Show simple item record

dc.contributor.author
 hal.structure.identifier
ANAGNOSTOU, Dimitrios
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.contributor.author
 hal.structure.identifier
CHATZIGEORGIOU, George
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.contributor.author
 hal.structure.identifier
CHEMISKY, Yves
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.contributor.author
 hal.structure.identifier
MERAGHNI, Fodil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
dc.date.accessioned2018
dc.date.available2018
dc.date.issued2018
dc.date.submitted2018
dc.identifier.issn1359-8368
dc.identifier.urihttp://hdl.handle.net/10985/13236
dc.description.abstractThe aim of this paper is to study, through a multiscale analysis, the viscoelastic behavior of glass reinforced sheet molding compound (SMC) composites and SMC-hybrid composites mixing two types of bundle reinforcement: glass and carbon fibers. SMC exhibit more than two distinct characteristic length scales, so that a sequence of scale transitions is required to obtain the overall behavior of the composite. An analytical procedure is used consisting of properly selected well-established micromechanical methods like the Mori-Tanaka (MTM) and the composite cylinders (CCM) accounting for each scale transition. After selecting a representative volume element (RVE) for each scale, the material response of any given length scale is described on the basis of the homogenized behavior of the next finer one. This hierarchical approach is appropriately extended to the viscoelastic domain to account for the time dependent overall response of the SMC composite material. The anisotropic damage has been introduced through a micromechanical model considering matrix penny-shape microcrack density inside bundles. The capabilities of the hierarchical modeling are illustrated with various parametric studies and simulation of experimental data for glass-based SMC composites.
dc.language.isoen
dc.publisherELSEVIER
dc.rightsPost-print
dc.subjectMicromechanics
dc.subjectViscoelasticity
dc.subjectInclusion Method
dc.subjectMultiscale Modeling
dc.subjectMicro-cracks
dc.titleHierarchical micromechanical modeling of the viscoelastic behavior coupled to damage in SMC and SMC-hybrid composites
dc.identifier.doi10.1016/j.compositesb.2018.05.053
dc.typdocArticles dans des revues avec comité de lecture
dc.localisationCentre de Metz
dc.subject.halSciences de l'ingénieur: Matériaux
dc.subject.halSciences de l'ingénieur: Mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Matériaux et structures en mécanique
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des matériaux
dc.subject.halSciences de l'ingénieur: Mécanique: Mécanique des solides
ensam.audienceInternationale
ensam.pagein press
ensam.journalComposites Part B: Engineering
ensam.peerReviewingOui
hal.identifierhal-01812711
hal.version1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record