting porosity for the uniaxial and combined tension-torsion loads, when compared to pure torsion loads.Modelling of corrosion fatigue crack initiation on martensitic stainless steel in high cycle fatigue regime
http://hdl.handle.net/10985/13235
Modelling of corrosion fatigue crack initiation on martensitic stainless steel in high cycle fatigue regime
EL MAY, Mohamed; SAINTIER, Nicolas; PALIN-LUC, Thierry; DEVOS, Olivier; BRUCELLE, Olivier
This paper presents an analytical model for assessing the corrosion fatigue crack initiation life on a martensitic stainless steel X12CrNiMoV12-3 in high cycle fatigue regime (between 105 and 107 cycles). Based on in-situ electrochemical measurements during corrosion fatigue tests in NaCl aqueous solution, the corrosion fatigue crack initiation mechanism was identified. Two main stages were investigated: (i) the fracture of the passive film by slip bands and (ii) the free dissolution of the metal developing fatigue crack initiation from a critical corrosion defect. The depassivation stress threshold corresponds to the median fatigue strength at 107 cycles for fatigue corrosion tests. For an applied stress range less than this threshold, the depassivation phenomenon was not observed at 107 cycles and no crack initiation occurred. The proposed model takes into account the depassivation process induced by the slip bands emergence at the specimen surface and the corrosion rate under cyclic loading. The experimental results are compared to the proposed model taking into account mechanical and electrochemical material parameters.
Mon, 01 Jan 2018 00:00:00 GMThttp://hdl.handle.net/10985/132352018-01-01T00:00:00ZEL MAY, MohamedSAINTIER, NicolasPALIN-LUC, ThierryDEVOS, OlivierBRUCELLE, OlivierThis paper presents an analytical model for assessing the corrosion fatigue crack initiation life on a martensitic stainless steel X12CrNiMoV12-3 in high cycle fatigue regime (between 105 and 107 cycles). Based on in-situ electrochemical measurements during corrosion fatigue tests in NaCl aqueous solution, the corrosion fatigue crack initiation mechanism was identified. Two main stages were investigated: (i) the fracture of the passive film by slip bands and (ii) the free dissolution of the metal developing fatigue crack initiation from a critical corrosion defect. The depassivation stress threshold corresponds to the median fatigue strength at 107 cycles for fatigue corrosion tests. For an applied stress range less than this threshold, the depassivation phenomenon was not observed at 107 cycles and no crack initiation occurred. The proposed model takes into account the depassivation process induced by the slip bands emergence at the specimen surface and the corrosion rate under cyclic loading. The experimental results are compared to the proposed model taking into account mechanical and electrochemical material parameters.About the effect of plastic dissipation in heat at the crack tip on the stress intensity factor under cyclic loading
http://hdl.handle.net/10985/6994
About the effect of plastic dissipation in heat at the crack tip on the stress intensity factor under cyclic loading
RANC, Nicolas; PALIN-LUC, Thierry; PARIS, Paul C.; SAINTIER, Nicolas
Because of the reverse cyclic plastic zone at the crack tip, there is plastic dissipation in heat at the crack tip under cyclic loading. That creates a heterogeneous temperature field around the crack tip. A thermo-mechanical model is proposed in this paper for evaluating the consequence of this temperature field on the Mode I stress intensity factor. Two cases are studied: (i) the theoretical problem of an infinite plate with a semi-infinite through crack under Mode I cyclic loading, and (ii) a finite specimen with a central through crack. In the first case, the main hypothesis and results are presented from the literature but no heat loss is taken into account. In second case, heat loss by convection is taken into account with a finite element analysis, while an analytical solution exists in the literature for the first case. In both cases, it is assumed that the heat source is located in the reverse cyclic plastic zone. The heat source within the reverse cyclic plastic zone is quantified by experiments on a mild steel under R=0.1. It is shown that the crack tip is under compression due to thermal stresses coming from the heterogeneous temperature field around the crack tip. The effect of this stress field on the stress intensity factor (its maximum, minimum and its range) is calculated. This paper shows that experiments have to be carried out to determine the heat source within the reverse cyclic plastic zone. This is the key parameter to quantify the effect of dissipation at the crack tip on the stress intensity factor.
Please cite this article as: Ranc, N., Palin-Luc, T., Paris, P.C., Saintier, N., About the effect of plastic dissipation in heat at the crack tip on the stress intensity factor under cyclic loading, International Journal of Fatigue (2013).
Tue, 01 Jan 2013 00:00:00 GMThttp://hdl.handle.net/10985/69942013-01-01T00:00:00ZRANC, NicolasPALIN-LUC, ThierryPARIS, Paul C.SAINTIER, NicolasBecause of the reverse cyclic plastic zone at the crack tip, there is plastic dissipation in heat at the crack tip under cyclic loading. That creates a heterogeneous temperature field around the crack tip. A thermo-mechanical model is proposed in this paper for evaluating the consequence of this temperature field on the Mode I stress intensity factor. Two cases are studied: (i) the theoretical problem of an infinite plate with a semi-infinite through crack under Mode I cyclic loading, and (ii) a finite specimen with a central through crack. In the first case, the main hypothesis and results are presented from the literature but no heat loss is taken into account. In second case, heat loss by convection is taken into account with a finite element analysis, while an analytical solution exists in the literature for the first case. In both cases, it is assumed that the heat source is located in the reverse cyclic plastic zone. The heat source within the reverse cyclic plastic zone is quantified by experiments on a mild steel under R=0.1. It is shown that the crack tip is under compression due to thermal stresses coming from the heterogeneous temperature field around the crack tip. The effect of this stress field on the stress intensity factor (its maximum, minimum and its range) is calculated. This paper shows that experiments have to be carried out to determine the heat source within the reverse cyclic plastic zone. This is the key parameter to quantify the effect of dissipation at the crack tip on the stress intensity factor.