SAM
https://sam.ensam.eu:443
The DSpace digital repository system captures, stores, indexes, preserves, and distributes digital research material.Thu, 25 Jul 2024 10:46:44 GMT2024-07-25T10:46:44ZA simple microstructural viscoelastic model for flowing foams
http://hdl.handle.net/10985/16835
A simple microstructural viscoelastic model for flowing foams
IBÁÑEZ, Rubén; SCHEUER, Adrien; HUERTA, Antonio; KEUNINGS, Roland; ABISSET-CHAVANNE, Emmanuelle; CHINESTA SORIA, Francisco
The numerical modelling of forming processes involving the flow of foams requires taking into account the different problem scales. Thus, in industrial applications a macroscopic approach is suitable, whereas the macroscopic flow parameters depend on the cellular structure: cell size, shape, orientation, etc. Moreover, the shape and orientation of the cells are induced by the flow. A fully microscopic description remains useful to understand the foam behaviour and the topological changes induced by the cell elongation or distortion, however, from an industrial point of view, microscopic simulations remain challenging to address practical applications involving flows in complex 3D geometries. In this paper, we propose a viscoelastic flow model where the foam microstructure is represented from suitable microstructure descriptors whose evolution is governed by the macroscopic flow kinematics.
Mon, 01 Jan 2018 00:00:00 GMThttp://hdl.handle.net/10985/168352018-01-01T00:00:00ZIBÁÑEZ, RubénSCHEUER, AdrienHUERTA, AntonioKEUNINGS, RolandABISSET-CHAVANNE, EmmanuelleCHINESTA SORIA, FranciscoThe numerical modelling of forming processes involving the flow of foams requires taking into account the different problem scales. Thus, in industrial applications a macroscopic approach is suitable, whereas the macroscopic flow parameters depend on the cellular structure: cell size, shape, orientation, etc. Moreover, the shape and orientation of the cells are induced by the flow. A fully microscopic description remains useful to understand the foam behaviour and the topological changes induced by the cell elongation or distortion, however, from an industrial point of view, microscopic simulations remain challenging to address practical applications involving flows in complex 3D geometries. In this paper, we propose a viscoelastic flow model where the foam microstructure is represented from suitable microstructure descriptors whose evolution is governed by the macroscopic flow kinematics.Microscopic modelling of orientation kinematics of non-spherical particles suspended in confined flows using unilateral mechanics
http://hdl.handle.net/10985/13304
Microscopic modelling of orientation kinematics of non-spherical particles suspended in confined flows using unilateral mechanics
SCHEUER, Adrien; KEUNINGS, Roland; ABISSET-CHAVANNE, Emmanuelle; CHINESTA SORIA, Francisco
The properties of reinforced polymers strongly depend on the microstructural state, that is, the orientation state of the fibres suspended in the polymeric matrix, induced by the forming process. Understanding flow-induced anisotropy is thus a key element to optimize both materials and process. Despite the important progresses accomplished in the modelling and simulation of suspensions, few works addressed the fact that usual processing flows evolve in confined configurations, where particles characteristic lengths may be greater than the thickness of the narrow gaps in which the flow takes place. In those circumstances, orientation kinematics models proposed for unconfined flows must be extended to the confined case. In this short communication, we propose an alternative modelling framework based on the use of unilateral mechanics, consequently exhibiting a clear analogy with plasticity and contact mechanics. This framework allows us to revisit the motion of confined particles in Newtonian and non-Newtonian matrices. We also prove that the confined kinematics provided by this model are identical to those derived from microstructural approaches
Mon, 01 Jan 2018 00:00:00 GMThttp://hdl.handle.net/10985/133042018-01-01T00:00:00ZSCHEUER, AdrienKEUNINGS, RolandABISSET-CHAVANNE, EmmanuelleCHINESTA SORIA, FranciscoThe properties of reinforced polymers strongly depend on the microstructural state, that is, the orientation state of the fibres suspended in the polymeric matrix, induced by the forming process. Understanding flow-induced anisotropy is thus a key element to optimize both materials and process. Despite the important progresses accomplished in the modelling and simulation of suspensions, few works addressed the fact that usual processing flows evolve in confined configurations, where particles characteristic lengths may be greater than the thickness of the narrow gaps in which the flow takes place. In those circumstances, orientation kinematics models proposed for unconfined flows must be extended to the confined case. In this short communication, we propose an alternative modelling framework based on the use of unilateral mechanics, consequently exhibiting a clear analogy with plasticity and contact mechanics. This framework allows us to revisit the motion of confined particles in Newtonian and non-Newtonian matrices. We also prove that the confined kinematics provided by this model are identical to those derived from microstructural approachesOn the multi-scale description of micro-structured fluids composed of aggregating rods
http://hdl.handle.net/10985/17967
On the multi-scale description of micro-structured fluids composed of aggregating rods
PEREZ, Marta; SCHEUER, Adrien; KEUNINGS, Roland; ABISSET-CHAVANNE, Emmanuelle; AMMAR, Amine; CHINESTA SORIA, Francisco
When addressing the flow of concentrated suspensions composed of rods, dense clusters are observed. Thus, the adequate modelling and simulation of such a flow requires addressing the kinematics of these dense clusters and their impact on the flow in which they are immersed. In a former work, we addressed a first modelling framework of these clusters, assumed so dense that they were considered rigid and their kinematics (flow-induced rotation) were totally defined by a symmetric tensor c with unit trace representing the cluster conformation. Then, the rigid nature of the clusters was relaxed, assuming them deformable, and a model giving the evolution of both the cluster shape and its microstructural orientation descriptor (the so-called shape and orientation tensors) was proposed. This paper compares the predictions coming from those models with finer-scale discrete simulations inspired from molecular dynamics modelling.
Tue, 01 Jan 2019 00:00:00 GMThttp://hdl.handle.net/10985/179672019-01-01T00:00:00ZPEREZ, MartaSCHEUER, AdrienKEUNINGS, RolandABISSET-CHAVANNE, EmmanuelleAMMAR, AmineCHINESTA SORIA, FranciscoWhen addressing the flow of concentrated suspensions composed of rods, dense clusters are observed. Thus, the adequate modelling and simulation of such a flow requires addressing the kinematics of these dense clusters and their impact on the flow in which they are immersed. In a former work, we addressed a first modelling framework of these clusters, assumed so dense that they were considered rigid and their kinematics (flow-induced rotation) were totally defined by a symmetric tensor c with unit trace representing the cluster conformation. Then, the rigid nature of the clusters was relaxed, assuming them deformable, and a model giving the evolution of both the cluster shape and its microstructural orientation descriptor (the so-called shape and orientation tensors) was proposed. This paper compares the predictions coming from those models with finer-scale discrete simulations inspired from molecular dynamics modelling.Modelling the effect of particle inertia on the orientation kinematics of fibres and spheroids immersed in a simple shear flow
http://hdl.handle.net/10985/18388
Modelling the effect of particle inertia on the orientation kinematics of fibres and spheroids immersed in a simple shear flow
SCHEUER, Adrien; GRÉGOIRE, Guillaume; KEUNINGS, Roland; ABISSET-CHAVANNE, Emmanuelle; CHINESTA SORIA, Francisco
Simulations of flows containing non-spherical particles (fibres or ellipsoids) rely on the knowledge of the equation governing the particle motion in the flow. Most models used nowadays are based on the pioneering work of Jeffery (1922), who obtained an equation for the motion of an ellipsoidal particle immersed in a Newtonian fluid, despite the fact that this model relies on strong assumptions: negligible inertia, unconfined flow, dilute regime, flow unperturbed by the presence of the suspended particle, etc. In this work, we propose a dumbbell-based model aimed to describe the motion of an inertial fibre or ellipsoid suspended in a Newtonian fluid. We then use this model to study the orientation kinematics of such particle in a linear shear flow and compare it to the inertialess case. In the case of fibres, we observe the appearance of periodic orbits (whereas inertialess fibres just align in the flow field). For spheroids, our model predicts an orbit drift towards the flow-gradient plane, either gradually (slight inertia) or by first rotating around a moving oblique axis (heavy particles). Multi-Particle Collision Dynamics (MPCD) simulations were carried out to assess the model predictions in the case of inertial fibres and revealed similar behaviours.
Wed, 01 Jan 2020 00:00:00 GMThttp://hdl.handle.net/10985/183882020-01-01T00:00:00ZSCHEUER, AdrienGRÉGOIRE, GuillaumeKEUNINGS, RolandABISSET-CHAVANNE, EmmanuelleCHINESTA SORIA, FranciscoSimulations of flows containing non-spherical particles (fibres or ellipsoids) rely on the knowledge of the equation governing the particle motion in the flow. Most models used nowadays are based on the pioneering work of Jeffery (1922), who obtained an equation for the motion of an ellipsoidal particle immersed in a Newtonian fluid, despite the fact that this model relies on strong assumptions: negligible inertia, unconfined flow, dilute regime, flow unperturbed by the presence of the suspended particle, etc. In this work, we propose a dumbbell-based model aimed to describe the motion of an inertial fibre or ellipsoid suspended in a Newtonian fluid. We then use this model to study the orientation kinematics of such particle in a linear shear flow and compare it to the inertialess case. In the case of fibres, we observe the appearance of periodic orbits (whereas inertialess fibres just align in the flow field). For spheroids, our model predicts an orbit drift towards the flow-gradient plane, either gradually (slight inertia) or by first rotating around a moving oblique axis (heavy particles). Multi-Particle Collision Dynamics (MPCD) simulations were carried out to assess the model predictions in the case of inertial fibres and revealed similar behaviours.Data-driven upscaling of orientation kinematics in suspensions of rigid fibres
http://hdl.handle.net/10985/15419
Data-driven upscaling of orientation kinematics in suspensions of rigid fibres
SCHEUER, Adrien; CUETO, Elías; KEUNINGS, Roland; ADVANI, Suresh G.; ABISSET-CHAVANNE, Emmanuelle; AMMAR, Amine; CHINESTA SORIA, Francisco
Describing the orientation state of the particles is often critical in fibre suspension applications. Macroscopic descriptors, the so-called second-order orientation tensor (or moment) leading the way, are often preferred due to their low computational cost. Closure problems however arise when evolution equations for the moments are derived from the orientation distribution functions and the impact of the chosen closure is often unpredictable. In this work, our aim is to provide macroscopic simulations of orientation that are cheap, accurate and closure-free. To this end, we propose an innovative data-based approach to the upscaling of orientation kinematics in the context of fibre suspensions. Since the physics at the microscopic scale can be modelled reasonably enough, the idea is to conduct accurate offline direct numerical simulations at that scale and to extract the corresponding macroscopic descriptors in order to build a database of scenarios. During the online stage, the macroscopic descriptors can then be updated quickly by combining adequately the items from the database instead of relying on an imprecise macroscopic model. This methodology is presented in the well-known case of dilute fibre suspensions (where it can be compared against closure-based macroscopic models) and in the case of suspensions of confined or electrically-charged fibres, for which state-of-the-art closures proved to be inadequate or simply do not exist.
Mon, 01 Jan 2018 00:00:00 GMThttp://hdl.handle.net/10985/154192018-01-01T00:00:00ZSCHEUER, AdrienCUETO, ElíasKEUNINGS, RolandADVANI, Suresh G.ABISSET-CHAVANNE, EmmanuelleAMMAR, AmineCHINESTA SORIA, FranciscoDescribing the orientation state of the particles is often critical in fibre suspension applications. Macroscopic descriptors, the so-called second-order orientation tensor (or moment) leading the way, are often preferred due to their low computational cost. Closure problems however arise when evolution equations for the moments are derived from the orientation distribution functions and the impact of the chosen closure is often unpredictable. In this work, our aim is to provide macroscopic simulations of orientation that are cheap, accurate and closure-free. To this end, we propose an innovative data-based approach to the upscaling of orientation kinematics in the context of fibre suspensions. Since the physics at the microscopic scale can be modelled reasonably enough, the idea is to conduct accurate offline direct numerical simulations at that scale and to extract the corresponding macroscopic descriptors in order to build a database of scenarios. During the online stage, the macroscopic descriptors can then be updated quickly by combining adequately the items from the database instead of relying on an imprecise macroscopic model. This methodology is presented in the well-known case of dilute fibre suspensions (where it can be compared against closure-based macroscopic models) and in the case of suspensions of confined or electrically-charged fibres, for which state-of-the-art closures proved to be inadequate or simply do not exist.