SAM
https://sam.ensam.eu:443
The DSpace digital repository system captures, stores, indexes, preserves, and distributes digital research material.Thu, 22 Feb 2024 20:23:09 GMT2024-02-22T20:23:09ZHigh Accuracy Volume Flow Rate Measurement Using Vortex Counting
http://hdl.handle.net/10985/8577
High Accuracy Volume Flow Rate Measurement Using Vortex Counting
ZAARAOUI, Abdelkader; MARGNAT, Florent; KHELLADI, Sofiane; RAVELET, Florent
A prototype device for measuring the volumetric flow-rate by counting vortices has been designed and realized. It consists of a square-section pipe in which are placed a two-dimensional bluff body and a strain gauge force sensor. These two elements are separated from each other, unlike the majority of vortex apparatus currently available. The principle is based on the generation of a separated wake behind the bluff body. The volumetric flow-rate measurement is done by counting vortices using a flat plate placed in the wake and attached to the beam sensor. By optimizing the geometrical arrangement, the search for a significant signal has shown that it was possible to get a quasi-periodic signal, within a good range of flow rates so that its performances are well deduced. The repeatability of the value of the volume of fluid passed for every vortex shed is tested for a given flow and then the accuracy of the measuring device is determined. This quantity is the constant of the device and is called the digital volume (V_p). It has the dimension of a volume and varies with the confinement of the flow and with the Reynolds number. Therefore, a dimensionless quantity is introduced, the reduced digital volume (V_r) that takes into account the average speed in the contracted section downstream of the bluff body. The reduced digital volume is found to be independent of the confinement in a significant range of Reynolds numbers, which gives the device a good accuracy.
Tue, 01 Jan 2013 00:00:00 GMThttp://hdl.handle.net/10985/85772013-01-01T00:00:00ZZAARAOUI, AbdelkaderMARGNAT, FlorentKHELLADI, SofianeRAVELET, FlorentA prototype device for measuring the volumetric flow-rate by counting vortices has been designed and realized. It consists of a square-section pipe in which are placed a two-dimensional bluff body and a strain gauge force sensor. These two elements are separated from each other, unlike the majority of vortex apparatus currently available. The principle is based on the generation of a separated wake behind the bluff body. The volumetric flow-rate measurement is done by counting vortices using a flat plate placed in the wake and attached to the beam sensor. By optimizing the geometrical arrangement, the search for a significant signal has shown that it was possible to get a quasi-periodic signal, within a good range of flow rates so that its performances are well deduced. The repeatability of the value of the volume of fluid passed for every vortex shed is tested for a given flow and then the accuracy of the measuring device is determined. This quantity is the constant of the device and is called the digital volume (V_p). It has the dimension of a volume and varies with the confinement of the flow and with the Reynolds number. Therefore, a dimensionless quantity is introduced, the reduced digital volume (V_r) that takes into account the average speed in the contracted section downstream of the bluff body. The reduced digital volume is found to be independent of the confinement in a significant range of Reynolds numbers, which gives the device a good accuracy.