SAM
https://sam.ensam.eu:443
The DSpace digital repository system captures, stores, indexes, preserves, and distributes digital research material.Wed, 30 Nov 2022 06:24:27 GMT2022-11-30T06:24:27ZMACHINE ELECTRIQUE TOURNANTE POLYPHASEE A AU MOINS CINQ PHASES
http://hdl.handle.net/10985/7423
MACHINE ELECTRIQUE TOURNANTE POLYPHASEE A AU MOINS CINQ PHASES
ASLAN, Bassel; SEMAIL, Eric; LEGRANGER, Jerome
La présente invention porte sur une machine électrique tournante 5 polyphasée à au moins cinq phases. L'invention trouve une application particulièrement avantageuse dans le domaine des alternateurs, des alterno-démarreurs, ou des machines électriques de traction de véhicule automobile.
Ce brevet s'est opéré dans le cadre de la thèse d'Aslan Bassel au Laboratoire L2EP avec VALEO dans le cadre du projet MHYGALE financé par l'ADEME, avec VALEO responsable du consortium. Le brevet est déposé au nom de VALEO EQUIPEMENTS ELECTRIQUES MOTEUR.
Tue, 01 Jan 2013 00:00:00 GMThttp://hdl.handle.net/10985/74232013-01-01T00:00:00ZASLAN, BasselSEMAIL, EricLEGRANGER, JeromeLa présente invention porte sur une machine électrique tournante 5 polyphasée à au moins cinq phases. L'invention trouve une application particulièrement avantageuse dans le domaine des alternateurs, des alterno-démarreurs, ou des machines électriques de traction de véhicule automobile.Open-Switch and Open-Phase Real Time FDI Process for Multiphase PM Synchronous Motors
http://hdl.handle.net/10985/11201
Open-Switch and Open-Phase Real Time FDI Process for Multiphase PM Synchronous Motors
TRABELSI, Mohamed; SEMAIL, Eric; NGUYEN, Ngac Ky; MEINGUET, Fabien
This paper deals with the real time Fault Detection and Identification (FDI) process of inverter Open Switch Fault (OSF) and Open Phase Fault (OPF) in five-phase PMSM designed for aerospace applications in which the electric drive system has particular operating characteristics either in healthy states or in the faulty ones. Two original contributions are considered in this paper. They consist in normalizing the input variables of the FDI process applied to multiphase system and compensating the noise (switching and sensors noises) and dccomponent resulting from the fault occurrence. The proposed strategy uses multiple normalized criterias derived from the measured phase currents and the references currents obtained from the outputs of the speed controllers. The FDI shows independence with respect to transient states and to switching and measurement noises. Moreover, it can be easily included in an existing software without any additional sensors. The validity of the proposed method is verified by Matlab/Simulink simulation tests.
Fri, 01 Jan 2016 00:00:00 GMThttp://hdl.handle.net/10985/112012016-01-01T00:00:00ZTRABELSI, MohamedSEMAIL, EricNGUYEN, Ngac KyMEINGUET, FabienThis paper deals with the real time Fault Detection and Identification (FDI) process of inverter Open Switch Fault (OSF) and Open Phase Fault (OPF) in five-phase PMSM designed for aerospace applications in which the electric drive system has particular operating characteristics either in healthy states or in the faulty ones. Two original contributions are considered in this paper. They consist in normalizing the input variables of the FDI process applied to multiphase system and compensating the noise (switching and sensors noises) and dccomponent resulting from the fault occurrence. The proposed strategy uses multiple normalized criterias derived from the measured phase currents and the references currents obtained from the outputs of the speed controllers. The FDI shows independence with respect to transient states and to switching and measurement noises. Moreover, it can be easily included in an existing software without any additional sensors. The validity of the proposed method is verified by Matlab/Simulink simulation tests.Comparison of Optimized Control Strategies of a High-Speed Traction Machine with Five Phases and Bi-Harmonic Electromotive Force
http://hdl.handle.net/10985/11435
Comparison of Optimized Control Strategies of a High-Speed Traction Machine with Five Phases and Bi-Harmonic Electromotive Force
ZAHR, Hussein; GONG, Jinlin; SEMAIL, Eric; SCUILLER, Franck
The purpose of the paper is to present the potentialities in terms of the control of a new kind of PM synchronous machine. With five phases and electromotive forces whose first (E1) and third (E3) harmonics are of similar amplitude, the studied machine, so-called bi-harmonic, has properties that are interesting for traction machine payload. With three-phase machines, supplied by a mono-harmonic sinusoidal current, the weak number of freedom degrees limits the strategy of control for traction machines especially when voltage saturation occurs at high speeds. As the torque is managed for three-phase machines by a current with only one harmonic, flux weakening is necessary to increase speed when the voltage limitation is reached. The studied five-phase machine, thanks to the increase in the number of freedom degrees for control, aims to alleviate this fact. In his paper, three optimized control strategies are compared in terms of efficiency and associated torque/speed characteristics. These strategies take into account numerous constraints either from the supply (with limited voltage) or from the machine (with limited current densities and maximum acceptable copper, iron and permanent magnet losses). The obtained results prove the wide potentialities of such a kind of five-phase bi-harmonic machine in terms of control under constraints. It is thus shown that the classical Maximum Torque Per Ampere (MTPA) strategy developed for the three-phase machine is clearly not satisfying on the whole range of speed because of the presence of iron losses whose values can no more be neglected at high speeds. Two other strategies have been then proposed to be able to manage the compromises, at high speeds, between the high values of torque and efficiency under the constraints of admissible total losses either in the rotor or in the stator.
Fri, 01 Jan 2016 00:00:00 GMThttp://hdl.handle.net/10985/114352016-01-01T00:00:00ZZAHR, HusseinGONG, JinlinSEMAIL, EricSCUILLER, FranckThe purpose of the paper is to present the potentialities in terms of the control of a new kind of PM synchronous machine. With five phases and electromotive forces whose first (E1) and third (E3) harmonics are of similar amplitude, the studied machine, so-called bi-harmonic, has properties that are interesting for traction machine payload. With three-phase machines, supplied by a mono-harmonic sinusoidal current, the weak number of freedom degrees limits the strategy of control for traction machines especially when voltage saturation occurs at high speeds. As the torque is managed for three-phase machines by a current with only one harmonic, flux weakening is necessary to increase speed when the voltage limitation is reached. The studied five-phase machine, thanks to the increase in the number of freedom degrees for control, aims to alleviate this fact. In his paper, three optimized control strategies are compared in terms of efficiency and associated torque/speed characteristics. These strategies take into account numerous constraints either from the supply (with limited voltage) or from the machine (with limited current densities and maximum acceptable copper, iron and permanent magnet losses). The obtained results prove the wide potentialities of such a kind of five-phase bi-harmonic machine in terms of control under constraints. It is thus shown that the classical Maximum Torque Per Ampere (MTPA) strategy developed for the three-phase machine is clearly not satisfying on the whole range of speed because of the presence of iron losses whose values can no more be neglected at high speeds. Two other strategies have been then proposed to be able to manage the compromises, at high speeds, between the high values of torque and efficiency under the constraints of admissible total losses either in the rotor or in the stator.General Analytical Model of Magnet Average Eddy-Current Volume Losses for Comparison of Multi-phase PM Machines with Concentrated Winding
http://hdl.handle.net/10985/8268
General Analytical Model of Magnet Average Eddy-Current Volume Losses for Comparison of Multi-phase PM Machines with Concentrated Winding
ASLAN, Bassel; SEMAIL, Eric; LEGRANGER, Jerome
this paper studies magnet eddy-current losses in permanent magnet (PM) machines with concentrated winding. First of all, space harmonics of magnetomotive force (MMF) and their influence on magnet losses in electrical machines are investigated. Secondly, analytical model of magnet volume losses is developed by studying the interaction between MMF harmonics wavelengths and magnet pole dimensions. Different cases of this interaction are exhibited according to the ratio between each harmonic wavelength and magnet pole width. Then various losses sub-models are deduced. Using this analytical model, magnet volume losses for many Slots/Poles combinations of 3, 5, and 7 phase machines with concentrated winding are compared. This comparison leads to classify combinations into different families depending on their magnet losses level. Finally, in order to verify the theoretical study, Finite Element models are built and simulation results are compared with analytical calculations
Wed, 01 Jan 2014 00:00:00 GMThttp://hdl.handle.net/10985/82682014-01-01T00:00:00ZASLAN, BasselSEMAIL, EricLEGRANGER, Jeromethis paper studies magnet eddy-current losses in permanent magnet (PM) machines with concentrated winding. First of all, space harmonics of magnetomotive force (MMF) and their influence on magnet losses in electrical machines are investigated. Secondly, analytical model of magnet volume losses is developed by studying the interaction between MMF harmonics wavelengths and magnet pole dimensions. Different cases of this interaction are exhibited according to the ratio between each harmonic wavelength and magnet pole width. Then various losses sub-models are deduced. Using this analytical model, magnet volume losses for many Slots/Poles combinations of 3, 5, and 7 phase machines with concentrated winding are compared. This comparison leads to classify combinations into different families depending on their magnet losses level. Finally, in order to verify the theoretical study, Finite Element models are built and simulation results are compared with analytical calculationsSensitivity of a 5-phase Brushless DC machine to the 7th harmonic of the back-electromotive force
http://hdl.handle.net/10985/10781
Sensitivity of a 5-phase Brushless DC machine to the 7th harmonic of the back-electromotive force
SEMAIL, Eric; KESTELYN, Xavier; BOUSCAYROL, Alain
This paper presents a vector control of a 5-phase drive composed of a 5-leg Pulse Width Modulation (PWM) Voltage Source Inverter (VSI) supplying a permanent-magnet Brushless DC (BLDC) machine with trapezoidal waveform of the back-electromotive force (EMF). To achieve this control a Multi-machine Multi-converter model is used: the 5-phase machine is transformed into a set of two 2-phase fictitious machines which are each one controlled in a (d,q) frame as 3-phase machines with sine waveform back-EMF. In comparison with the 3-phase BLDC drives, the 5-phase ones present one particularity: a high sensitivity to the 7th harmonic of back-EMF. Experimental results show that the 7th harmonic of back-EMF, which represents only 5% of RMS back-EMF, induces high amplitude parasitic currents (29 % percent of RMS current). The model allows to explain the origin of this sensitivity and how to modify simply the control algorithm. Experimental improvements of the drive are presented.
Thu, 01 Jan 2004 00:00:00 GMThttp://hdl.handle.net/10985/107812004-01-01T00:00:00ZSEMAIL, EricKESTELYN, XavierBOUSCAYROL, AlainThis paper presents a vector control of a 5-phase drive composed of a 5-leg Pulse Width Modulation (PWM) Voltage Source Inverter (VSI) supplying a permanent-magnet Brushless DC (BLDC) machine with trapezoidal waveform of the back-electromotive force (EMF). To achieve this control a Multi-machine Multi-converter model is used: the 5-phase machine is transformed into a set of two 2-phase fictitious machines which are each one controlled in a (d,q) frame as 3-phase machines with sine waveform back-EMF. In comparison with the 3-phase BLDC drives, the 5-phase ones present one particularity: a high sensitivity to the 7th harmonic of back-EMF. Experimental results show that the 7th harmonic of back-EMF, which represents only 5% of RMS back-EMF, induces high amplitude parasitic currents (29 % percent of RMS current). The model allows to explain the origin of this sensitivity and how to modify simply the control algorithm. Experimental improvements of the drive are presented.New Electrical Inversed-Series Connection for Even-Phase Symmetrical PMSMs
http://hdl.handle.net/10985/13796
New Electrical Inversed-Series Connection for Even-Phase Symmetrical PMSMs
DOS SANTOS MORAES, Tiago José; SEMAIL, Eric; NGUYEN, Ngac Ky; MEINGUET, Fabien; GUERIN, Mael
This paper presents an extension of previous methods in order to find electrical series-connections between multiphase machines allowing the independent control of each one of them. These new electrical series-connections explore the symmetrical disposition of the phases of even-multiphase machines, allowing the inversed connection of some of the phases, different from the direct connections as it was previously done. Therefore, electrical series-connections of two symmetrical 6- phase or of four symmetrical 10-phase machines are now possible. Besides that, this new solution ensures a natural independent control of permanent magnet synchronous machines even if the back-electromotive forces generated by the rotor are not sinusoidal, without need of special machine conception or supplementary control strategy. This control independency is mathematically proved using the decomposition of multiphase machines in fictitious diphase and homopolar machines. Experimental results are presented to show the functioning and the advantages of this new coupling for two symmetrical 6-phase permanent magnet synchronous machines.
Mon, 01 Jan 2018 00:00:00 GMThttp://hdl.handle.net/10985/137962018-01-01T00:00:00ZDOS SANTOS MORAES, Tiago JoséSEMAIL, EricNGUYEN, Ngac KyMEINGUET, FabienGUERIN, MaelThis paper presents an extension of previous methods in order to find electrical series-connections between multiphase machines allowing the independent control of each one of them. These new electrical series-connections explore the symmetrical disposition of the phases of even-multiphase machines, allowing the inversed connection of some of the phases, different from the direct connections as it was previously done. Therefore, electrical series-connections of two symmetrical 6- phase or of four symmetrical 10-phase machines are now possible. Besides that, this new solution ensures a natural independent control of permanent magnet synchronous machines even if the back-electromotive forces generated by the rotor are not sinusoidal, without need of special machine conception or supplementary control strategy. This control independency is mathematically proved using the decomposition of multiphase machines in fictitious diphase and homopolar machines. Experimental results are presented to show the functioning and the advantages of this new coupling for two symmetrical 6-phase permanent magnet synchronous machines.Five-phase SPM machine with electronic pole changing effect for marine propulsion
http://hdl.handle.net/10985/12999
Five-phase SPM machine with electronic pole changing effect for marine propulsion
ZAHR, Hussein; SCUILLER, Franck; SEMAIL, Eric
In this paper, the possibility of designing a fivephase Surface-mounted Permanent Magnet (SPM) machine with 20 slots and 8 poles for a low power marine propulsion system is examined. Due to its particular winding and surface magnet design, the machine inherently offers an electronic pole changing effect from 3×4 pole pairs at low speed to 4 pole pairs at high speed. At high speed, in the constant power range, according to Finite Element Analysis, the Maximum Torque Per Ampere strategy appears not to be the right solution to minimize the whole machine losses (copper, iron and magnets). In particular, a strategy that favors the 4-pole rotating field at high speed allows to mitigate the magnet losses, thus limiting the risk of magnet overheating.
Fri, 01 Jan 2016 00:00:00 GMThttp://hdl.handle.net/10985/129992016-01-01T00:00:00ZZAHR, HusseinSCUILLER, FranckSEMAIL, EricIn this paper, the possibility of designing a fivephase Surface-mounted Permanent Magnet (SPM) machine with 20 slots and 8 poles for a low power marine propulsion system is examined. Due to its particular winding and surface magnet design, the machine inherently offers an electronic pole changing effect from 3×4 pole pairs at low speed to 4 pole pairs at high speed. At high speed, in the constant power range, according to Finite Element Analysis, the Maximum Torque Per Ampere strategy appears not to be the right solution to minimize the whole machine losses (copper, iron and magnets). In particular, a strategy that favors the 4-pole rotating field at high speed allows to mitigate the magnet losses, thus limiting the risk of magnet overheating.Integrated Traction/Charge/Air Compression Supply using 3-Phase Split-windings Motor for Electric Vehicle
http://hdl.handle.net/10985/12998
Integrated Traction/Charge/Air Compression Supply using 3-Phase Split-windings Motor for Electric Vehicle
LHOMME, Walter; DELARUE, Philippe; DOS SANTOS MORAES, Tiago José; NGUYEN, Ngac Ky; SEMAIL, Eric; CHEN, Keyu; SILVESTRE, Benedicte
High cost, no-ideal driving range and charge time limit electric vehicle market share. Facing these challenges, an in-tegrated motor drive/battery charger system has been proposed by Valeo. A further advancement, based on this system, is present in this paper; for the first time, the integration of traction, charging and air-compressor supply modes is proposed and tested by real-time experimentation. This integrated system is expected to in-crease the vehicle component compactness and power, therefore potentially reduce the cost and battery charging time. An overall and unique control scheme is detailed to achieve the three main operating modes: traction, charging and air-compressor supply modes. The real-time experimentation results show the system fea-sibility.
Mon, 01 Jan 2018 00:00:00 GMThttp://hdl.handle.net/10985/129982018-01-01T00:00:00ZLHOMME, WalterDELARUE, PhilippeDOS SANTOS MORAES, Tiago JoséNGUYEN, Ngac KySEMAIL, EricCHEN, KeyuSILVESTRE, BenedicteHigh cost, no-ideal driving range and charge time limit electric vehicle market share. Facing these challenges, an in-tegrated motor drive/battery charger system has been proposed by Valeo. A further advancement, based on this system, is present in this paper; for the first time, the integration of traction, charging and air-compressor supply modes is proposed and tested by real-time experimentation. This integrated system is expected to in-crease the vehicle component compactness and power, therefore potentially reduce the cost and battery charging time. An overall and unique control scheme is detailed to achieve the three main operating modes: traction, charging and air-compressor supply modes. The real-time experimentation results show the system fea-sibility.Homopolar Current’s Copper Losses Analysis for Different Modulations in Open-End Winding Five-Phase drives
http://hdl.handle.net/10985/14575
Homopolar Current’s Copper Losses Analysis for Different Modulations in Open-End Winding Five-Phase drives
DOS SANTOS MORAES, Tiago José; SEMAIL, Eric; TRABELSI, Mohamed; ZAHR, Hussein
This paper analyses the copper losses due to the homopolar current of a five-phase open-end winding machine supplied by a 10-leg inverter and a single DC voltage source. This topology can have non-null high frequency homopolar current components that can increase the machine’s copper losses and result in overheating of the motor phase windings. Accordingly, different modulation strategies are compared with the goal of reducing the homopolar current and, consequently the resulting copper losses. The comparison study is achieved using Matlab/Simulink and a finite element model in order to evaluate these losses.
This work has been achieved within the framework of CE2I project. CE2I is co-financed by European Union with the financial support of European Regional Development Fund (ERDF), French State and the French Region of Hauts-de-France.
Mon, 01 Jan 2018 00:00:00 GMThttp://hdl.handle.net/10985/145752018-01-01T00:00:00ZDOS SANTOS MORAES, Tiago JoséSEMAIL, EricTRABELSI, MohamedZAHR, HusseinThis paper analyses the copper losses due to the homopolar current of a five-phase open-end winding machine supplied by a 10-leg inverter and a single DC voltage source. This topology can have non-null high frequency homopolar current components that can increase the machine’s copper losses and result in overheating of the motor phase windings. Accordingly, different modulation strategies are compared with the goal of reducing the homopolar current and, consequently the resulting copper losses. The comparison study is achieved using Matlab/Simulink and a finite element model in order to evaluate these losses.Variable speed Control under Voltage and Current Limits of a 5-phase PMSM drive in Healthy and Open-Circuited Modes
http://hdl.handle.net/10985/11197
Variable speed Control under Voltage and Current Limits of a 5-phase PMSM drive in Healthy and Open-Circuited Modes
FALL, Ousmane; CHARPENTIER, Jean-Frederic; NGUYEN, Ngac Ky; LETELLIER, Paul; SEMAIL, Eric; KESTELYN, Xavier
This paper proposes a novel variable speed control strategy of a particular 5-phase Permanent Magnet Synchronous Generator (PMSG) in healthy and faulty modes by taking into account the constraints on voltages and currents. These constraints are related to the converter and machine design. The considered faults are open-circuited phases (one phase, two adjacent phases and two non-adjacent phases). A variable speed control strategy is presented, including flux weakening operations. Based on analytical formulations, a numerical computation is proposed to bring out the torque−speed characteristics. This method allows the determination of the current references which ensure the functioning of a 5-phase PMSG at variable speed while keeping phase voltages and currents below their limits. Theoretical, numerical and experimental results are presented. These results are compared in order to validate the proposed approach.
Fri, 01 Jan 2016 00:00:00 GMThttp://hdl.handle.net/10985/111972016-01-01T00:00:00ZFALL, OusmaneCHARPENTIER, Jean-FredericNGUYEN, Ngac KyLETELLIER, PaulSEMAIL, EricKESTELYN, XavierThis paper proposes a novel variable speed control strategy of a particular 5-phase Permanent Magnet Synchronous Generator (PMSG) in healthy and faulty modes by taking into account the constraints on voltages and currents. These constraints are related to the converter and machine design. The considered faults are open-circuited phases (one phase, two adjacent phases and two non-adjacent phases). A variable speed control strategy is presented, including flux weakening operations. Based on analytical formulations, a numerical computation is proposed to bring out the torque−speed characteristics. This method allows the determination of the current references which ensure the functioning of a 5-phase PMSG at variable speed while keeping phase voltages and currents below their limits. Theoretical, numerical and experimental results are presented. These results are compared in order to validate the proposed approach.