SAM
https://sam.ensam.eu:443
The DSpace digital repository system captures, stores, indexes, preserves, and distributes digital research material.Fri, 10 Apr 2020 06:18:29 GMT2020-04-10T06:18:29ZFlux Weakening Strategy Optimization for Five-Phase PM Machine with Concentrated Windings
http://hdl.handle.net/10985/7315
Flux Weakening Strategy Optimization for Five-Phase PM Machine with Concentrated Windings
JILIN, Gong; ASLAN, Bassel; SEMAIL, Eric; GILLON, Frédéric
The paper applies an Efficient Global Optimization method (EGO) to improve the efficiency, in flux weakening region, of a given 5-phase Permanent Magnet (PM) machine. An optimal control for the four independent currents is thus defined. Moreover, a modification proposal of the machine geometry is added to the optimization process of the global drive. The effectiveness of the method allows solving the challenge which consists in taking into account inside the control strategy the eddy-current losses in magnets and iron. In fact, magnet losses are a critical point to protect the machine from demagnetization in flux-weakening region. But these losses, which highly depend on magnetic state of the machine, must be calculated by Finite Element Method (FEM) to be accurate. The FEM has the drawback to be time consuming. It is why a direct optimization using FEM is critical. EGO method, using sparingly FEM, allows to find a feasible solution to this hard optimization problem of control and design of multi-phase drive.
Sun, 01 Jan 2012 00:00:00 GMThttp://hdl.handle.net/10985/73152012-01-01T00:00:00ZJILIN, GongASLAN, BasselSEMAIL, EricGILLON, FrédéricThe paper applies an Efficient Global Optimization method (EGO) to improve the efficiency, in flux weakening region, of a given 5-phase Permanent Magnet (PM) machine. An optimal control for the four independent currents is thus defined. Moreover, a modification proposal of the machine geometry is added to the optimization process of the global drive. The effectiveness of the method allows solving the challenge which consists in taking into account inside the control strategy the eddy-current losses in magnets and iron. In fact, magnet losses are a critical point to protect the machine from demagnetization in flux-weakening region. But these losses, which highly depend on magnetic state of the machine, must be calculated by Finite Element Method (FEM) to be accurate. The FEM has the drawback to be time consuming. It is why a direct optimization using FEM is critical. EGO method, using sparingly FEM, allows to find a feasible solution to this hard optimization problem of control and design of multi-phase drive.Analytical Model of Magnet Eddy-Current Volume Losses in Multi-phase PM Machines with Concentrated Winding
http://hdl.handle.net/10985/6954
Analytical Model of Magnet Eddy-Current Volume Losses in Multi-phase PM Machines with Concentrated Winding
ASLAN, Bassel; SEMAIL, Eric; LEGRANGER, Jerome
this paper studies magnet eddy-current losses in permanent magnet (PM) machines with concentrated winding. First of all, space harmonics of magnetomotive force (MMF) and their influence on magnet losses in electrical machines are investigated. Secondly, analytical model of magnet volume losses is developed by studying the interaction between MMF harmonics wavelengths and magnet pole dimensions. Different cases of this interaction are studied according to the ratio between each harmonic wavelength and magnet pole width (following flux density variation). Then various losses sub-models are deduced. Finally, using this analytical model, magnet volume losses for many slots/poles combinations of 3, 5, and 7 phase machines with concentrated winding are compared. This comparison leads to classify combinations into different families depending on their magnet losses level. Besides, in order to validate the theoretical study, Finite Element models are built and simulation results are compared with analytical calculations.
Thanks to IEEE. The original PDF of the article can be found at: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6342330&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6342330 MHYGALE, project managed by VALEO-EEM
Sun, 01 Jan 2012 00:00:00 GMThttp://hdl.handle.net/10985/69542012-01-01T00:00:00ZASLAN, BasselSEMAIL, EricLEGRANGER, Jeromethis paper studies magnet eddy-current losses in permanent magnet (PM) machines with concentrated winding. First of all, space harmonics of magnetomotive force (MMF) and their influence on magnet losses in electrical machines are investigated. Secondly, analytical model of magnet volume losses is developed by studying the interaction between MMF harmonics wavelengths and magnet pole dimensions. Different cases of this interaction are studied according to the ratio between each harmonic wavelength and magnet pole width (following flux density variation). Then various losses sub-models are deduced. Finally, using this analytical model, magnet volume losses for many slots/poles combinations of 3, 5, and 7 phase machines with concentrated winding are compared. This comparison leads to classify combinations into different families depending on their magnet losses level. Besides, in order to validate the theoretical study, Finite Element models are built and simulation results are compared with analytical calculations.Multi-phase System Supplied by SVM VSI: A New Fast Algorithm to Compute Duty Cycles
http://hdl.handle.net/10985/6998
Multi-phase System Supplied by SVM VSI: A New Fast Algorithm to Compute Duty Cycles
KESTELYN, Xavier; SEMAIL, Eric; HAUTIER, Jean-Paul
Many authors proposed SVM VSI applied to multi-phase drives.
La version éditeur de cette article est disponible à l'adresse suivante : http://www.epe-association.org/epe/index.php
Thu, 01 Jan 2004 00:00:00 GMThttp://hdl.handle.net/10985/69982004-01-01T00:00:00ZKESTELYN, XavierSEMAIL, EricHAUTIER, Jean-PaulMany authors proposed SVM VSI applied to multi-phase drives.Vectorial Approach Based Control of a Seven-Phase Axial Flux Machine Designed for Fault Operation
http://hdl.handle.net/10985/6956
Vectorial Approach Based Control of a Seven-Phase Axial Flux Machine Designed for Fault Operation
LOCMENT, Fabrice; SEMAIL, Eric; KESTELYN, Xavier
This paper deals with easy-to-implement control strategies when a seven-phase axial flux permanent magnet machine supplied by a seven-leg voltage source inverter is in fault operation mode. Using a vectorial multimachine description, a seven-phase machine presenting a heightened ability to be controlled with one or two open-circuited phases has been designed. The machine is first presented, and experimental results are provided when one or two phases are open circuited. Based on a vectorial approach, new current references are calculated to avoid high-torque ripples.
Version éditeur disponible à l'adresse suivante : http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4519973&isnumber=4636792
Tue, 01 Jan 2008 00:00:00 GMThttp://hdl.handle.net/10985/69562008-01-01T00:00:00ZLOCMENT, FabriceSEMAIL, EricKESTELYN, XavierThis paper deals with easy-to-implement control strategies when a seven-phase axial flux permanent magnet machine supplied by a seven-leg voltage source inverter is in fault operation mode. Using a vectorial multimachine description, a seven-phase machine presenting a heightened ability to be controlled with one or two open-circuited phases has been designed. The machine is first presented, and experimental results are provided when one or two phases are open circuited. Based on a vectorial approach, new current references are calculated to avoid high-torque ripples.Fault-Tolerant Operation of an Open-End Winding Five-Phase PMSM Drive with Inverter Faults
http://hdl.handle.net/10985/7421
Fault-Tolerant Operation of an Open-End Winding Five-Phase PMSM Drive with Inverter Faults
MEINGUET, Fabien; NGUYEN, Ngac Ky; SANDULESCU, Paul; KESTELYN, Xavier; SEMAIL, Eric
Multi-phase machines are known for their fault-tolerant capability. However, star-connected machines have no fault tolerance to inverter switch short-circuit fault. This paper investigates the fault-tolerant operation of an open-end five-phase drive, i.e. a multi-phase machine fed with a dual-inverter supply. Open-circuit faults and inverter switch short-circuit faults are considered and handled with various degrees of reconfiguration. Theoretical developments and experimental results validate the proposed strategies.
The authors would like to thank the ADEME for the funding of the MHYGALE project.
Tue, 01 Jan 2013 00:00:00 GMThttp://hdl.handle.net/10985/74212013-01-01T00:00:00ZMEINGUET, FabienNGUYEN, Ngac KySANDULESCU, PaulKESTELYN, XavierSEMAIL, EricMulti-phase machines are known for their fault-tolerant capability. However, star-connected machines have no fault tolerance to inverter switch short-circuit fault. This paper investigates the fault-tolerant operation of an open-end five-phase drive, i.e. a multi-phase machine fed with a dual-inverter supply. Open-circuit faults and inverter switch short-circuit faults are considered and handled with various degrees of reconfiguration. Theoretical developments and experimental results validate the proposed strategies.Étude comparative de différents correcteurs pour la commande optimale avec défauts d’une machine pentaphasée
http://hdl.handle.net/10985/6881
Étude comparative de différents correcteurs pour la commande optimale avec défauts d’une machine pentaphasée
MEKRI, Fatiha; CHARPENTIER, Jean-Frederic; KESTELYN, Xavier; SEMAIL, Eric
The use of multiphase PM synchronous machines associated with VSI drives appears to be a very efficient solution when a high level of reliability, compactness and acoustic behaviour is required. This kind of solution is for example very useful in naval propulsion systems. The paper deals with the optimal control of a 5-phase PM machine associated with a VSI under fault conditions. This work focus on the use of such a system in normal and fault operations. The studied fault operations are open circuited phase fault conditions. Previous works have shown that, with this kind of 5-phase drive, it is possible to determine optimal currents references which maximize the torque density and reduce the torque pulsations of the machine when one or two phases are open circuited. In this fault case, classical linear controllers (as PID for example) cannot provide a correct tracking of these optimal reference currents because they have a highly dynamical behavior. Using this optimal reference current generation, we propose in this paper to compare classical PID controllers with fixed band and adaptive band hysteresis controllers. This comparison is done using Matlab/Simulink simulation in the case of a 5 phase surface mounted permanent magnet machine in normal and open-circuited fault operations. Study results show that adaptive band hysteresis control allows a good tracking of these unconventional reference currents with a fixed switching frequency for the VSI. In this case of adaptive s band hysteresis control appears to be particularly efficient.
La version éditeur de cet article est accessible à l'adresse suivante : doi:10.3166/ejee.15.377-400
Sun, 01 Jan 2012 00:00:00 GMThttp://hdl.handle.net/10985/68812012-01-01T00:00:00ZMEKRI, FatihaCHARPENTIER, Jean-FredericKESTELYN, XavierSEMAIL, EricThe use of multiphase PM synchronous machines associated with VSI drives appears to be a very efficient solution when a high level of reliability, compactness and acoustic behaviour is required. This kind of solution is for example very useful in naval propulsion systems. The paper deals with the optimal control of a 5-phase PM machine associated with a VSI under fault conditions. This work focus on the use of such a system in normal and fault operations. The studied fault operations are open circuited phase fault conditions. Previous works have shown that, with this kind of 5-phase drive, it is possible to determine optimal currents references which maximize the torque density and reduce the torque pulsations of the machine when one or two phases are open circuited. In this fault case, classical linear controllers (as PID for example) cannot provide a correct tracking of these optimal reference currents because they have a highly dynamical behavior. Using this optimal reference current generation, we propose in this paper to compare classical PID controllers with fixed band and adaptive band hysteresis controllers. This comparison is done using Matlab/Simulink simulation in the case of a 5 phase surface mounted permanent magnet machine in normal and open-circuited fault operations. Study results show that adaptive band hysteresis control allows a good tracking of these unconventional reference currents with a fixed switching frequency for the VSI. In this case of adaptive s band hysteresis control appears to be particularly efficient.Fault Detection, Isolation and Control Reconfiguration of Three-Phase PMSM Drives
http://hdl.handle.net/10985/6822
Fault Detection, Isolation and Control Reconfiguration of Three-Phase PMSM Drives
MEINGUET, Fabien; KESTELYN, Xavier; SEMAIL, Eric; GYSELINCK, Johan
This paper deals with on-line software fault detection and isolation method for a drive composed of a fourleg inverter and a three-phase permanent magnet synchronous machine. The considered faults are single-phase open-circuit and current sensor outage. The method is based on the monitoring of the abc currents with phase-locked loops and the ‘CUSUM’ algorithm for the decision system. The impact of the considered faults is examined: first, in case there is no modification of the control and then in case a control reconfiguration is performed taking into account the fault diagnosis. Closed-loop operation is performed before, during and after the fault. Experimental results show that the latter case allows maintaining the drive in safe operation.
Sat, 01 Jan 2011 00:00:00 GMThttp://hdl.handle.net/10985/68222011-01-01T00:00:00ZMEINGUET, FabienKESTELYN, XavierSEMAIL, EricGYSELINCK, JohanThis paper deals with on-line software fault detection and isolation method for a drive composed of a fourleg inverter and a three-phase permanent magnet synchronous machine. The considered faults are single-phase open-circuit and current sensor outage. The method is based on the monitoring of the abc currents with phase-locked loops and the ‘CUSUM’ algorithm for the decision system. The impact of the considered faults is examined: first, in case there is no modification of the control and then in case a control reconfiguration is performed taking into account the fault diagnosis. Closed-loop operation is performed before, during and after the fault. Experimental results show that the latter case allows maintaining the drive in safe operation.Flux-Weakening Strategies for a Five-Phase PM Synchronous Machine
http://hdl.handle.net/10985/6742
Flux-Weakening Strategies for a Five-Phase PM Synchronous Machine
LU, Li; SEMAIL, Eric; KOBYLANSKI, Luc; KESTELYN, Xavier
In order to get a low cost mild hybrid system, a global objective is to keep the actual thermal engine architecture. As consequence, the current clawpole synchronous automotive generator must be replaced by a new more powerful electrical machine but with the same large speed range [0 -18000 rpm]. In the project, a power of 15 kW and a DC bus voltage of 60V have been chosen to provide a regenerative breaking at minimum cost. With this payload (250A for the DC bus current), a five-phase machine appears to be interesting because MOSFET transistors of the voltage source inverter (VSI) have not to be used in parallel configuration (only two rated 150A transistors per leg for the VSI). As the speed range is large, a flux weakening must be applied. As the five-phase drives have more degrees of freedom than three-phase ones, different flux weakening strategies can be considered. The aim of this paper is to compare one of them.
Sat, 01 Jan 2011 00:00:00 GMThttp://hdl.handle.net/10985/67422011-01-01T00:00:00ZLU, LiSEMAIL, EricKOBYLANSKI, LucKESTELYN, XavierIn order to get a low cost mild hybrid system, a global objective is to keep the actual thermal engine architecture. As consequence, the current clawpole synchronous automotive generator must be replaced by a new more powerful electrical machine but with the same large speed range [0 -18000 rpm]. In the project, a power of 15 kW and a DC bus voltage of 60V have been chosen to provide a regenerative breaking at minimum cost. With this payload (250A for the DC bus current), a five-phase machine appears to be interesting because MOSFET transistors of the voltage source inverter (VSI) have not to be used in parallel configuration (only two rated 150A transistors per leg for the VSI). As the speed range is large, a flux weakening must be applied. As the five-phase drives have more degrees of freedom than three-phase ones, different flux weakening strategies can be considered. The aim of this paper is to compare one of them.General Analytical Model of Magnet Average Eddy-Current Volume Losses for Comparison of Multi-phase PM Machines with Concentrated Winding
http://hdl.handle.net/10985/8268
General Analytical Model of Magnet Average Eddy-Current Volume Losses for Comparison of Multi-phase PM Machines with Concentrated Winding
ASLAN, Bassel; SEMAIL, Eric; LEGRANGER, Jerome
this paper studies magnet eddy-current losses in permanent magnet (PM) machines with concentrated winding. First of all, space harmonics of magnetomotive force (MMF) and their influence on magnet losses in electrical machines are investigated. Secondly, analytical model of magnet volume losses is developed by studying the interaction between MMF harmonics wavelengths and magnet pole dimensions. Different cases of this interaction are exhibited according to the ratio between each harmonic wavelength and magnet pole width. Then various losses sub-models are deduced. Using this analytical model, magnet volume losses for many Slots/Poles combinations of 3, 5, and 7 phase machines with concentrated winding are compared. This comparison leads to classify combinations into different families depending on their magnet losses level. Finally, in order to verify the theoretical study, Finite Element models are built and simulation results are compared with analytical calculations
Wed, 01 Jan 2014 00:00:00 GMThttp://hdl.handle.net/10985/82682014-01-01T00:00:00ZASLAN, BasselSEMAIL, EricLEGRANGER, Jeromethis paper studies magnet eddy-current losses in permanent magnet (PM) machines with concentrated winding. First of all, space harmonics of magnetomotive force (MMF) and their influence on magnet losses in electrical machines are investigated. Secondly, analytical model of magnet volume losses is developed by studying the interaction between MMF harmonics wavelengths and magnet pole dimensions. Different cases of this interaction are exhibited according to the ratio between each harmonic wavelength and magnet pole width. Then various losses sub-models are deduced. Using this analytical model, magnet volume losses for many Slots/Poles combinations of 3, 5, and 7 phase machines with concentrated winding are compared. This comparison leads to classify combinations into different families depending on their magnet losses level. Finally, in order to verify the theoretical study, Finite Element models are built and simulation results are compared with analytical calculationsMACHINE ELECTRIQUE TOURNANTE POLYPHASEE A AU MOINS CINQ PHASES
http://hdl.handle.net/10985/7423
MACHINE ELECTRIQUE TOURNANTE POLYPHASEE A AU MOINS CINQ PHASES
ASLAN, Bassel; SEMAIL, Eric; LEGRANGER, Jerome
La présente invention porte sur une machine électrique tournante 5 polyphasée à au moins cinq phases. L'invention trouve une application particulièrement avantageuse dans le domaine des alternateurs, des alterno-démarreurs, ou des machines électriques de traction de véhicule automobile.
Ce brevet s'est opéré dans le cadre de la thèse d'Aslan Bassel au Laboratoire L2EP avec VALEO dans le cadre du projet MHYGALE financé par l'ADEME, avec VALEO responsable du consortium. Le brevet est déposé au nom de VALEO EQUIPEMENTS ELECTRIQUES MOTEUR.
Tue, 01 Jan 2013 00:00:00 GMThttp://hdl.handle.net/10985/74232013-01-01T00:00:00ZASLAN, BasselSEMAIL, EricLEGRANGER, JeromeLa présente invention porte sur une machine électrique tournante 5 polyphasée à au moins cinq phases. L'invention trouve une application particulièrement avantageuse dans le domaine des alternateurs, des alterno-démarreurs, ou des machines électriques de traction de véhicule automobile.