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Abstract. The main objective of this contribution is to compare the Forming Limit Diagrams 

(FLDs) predicted by the use of two different vertex theories. The first theory is micromechanical 

and is based on the use of the Schmid law, within the framework of crystal plasticity coupled with 

the Taylor scale-transition scheme. The second theory is phenomenological and is based on the 

deformation theory of plasticity. For both theories, the mechanical behavior is formulated in the 

finite strain framework and is assumed to be isotropic and rate-independent. The theoretical 

framework of these approaches will be presented in details. In the micro-macro modeling, the 

isotropy is ensured by considering an isotropic initial texture. In the phenomenological modeling, 

the material parameters are identified on the basis of micro-macro simulations of tensile tests. 

Introduction 

The determination of Forming Limit Diagrams (FLDs) through numerical modeling and 

simulations represents an interesting alternative to the experimental tests. Indeed, the relatively high 

costs along with the technical difficulties related to the experimental measurements motivate the 

manufacturers and scientists to turn to numerical modeling. To this end, several analytical and 

numerical criteria have been developed in the literature to predict the occurrence of localized 

necking and then to determine the FLDs. Among the commonly adopted approaches, one can quote 

the maximum force criterion introduced by Considère [1], the general bifurcation criterion initiated 

by Drucker [2] and Hill [3] and the initial imperfection approach proposed by Marciniak and 

Kuczynski [4]. In this paper the bifurcation criterion developed by Rice [5] is adopted to predict the 

FLDs. This choice is motivated by the sound mathematical foundations of this criterion. 

Furthermore, no fitting parameter is required for the application of this criterion, in contrast to, e.g., 

the initial imperfection parameter required by the Marciniak and Kuczynski approach. However, the 

application of the Rice bifurcation criterion requires the introduction of some destabilizing effects in 

the constitutive modeling in order to obtain realistic limit strains. These destabilizing effects may be 

due to some softening phenomena (induced by damage or temperature), or to the use of yield 

surfaces that develop a vertex-like structure during continued deformation. This latter choice is 

followed in this work. The consequence of such a vertex formation is a reduction in the 

instantaneous shear moduli, which allows predicting realistic limit strains [6]. Note that the 

development of such a destabilizing vertex may be due to the application of the deformation theory 

of plasticity (see, e.g., Stören and Rice [5], Hutchinson and Neale [5]), or to the use of crystal 

plasticity theory through the Schmid law of the single crystal coupled with scale-transition schemes 

(see, e.g., Yoshida and Kuroda [6], Gerald Franz et al. [7]). In this paper, the FLDs obtained by the 

deformation theory of plasticity are compared with those yielded by the crystal plasticity theory. The 

material parameters are selected in order to have the same uniaxial mechanical response with the 

two theories (the same stress-strain tensile curve).  
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Notations and conventions 

In this paper, vector and tensor fields are underlined. Einstein’s convention of summation over 

repeated indices is adopted. The range of the free (resp. dummy) index is indicated before (resp. 

after) the corresponding equation. The transpose of a tensor X  is denoted by T X . 

Micromechanical modeling 

Modeling at the single crystal scale. The mechanical behavior of the single crystal is assumed to 

be rate-independent and is formulated in the finite strain framework. In this case, the constitutive 

modeling is defined by four equation families: 

• The microscopic velocity gradient g  is additively decomposed into its symmetric part d  and

its skew part w . The tensor d  (resp. w ) is itself decomposed into elastic strain rate part ed

(resp. lattice rotation rate ew ) and plastic strain rate part pd  (resp. plastic spin pw ):  

( ) ( )T e p T e p1 1
d g g d d ; w g g w w

2 2
= + = + = − = + (1) 

• The plastic deformation is solely due to the slip on the crystallographic slip systems:

p T p T
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where αγ  (resp. Mα ) is the slip rate (resp. Schmid orientation tensor) for a given slip system α
and sN  is the number of slip systems. 

• The elastic behavior is defined by a hypo-elastic law and the plastic behavior obeys the

Schmid law:
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where C  is the isotropic elasticity matrix and r  is the rotation of the crystallographic lattice. ατ

(resp. cτα ) denotes the resolved shear stress (resp. the critical shear stress) of slip system α . Their

evolutions are defined by the following equations: 

e e

s c s1,...,2N R : ( w . .w ) τ H 1,...,2Nα α α αβ β∀α = ; τ = σ − σ + σ ; = γ ; β = (4) 

where H  is the hardening matrix.  

• The nominal stress rate n  can be related to the Cauchy stress rate σ  by:

-1n j f .( Tr(d) g. )= σ + σ − σ (5) 

where f  is the deformation gradient, j  its determinant, and Tr denotes the trace operator. 

After some mathematical derivations of the consistency condition deduced from the Schmid law (3)

(2), and using Eqs. (1), (2), (3)(1), (4), the slip rates of the active slip systems can be expressed as: 

( )g h gh h gh h gg ; R : C : R H R : C : d h∀ ∈ + γ = Ψ γ = ; ∈A A  (6) 

where A is the set of active slip systems. 

Starting from relation (5) between n  and σ , and using the other constitutive equations (Eqs. (1), (2)

, (3)(1) and (4)), one can relate n  to g  by the tangent modulus l

n : g= l (7) 



The expression of l  is given as follows (see [7] for more details): 
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where: 
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and M  is the inverse of Ψ .

An explicit/implicit algorithm has been developed by Akpama et al. in [9] in order to incrementally 

integrate the constitutive equations at the single crystal scale and then to compute the tangent 

modulus l .  

Modeling at the polycrystal scale. The mechanical behavior of the polycrystal is derived from that 

of the individual single crystals using the Taylor scale-transition scheme. With this transition 

scheme, the deformation is assumed to be homogeneous over the polycrystal. Therefore, the 

macroscopic velocity gradient G  is equal to its microscopic counterpart g . This choice implies that 

the macroscopic tangent modulus L , relating the macroscopic stress rate N  to G , can be deduced 

from its microscopic counterpart l  by the following basic averaging rule over the representative 

volume element V  of the polycrystal: 

V

1
dV

V
= ∫ lL  (10) 

Plane stress condition. The studied sheets are assumed to be thin. Accordingly, the bifurcation 

analysis can be carried out under the following plane-stress conditions: 

i3N 0=  and 3iN 0= (11) 

This latter condition permits (after some lengthy but straightforward calculations) to derive the in-

plane macroscopic tangent modulus PSL  from L . 

Phenomenological modeling 

The deformation theory is used in this phenomenological part to model the mechanical behavior 

of the studied metal sheets. In this modeling, the material is assumed to be isotropic, incompressible 

and strain-rate independent. The tangent modulus PSL  determined under the plane-stress condition 

has been derived by Hutchinson and Neale [5]. For the sake of brevity, the expression of this 

modulus is introduced in this work without detailing the related mathematical developments 

(interested readers may refer to [5]). The Jaumann derivative of the in-plane Cauchy stress tensor 
J PSΣ  is related to the in-plane strain rate tensor PSD  (symmetric part of the in-plane velocity 

gradient PSG ) by the instantaneous modulus PSL : 

J PS PS PSΣ : D= L (12) 

Only the components PS
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1212L  are different from zero and are defined by 

the following expressions: 
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where eΣ  is the von Mises equivalent stress. sE  and tE  are the secant modulus and tangent 

modulus of the uniaxial true stress-Eulerian strain curve at eΣ . In this work, the Hollomon 

hardening law n

e e(Σ K ε )=  is used. In this case, the secant and tangent moduli are given by:

N 1 N 1

s e t eE K ε ; E N K ε− −= = (14) 

The in-plane nominal stress rate PSN  is related to the in-plane velocity gradient PSG  by: 

PS PS PSN : G= L (15) 

where the tangent modulus PSL  is related to the instantaneous modulus PSL  by: 

PS PS

1 2= − −L L LL (16) 

Tensors 1 L  and 2 L  are given by the following index expressions:  
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Rice bifurcation criterion 

The strain localization is considered as a bifurcation from the material response. This bifurcation 

is searched for as a localization band, which is determined by its normal unit vector N  and which 

represents the non-homogeneity in the velocity gradient. PSG+  and PSG−  designate, respectively, 

the in-plane velocity gradient inside and outside the band. Maxwell’s compatibility condition, for 

the velocity field, states that there exists a vector C  such that the jump in PSG  through the band 

reads: 

PS PS PSG G G C+ −= − = ⊗ N (18)  

On the other hand, the equilibrium condition implies the continuity of the nominal stress rate vector 

across the band:  

( )PS PS PS. N . N N 0+ −= − =N N  (19) 

By introducing the behavior law PS PS PSN : G= L  in Eq. (19), and using Eq. (18), one finally

obtains (see [7]): 

PS PS

i ijkl l k( )C 0 ( . . ).C 0= ⇔ =N N N NLL  (20) 

From Eq. (20), two families of solutions can be extracted. The first possibility is when C  is a null 

vector, and thus the magnitude of the jump is zero, in which case there is no bifurcation. The second 

possibility corresponds to the existence of at least one non-zero C , in which case the system of Eq. 

(20) has an infinite number of solutions leading to the following condition:  

PSdet ( . . ) 0=N NL (21) 



Eq. (21) is the so-called Rice's criterion ([5]) corresponding to the loss of ellipticity of the boundary 

value problem. From Eq. (21), the loss of ductility is considered to be reached when the first zero 

eigenvalue is seen in the acoustic tensor. 

Numerical results 

In this part, a polycrystal made of 1000 BCC single crystals is considered. The hardening law of 

the single crystals is the same as that used in [7]. An isotropic initial texture is generated by a 

random distribution of quaternions [12]. In order to assess the isotropy of the mechanical response 

of the polycrystal, 10 tensile tests in the plane of the sheet are simulated. Only the tensile direction 

is varied from one test to another. The angle θ between the tensile direction and the rolling direction

is varied from 0° to 90° at intervals of 10°. In Fig. 1(a), the tensile stress–strain curves are plotted 

for the different tensile orientations. The different curves are indistinguishable, which gives a first 

indication of the isotropy of the polycrystal. In Fig. 1(b), the evolution of the Lankford coefficient as 

a function of the tensile direction θ is plotted. This coefficient is comprised between 0.7 and 0.9,

which demonstrates the slight anisotropy of the studied polycrystal. Therefore, it is reasonable to 

assume that the behavior of the polycrystal is isotropic. The parameters of the Hollomon isotropic 

hardening law, used when the deformation theory is applied, are fitted on the basis of the tensile 

tests of Fig. 1(a). After fitting, K and N seem to be equal to 1761 MPa and 0.335, respectively. 

These parameters are then employed to compute the tangent modulus of Eq. (16) and then to predict 

the ductility limits. With this choice, the uniaxial mechanical response becomes the same for the 

two different theories of plasticity. The difference between the FLDs predicted by the application of 

the Taylor scheme and the deformation theory is displayed in Fig. 1(c). It is worth noting that the 

predicted limit strain for the uniaxial tensile path is the same for both theories. Fig. 1(c) 

demonstrates that the two FLDs determined by the two theories of plasticity are quite different in 

the whole, especially in the right-hand side of the FLD. This reveals, as expected, that the perfect 

similarity in terms of uniaxial mechanical response is far not sufficient to provide comparable limit 

strains. The interpretation of this result becomes obvious when considering that the bifurcation 

criterion is essentially related to the evolution of the tangent modulus, which involves not only the 

stress state itself, but also the stress derivatives.  
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Fig. 1. Numerical results: (a) Tensile stress–strain curves of the polycrystal for the different tensile 

orientations, (b) Evolution of the Lankford coefficient of the polycrystal as a function of the tensile 

direction θ, (c) Comparison between the FLD predicted by the deformation theory and the FLD

predicted by the Taylor scale-transition scheme in the context of crystal plasticity. 

Conclusions 

In this paper, two different plasticity theories involving vertex effects have been detailed and 

combined with the Rice bifurcation criterion to predict the ductility limits in the form of FLDs. To 



be consistent with the planar Rice criterion, the tangent moduli for both theories have been 

expressed in the plane of the sheet, thus satisfying the plane-stress condition. The numerical results 

demonstrate a large difference between the FLDs predicted by the two theories, although the 

uniaxial mechanical response is the same. This work will be improved in the future by taking into 

account the effect of plastic anisotropy in the comparisons between the predictions of the two 

theories. 
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