SAM
https://sam.ensam.eu:443
The DSpace digital repository system captures, stores, indexes, preserves, and distributes digital research material.Mon, 18 Oct 2021 20:49:58 GMT2021-10-18T20:49:58ZDispositif de commande de deux moteurs polyphasés
http://hdl.handle.net/10985/10614
Dispositif de commande de deux moteurs polyphasés
MICHEL, Raymond; BEKEMANS, Marc; GUILLAUME, Michel; SEMAIL, Eric
L'invention porte sur un dispositif de commande ou de gestion du fonctionnement de deux moteurs polyphasés et 5 leur alimentation. Le dispositif comporte deux machines électriques à 6 phases couplées en série et alimentées chacune par un onduleur de tension. Cette structure permet ,dans le cadre des applications comprenant deux moteurs devant travailler ensemble mais de façon indépendante, de garantir une tolérance aux pannes (phase ouverte, interrurpteur en court-circuit) avec un nombre réduit de composants de puissance. Ce type de structure suppose un nombre de phases supérieur à 3 pour les machines électriques.
Déposé le 4 février 2014 en France, n° demande EP14305151.4, n°publication F R 0 7 9 0, numero de soumission 1000226379 par THALES Numero de publication EP2903155 au 05.08.2015 au http://bulletin.european-patent-office.org/ Telechargement gratuit à https://data.epo.org/publication-server Visualization with english translation on espacenet http://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&adjacent=true&locale=en_EP&FT=E&date=20150805&CC=EP&NR=2903155&KC=A1
Thu, 01 Jan 2015 00:00:00 GMThttp://hdl.handle.net/10985/106142015-01-01T00:00:00ZMICHEL, RaymondBEKEMANS, MarcGUILLAUME, MichelSEMAIL, EricL'invention porte sur un dispositif de commande ou de gestion du fonctionnement de deux moteurs polyphasés et 5 leur alimentation. Le dispositif comporte deux machines électriques à 6 phases couplées en série et alimentées chacune par un onduleur de tension. Cette structure permet ,dans le cadre des applications comprenant deux moteurs devant travailler ensemble mais de façon indépendante, de garantir une tolérance aux pannes (phase ouverte, interrurpteur en court-circuit) avec un nombre réduit de composants de puissance. Ce type de structure suppose un nombre de phases supérieur à 3 pour les machines électriques.Multi-star multi-phase winding for a high power naval propulsion machine with low ripple torques and high fault tolerant ability
http://hdl.handle.net/10985/6975
Multi-star multi-phase winding for a high power naval propulsion machine with low ripple torques and high fault tolerant ability
SCUILLER, Franck; CHARPENTIER, Jean-Frederic; SEMAIL, Eric
In this paper, an original multi-phase Surface Mounted Permanent Magnet (SMPM) Machine designed for naval propulsion is proposed. The design objective of this high power low speed machine is twofold: to enhance the fault tolerance capability of the system and to optimize the quality of the torque by reducing the electromagnetic torque ripples which underlie the acoustic behaviour of the motor and of the global mechanical structure. A low level of ripple torques must also be ensured in faulty operations. To fullfill these constraints, the machine is equipped with a fractional-slot concentrated winding made up of four 3-phase windings each one being star-connected, each star being magnetically shifted by an angle of 15 degrees. This 4-star 3-phase configuration allows to reduce the cogging torque and to separate magnetically and physically the phase windings. The end-turns are also drastically reduced, which improves the compactness and the efficiency of the machine. This original multi-phase machine is supplied by four 3-phase PWM voltage source inverter with sinusoidal current law. The magnetic independences between the four star windings allow a very simple control of the four-star supply and a straightforward fault operating mode. Moreover, this 4-star winding configuration yields to very low torque ripples in nominal configuration (four stars connected) and in faulty operations if two magnetic non adjacent stars are disconnected. For all these reasons, this structure appears particularly suitable for naval propulsion application since it increases the machine performances in terms of compactness, reliability and quality of torque.
La version éditeur est disponible à cette adresse : http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5729185&isnumber=5728974
Fri, 01 Jan 2010 00:00:00 GMThttp://hdl.handle.net/10985/69752010-01-01T00:00:00ZSCUILLER, FranckCHARPENTIER, Jean-FredericSEMAIL, EricIn this paper, an original multi-phase Surface Mounted Permanent Magnet (SMPM) Machine designed for naval propulsion is proposed. The design objective of this high power low speed machine is twofold: to enhance the fault tolerance capability of the system and to optimize the quality of the torque by reducing the electromagnetic torque ripples which underlie the acoustic behaviour of the motor and of the global mechanical structure. A low level of ripple torques must also be ensured in faulty operations. To fullfill these constraints, the machine is equipped with a fractional-slot concentrated winding made up of four 3-phase windings each one being star-connected, each star being magnetically shifted by an angle of 15 degrees. This 4-star 3-phase configuration allows to reduce the cogging torque and to separate magnetically and physically the phase windings. The end-turns are also drastically reduced, which improves the compactness and the efficiency of the machine. This original multi-phase machine is supplied by four 3-phase PWM voltage source inverter with sinusoidal current law. The magnetic independences between the four star windings allow a very simple control of the four-star supply and a straightforward fault operating mode. Moreover, this 4-star winding configuration yields to very low torque ripples in nominal configuration (four stars connected) and in faulty operations if two magnetic non adjacent stars are disconnected. For all these reasons, this structure appears particularly suitable for naval propulsion application since it increases the machine performances in terms of compactness, reliability and quality of torque.Flux Weakening Strategy Optimization for Five-Phase PM Machine with Concentrated Windings
http://hdl.handle.net/10985/7315
Flux Weakening Strategy Optimization for Five-Phase PM Machine with Concentrated Windings
JILIN, Gong; ASLAN, Bassel; SEMAIL, Eric; GILLON, Frédéric
The paper applies an Efficient Global Optimization method (EGO) to improve the efficiency, in flux weakening region, of a given 5-phase Permanent Magnet (PM) machine. An optimal control for the four independent currents is thus defined. Moreover, a modification proposal of the machine geometry is added to the optimization process of the global drive. The effectiveness of the method allows solving the challenge which consists in taking into account inside the control strategy the eddy-current losses in magnets and iron. In fact, magnet losses are a critical point to protect the machine from demagnetization in flux-weakening region. But these losses, which highly depend on magnetic state of the machine, must be calculated by Finite Element Method (FEM) to be accurate. The FEM has the drawback to be time consuming. It is why a direct optimization using FEM is critical. EGO method, using sparingly FEM, allows to find a feasible solution to this hard optimization problem of control and design of multi-phase drive.
Sun, 01 Jan 2012 00:00:00 GMThttp://hdl.handle.net/10985/73152012-01-01T00:00:00ZJILIN, GongASLAN, BasselSEMAIL, EricGILLON, FrédéricThe paper applies an Efficient Global Optimization method (EGO) to improve the efficiency, in flux weakening region, of a given 5-phase Permanent Magnet (PM) machine. An optimal control for the four independent currents is thus defined. Moreover, a modification proposal of the machine geometry is added to the optimization process of the global drive. The effectiveness of the method allows solving the challenge which consists in taking into account inside the control strategy the eddy-current losses in magnets and iron. In fact, magnet losses are a critical point to protect the machine from demagnetization in flux-weakening region. But these losses, which highly depend on magnetic state of the machine, must be calculated by Finite Element Method (FEM) to be accurate. The FEM has the drawback to be time consuming. It is why a direct optimization using FEM is critical. EGO method, using sparingly FEM, allows to find a feasible solution to this hard optimization problem of control and design of multi-phase drive.Analytical Model of Magnet Eddy-Current Volume Losses in Multi-phase PM Machines with Concentrated Winding
http://hdl.handle.net/10985/6954
Analytical Model of Magnet Eddy-Current Volume Losses in Multi-phase PM Machines with Concentrated Winding
ASLAN, Bassel; SEMAIL, Eric; LEGRANGER, Jerome
this paper studies magnet eddy-current losses in permanent magnet (PM) machines with concentrated winding. First of all, space harmonics of magnetomotive force (MMF) and their influence on magnet losses in electrical machines are investigated. Secondly, analytical model of magnet volume losses is developed by studying the interaction between MMF harmonics wavelengths and magnet pole dimensions. Different cases of this interaction are studied according to the ratio between each harmonic wavelength and magnet pole width (following flux density variation). Then various losses sub-models are deduced. Finally, using this analytical model, magnet volume losses for many slots/poles combinations of 3, 5, and 7 phase machines with concentrated winding are compared. This comparison leads to classify combinations into different families depending on their magnet losses level. Besides, in order to validate the theoretical study, Finite Element models are built and simulation results are compared with analytical calculations.
Thanks to IEEE. The original PDF of the article can be found at: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6342330&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6342330 MHYGALE, project managed by VALEO-EEM
Sun, 01 Jan 2012 00:00:00 GMThttp://hdl.handle.net/10985/69542012-01-01T00:00:00ZASLAN, BasselSEMAIL, EricLEGRANGER, Jeromethis paper studies magnet eddy-current losses in permanent magnet (PM) machines with concentrated winding. First of all, space harmonics of magnetomotive force (MMF) and their influence on magnet losses in electrical machines are investigated. Secondly, analytical model of magnet volume losses is developed by studying the interaction between MMF harmonics wavelengths and magnet pole dimensions. Different cases of this interaction are studied according to the ratio between each harmonic wavelength and magnet pole width (following flux density variation). Then various losses sub-models are deduced. Finally, using this analytical model, magnet volume losses for many slots/poles combinations of 3, 5, and 7 phase machines with concentrated winding are compared. This comparison leads to classify combinations into different families depending on their magnet losses level. Besides, in order to validate the theoretical study, Finite Element models are built and simulation results are compared with analytical calculations.Multi-phase System Supplied by SVM VSI: A New Fast Algorithm to Compute Duty Cycles
http://hdl.handle.net/10985/6998
Multi-phase System Supplied by SVM VSI: A New Fast Algorithm to Compute Duty Cycles
KESTELYN, Xavier; SEMAIL, Eric; HAUTIER, Jean-Paul
Many authors proposed SVM VSI applied to multi-phase drives.
La version éditeur de cette article est disponible à l'adresse suivante : http://www.epe-association.org/epe/index.php
Thu, 01 Jan 2004 00:00:00 GMThttp://hdl.handle.net/10985/69982004-01-01T00:00:00ZKESTELYN, XavierSEMAIL, EricHAUTIER, Jean-PaulMany authors proposed SVM VSI applied to multi-phase drives.Sensitivity of a 5-phase Brushless DC machine to the 7th harmonic of the back-electromotive force
http://hdl.handle.net/10985/10781
Sensitivity of a 5-phase Brushless DC machine to the 7th harmonic of the back-electromotive force
SEMAIL, Eric; KESTELYN, Xavier; BOUSCAYROL, Alain
This paper presents a vector control of a 5-phase drive composed of a 5-leg Pulse Width Modulation (PWM) Voltage Source Inverter (VSI) supplying a permanent-magnet Brushless DC (BLDC) machine with trapezoidal waveform of the back-electromotive force (EMF). To achieve this control a Multi-machine Multi-converter model is used: the 5-phase machine is transformed into a set of two 2-phase fictitious machines which are each one controlled in a (d,q) frame as 3-phase machines with sine waveform back-EMF. In comparison with the 3-phase BLDC drives, the 5-phase ones present one particularity: a high sensitivity to the 7th harmonic of back-EMF. Experimental results show that the 7th harmonic of back-EMF, which represents only 5% of RMS back-EMF, induces high amplitude parasitic currents (29 % percent of RMS current). The model allows to explain the origin of this sensitivity and how to modify simply the control algorithm. Experimental improvements of the drive are presented.
Thu, 01 Jan 2004 00:00:00 GMThttp://hdl.handle.net/10985/107812004-01-01T00:00:00ZSEMAIL, EricKESTELYN, XavierBOUSCAYROL, AlainThis paper presents a vector control of a 5-phase drive composed of a 5-leg Pulse Width Modulation (PWM) Voltage Source Inverter (VSI) supplying a permanent-magnet Brushless DC (BLDC) machine with trapezoidal waveform of the back-electromotive force (EMF). To achieve this control a Multi-machine Multi-converter model is used: the 5-phase machine is transformed into a set of two 2-phase fictitious machines which are each one controlled in a (d,q) frame as 3-phase machines with sine waveform back-EMF. In comparison with the 3-phase BLDC drives, the 5-phase ones present one particularity: a high sensitivity to the 7th harmonic of back-EMF. Experimental results show that the 7th harmonic of back-EMF, which represents only 5% of RMS back-EMF, induces high amplitude parasitic currents (29 % percent of RMS current). The model allows to explain the origin of this sensitivity and how to modify simply the control algorithm. Experimental improvements of the drive are presented.Analytical Optimal Currents for Multiphase PMSMs Under Fault Conditions and Saturation
http://hdl.handle.net/10985/8410
Analytical Optimal Currents for Multiphase PMSMs Under Fault Conditions and Saturation
NGUYEN, Ngac Ky; FLIELLER, Damien; KESTELYN, Xavier; SEMAIL, Eric
An original analytical expression is presented in this paper to obtain optimal currents minimizing the copper losses of a multi-phase Permanent Magnet Synchronous Motor (PMSM) under fault conditions. Based on the existing solutions [i]opt1 (without zero sequence of current constraint) and [i]opt2 (with zero sequence constraint), this new expression of currents [i]opt3 is obtained by means of a geometrical representation and can be applied to open-circuit, defect of current regulation, current saturation and machine phase short-circuit fault. Simulation results are presented to validate the proposed approach.
Wed, 01 Jan 2014 00:00:00 GMThttp://hdl.handle.net/10985/84102014-01-01T00:00:00ZNGUYEN, Ngac KyFLIELLER, DamienKESTELYN, XavierSEMAIL, EricAn original analytical expression is presented in this paper to obtain optimal currents minimizing the copper losses of a multi-phase Permanent Magnet Synchronous Motor (PMSM) under fault conditions. Based on the existing solutions [i]opt1 (without zero sequence of current constraint) and [i]opt2 (with zero sequence constraint), this new expression of currents [i]opt3 is obtained by means of a geometrical representation and can be applied to open-circuit, defect of current regulation, current saturation and machine phase short-circuit fault. Simulation results are presented to validate the proposed approach.An Efficient Control of a Series Connected Two-Synchronous Motor 5-Phase with Non Sinusoidal EMF Supplied by a Single 5-leg VSI: Experimental and Theoretical Investigations
http://hdl.handle.net/10985/6820
An Efficient Control of a Series Connected Two-Synchronous Motor 5-Phase with Non Sinusoidal EMF Supplied by a Single 5-leg VSI: Experimental and Theoretical Investigations
MEKRI, Fatiha; CHARPENTIER, Jean-Frederic; SEMAIL, Eric
This paper proposes the control scheme of an original drive which is made up of two 5-phase permanent magnet synchronous machines (PMSM) connected in series. Even if the Electro-Motive Forces (EMF) are trapezoidal, it is possible, by using a special series connection between the two machines and by implementing a special vector control, to impose independent torques and speeds with a single fiveleg Voltage Source Inverter (VSI). If special series-connection with classical vector control is sufficient to achieve flux/torque decoupling when the EMFs are sinusoidal, it is necessary to modify the control scheme when the EMFs are not sinusoidal. Simulations and experimental results demonstrate the efficiency of the independent control of the two 5-phase synchronous machines connected in series, and the efficiency of the proposed improved control for different loads.
Lien vers la version finale éditeur <http://www.sciencedirect.com/science/article/pii/S0378779612001393>
Sun, 01 Jan 2012 00:00:00 GMThttp://hdl.handle.net/10985/68202012-01-01T00:00:00ZMEKRI, FatihaCHARPENTIER, Jean-FredericSEMAIL, EricThis paper proposes the control scheme of an original drive which is made up of two 5-phase permanent magnet synchronous machines (PMSM) connected in series. Even if the Electro-Motive Forces (EMF) are trapezoidal, it is possible, by using a special series connection between the two machines and by implementing a special vector control, to impose independent torques and speeds with a single fiveleg Voltage Source Inverter (VSI). If special series-connection with classical vector control is sufficient to achieve flux/torque decoupling when the EMFs are sinusoidal, it is necessary to modify the control scheme when the EMFs are not sinusoidal. Simulations and experimental results demonstrate the efficiency of the independent control of the two 5-phase synchronous machines connected in series, and the efficiency of the proposed improved control for different loads.Open Switch Fault Effects Analysis (OSFEA) in Five Phase PMSM Designed for Aerospace Application
http://hdl.handle.net/10985/11322
Open Switch Fault Effects Analysis (OSFEA) in Five Phase PMSM Designed for Aerospace Application
TRABELSI, Mohamed; SEMAIL, Eric; NGUYEN, Ngac Ky; MEINGUET, Fabien
This paper describes analytical and simulation tools to analyze the effects of Open Switch Fault (OSF) and Open Phase Fault (OPF) on five-phase PMSM designed for aerospace applications. For these demanding applications, the fault tolerance and the reliability of the PMSM as well as the power converter are of high great importance. The addressed work aims essentially to analyze the dynamic of the measured phase currents in post-fault operation with a real-time fault diagnostic purposes in the VSI. It starts with a presentation of the electric drive system structure and its control used in pre-fault and post-fault operation of the electric drive system. Then, fault mode effects analysis (FMEA) on the system is considered. It is based on the Generalized Vectorial Formalism (GVF) and Space Vector Theory (SVT). All results are verified analytically and through simulation software using Matlab/Simulator®. The theoretical development and the simulation results show that the five phase PMSM under inverter faults presents typical characteristics which can be used as better inputs variable for designing a high performance fault diagnostic and classification process.
Fri, 01 Jan 2016 00:00:00 GMThttp://hdl.handle.net/10985/113222016-01-01T00:00:00ZTRABELSI, MohamedSEMAIL, EricNGUYEN, Ngac KyMEINGUET, FabienThis paper describes analytical and simulation tools to analyze the effects of Open Switch Fault (OSF) and Open Phase Fault (OPF) on five-phase PMSM designed for aerospace applications. For these demanding applications, the fault tolerance and the reliability of the PMSM as well as the power converter are of high great importance. The addressed work aims essentially to analyze the dynamic of the measured phase currents in post-fault operation with a real-time fault diagnostic purposes in the VSI. It starts with a presentation of the electric drive system structure and its control used in pre-fault and post-fault operation of the electric drive system. Then, fault mode effects analysis (FMEA) on the system is considered. It is based on the Generalized Vectorial Formalism (GVF) and Space Vector Theory (SVT). All results are verified analytically and through simulation software using Matlab/Simulator®. The theoretical development and the simulation results show that the five phase PMSM under inverter faults presents typical characteristics which can be used as better inputs variable for designing a high performance fault diagnostic and classification process.Computation of Optimal Current References for Flux-weakening of Multi-Phase Synchronous Machines
http://hdl.handle.net/10985/6741
Computation of Optimal Current References for Flux-weakening of Multi-Phase Synchronous Machines
LU, Li; ASLAN, Bassel; KOBYLANSKI, Luc; SANDULESCU, Paul; MEINGUET, Fabien; KESTELYN, Xavier; SEMAIL, Eric
Multi-phase synchronous machines are more and more used in specific applications where high power density, low bus voltage, wide speed range and fault-tolerant capabilities are required. Due to the high number of degrees of freedom, multi-phase machines are difficult to optimally operate in flux-weakening zones. This paper proposes a technique to numerically compute optimal current references that can be used for feed-forward flux-weakening techniques in order to exploit the maximum machine performances for given DC bus voltage and current limits. The proposed technique is applied to a five-phase permanent magnet synchronous machine specifically developed for an automotive application.
Sun, 01 Jan 2012 00:00:00 GMThttp://hdl.handle.net/10985/67412012-01-01T00:00:00ZLU, LiASLAN, BasselKOBYLANSKI, LucSANDULESCU, PaulMEINGUET, FabienKESTELYN, XavierSEMAIL, EricMulti-phase synchronous machines are more and more used in specific applications where high power density, low bus voltage, wide speed range and fault-tolerant capabilities are required. Due to the high number of degrees of freedom, multi-phase machines are difficult to optimally operate in flux-weakening zones. This paper proposes a technique to numerically compute optimal current references that can be used for feed-forward flux-weakening techniques in order to exploit the maximum machine performances for given DC bus voltage and current limits. The proposed technique is applied to a five-phase permanent magnet synchronous machine specifically developed for an automotive application.